Bioreactor Co-Cultivation of High Lipid and Carotenoid Producing Yeast Rhodotorula kratochvilovae and Several Microalgae under Stress
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
FCH-S-19-5983
Research Foundation of Brno University of Technology
PubMed
34071194
PubMed Central
PMC8228999
DOI
10.3390/microorganisms9061160
PII: microorganisms9061160
Knihovny.cz E-zdroje
- Klíčová slova
- Desmodesmus sp, Rhodotorula kratochvilovae, carotenogenic yeasts, carotenoids, co-cultivation, lipids, microalgae,
- Publikační typ
- časopisecké články MeSH
The co-cultivation of red yeasts and microalgae works with the idea of the natural transport of gases. The microalgae produce oxygen, which stimulates yeast growth, while CO2 produced by yeast is beneficial for algae growth. Both microorganisms can then produce lipids. The present pilot study aimed to evaluate the ability of selected microalgae and carotenogenic yeast strains to grow and metabolize in co-culture. The effect of media composition on growth and metabolic activity of red yeast strains was assessed simultaneously with microalgae mixotrophy. Cultivation was transferred from small-scale co-cultivation in Erlenmeyer flasks to aerated bottles with different inoculation ratios and, finally, to a 3L bioreactor. Among red yeasts, the strain R. kratochvilovae CCY 20-2-26 was selected because of the highest biomass production on BBM medium. Glycerol is a more suitable carbon source in the BBM medium and urea was proposed as a compromise. From the tested microalgae, Desmodesmus sp. were found as the most suitable for co-cultivations with R. kratochvilovae. In all co-cultures, linear biomass growth was found (144 h), and the yield was in the range of 8.78-11.12 g/L of dry biomass. Lipids increased to a final value of 29.62-31.61%. The FA profile was quite stable with the UFA portion at about 80%. Around 1.98-2.49 mg/g CDW of carotenoids with torularhodine as the major pigment were produced, ubiquinone production reached 5.41-6.09 mg/g, and ergosterol yield was 6.69 mg/g. Chlorophyll production was very low at 2.11 mg/g. Pilot experiments have confirmed that carotenogenic yeasts and microalgae are capable of symbiotic co-existence with a positive impact om biomass growth and lipid metabolites yields.
Zobrazit více v PubMed
Schilling C., Steve W. A Roadmap for Industry to Harness Biotechnology for a More Circular Economy. New Biotechnol. 2021;60:9–11. doi: 10.1016/j.nbt.2020.08.005. PubMed DOI
Fan Y., Chuanglin F. Circular economy development in China-current situation, evaluation and policy implications. Environ. Impact Assess. Rev. 2020;84:106441. doi: 10.1016/j.eiar.2020.106441. DOI
Yen H.-W., Chen P.-W., Chen L.-J. The synergistic effects for the co-cultivation of oleaginous yeast-Rhodotorula glutinis and microalgae-Scenedesmus obliquus on the biomass and total lipids accumulation. Bioresour. Technol. 2015;184:148–152. doi: 10.1016/j.biortech.2014.09.113. PubMed DOI
Walker G.M. Encyclopedia of Microbiology. Elsevier; Amsterodam, The Netherlands: 2009. Yeasts; pp. 478–491.
Hill A.E. Brewing Microbiology-Managing Microbes, Ensuring Quality and Valorising Waste. Elsevier; Amsterodam, The Netherlands: 2015.
Papanikolaou S., Dimou A., Fakas S., Diamantopoulou P., Philippoussis A., Galiotou-Panayotou M., Aggelis G. Biotechnological conversion of waste cooking olive oil into lipid-rich biomass using Aspergillus and Penicillium strains. J. Appl. Microbiol. 2011;110:1138–1150. doi: 10.1111/j.1365-2672.2011.04961.x. PubMed DOI
Kosa G., Kohler A., Tafintseva V., Zimmermann B., Forfang K., Afseth N.K., Tzimorotas D., Vuoristo K.S., Horn S.J., Mounier J., et al. Microtiter plate cultivation of oleaginous fungi and monitoring of lipogenesis by high-throughput FTIR spectroscopy. Microb. Cell Factories. 2017;16:101. doi: 10.1186/s12934-017-0716-7. PubMed DOI PMC
Szotkowski M., Byrtusova D., Haronikova A., Vysoka M., Rapta M., Shapaval V., Marova I. Study of Metabolic Adaptation of Red Yeasts to Waste Animal Fat Substrate. Microorganisms. 2019;7:578. doi: 10.3390/microorganisms7110578. PubMed DOI PMC
Latha B., Jeevaratman K., Murali H., Manja K. Influence of growth factors on carotenoid pigmentation of Rhodotorula glutinis DFR-PDY from natural source. Indian J. Biotechnol. 2005;4:353–357.
Libkind D., van Broock M. Biomass and carotenoid pigment production by patagonian native yeasts. World J. Microbiol. Biotechnol. 2006;22:687–692. doi: 10.1007/s11274-005-9091-3. DOI
Yurkov A., Vustin M., Tyaglov B., Maksimova I., Sineokiy S. Pigmented basidiomycetous yeasts are a promising source of carotenoids and ubiquinone Q10. Microbiology. 2008;77:1–6. doi: 10.1134/S0026261708010013. PubMed DOI
Mannazzu I., Landolfo S., da Silva T., Buzzini P. Red yeasts and carotenoid production: Outlining a future for non-conventional yeasts of biotechnological interest. World J. Microbiol. Biotechnol. 2015;31:1665–1673. doi: 10.1007/s11274-015-1927-x. PubMed DOI
Bullerman L.B. Encyclopedia of Food Sciences and Nutrition. Elsevier; Amsterodam, The Netherlands: 2003. SPOILAGE|Fungi in Food—An Overview; pp. 5511–5522.
Santos F.M., Gonçalves A.L., Pires J.C.M. Bioenergy with Carbon Capture and Storage. Elsevier; Amsterodam, The Netherlands: 2019. Negative emission technologies; pp. 1–13.
Singh L., Chaudhary G. Liquid Biofuel Production [online] John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2019.
Vidyashankar S., Ravishankar G.A. Bioremediation and Bioeconomy. Elsevier; Amsterodam, The Netherlands: 2016. Algae-Based Bioremediation; pp. 457–493.
Liang Y., Kashdan T., Sterner C., Dombrowski L., Petrick I., Kröger M., Höfer R., Biorefineries A. Industrial Biorefineries & White Biotechnology. Elsevier; Amsterodam, The Netherlands: 2015. pp. 35–90.
Kitcha S., Cheirsilp B. Enhanced Lipid Production by Co-cultivation and Co-encapsulation of Oleaginous Yeast Trichosporonoides spathulata with Microalgae in Alginate Gel Beads. Appl. Biochem. Biotechnol. 2014;173:522–534. doi: 10.1007/s12010-014-0859-5. PubMed DOI
Byrtusová D., Szotkowski M., Kouřilová X., Rapta M., Márová I. 46th Annual Meeting on Yeasts. Book of Abstracts 1; Chemický ústav SAV Bratislava, SR; Bratislava, Slovakia: 2019. Production of pigments during co-cultivation of red yeasts and green algae; p. 46.
Gründemann C., Garcia-Käufer M., Sauer B., Scheer R., Merdivan S., Bettin P., Huber R., Lindequist U. Comparative chemical and biological investigations of β-glucan-containing products from Shiitake mushrooms. J. Funct. Foods. 2015;18:692–702.
Braunwald T., Schwemmlein L., Graeff-Hönninger S., French W., Hernandez R., Holmes W., Claupein W. Effect of different C/N ratios on carotenoid and lipid production by Rhodotorula glutinis. Appl. Microbiol. Biotechnol. 2013;97:6581–6588. doi: 10.1007/s00253-013-5005-8. PubMed DOI
Jiru T., Groenewald M., Pohl C., Steyn L., Kiggundu N., Abate D. Optimization of cultivation conditions for biotechnological production of lipid by Rhodotorula kratochvilovae (syn, Rhodosporidium kratochvilovae) SY89 for biodiesel preparation. 3 Biotech. 2017;7:145. doi: 10.1007/s13205-017-0769-7. PubMed DOI PMC
Byrtusová D., Shapaval V., Holub J., Šimanský S., Rapta M., Szotkowski M., Kohler A., Márová I. Revealing the Potential of Lipid and β-Glucans Coproduction in Basidiomycetes Yeast. Microorganisms. 2020;8:1034. doi: 10.3390/microorganisms8071034. PubMed DOI PMC
Lopes M., Gomes A.S., Silva C.M., Belo I. Microbial lipids and added value metabolites production by Yarrowia lipolytica from pork lard. J. Biotechnol. 2018;265:76–85. doi: 10.1016/j.jbiotec.2017.11.007. PubMed DOI