Conversion of Mixed Waste Food Substrates by Carotenogenic Yeasts of Rhodotorula sp. Genus

. 2023 Apr 13 ; 11 (4) : . [epub] 20230413

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37110436
Odkazy

PubMed 37110436
PubMed Central PMC10142595
DOI 10.3390/microorganisms11041013
PII: microorganisms11041013
Knihovny.cz E-zdroje

The consequence of the massive increase in population in recent years is the enormous production of mainly industrial waste. The effort to minimize these waste products is, therefore, no longer sufficient. Biotechnologists, therefore, started looking for ways to not only reuse these waste products, but also to valorise them. This work focuses on the biotechnological use and processing of waste oils/fats and waste glycerol by carotenogenic yeasts of the genus Rhodotorula and Sporidiobolus. The results of this work show that the selected yeast strains are able to process waste glycerol as well as some oils and fats in a circular economy model and, moreover, are resistant to potential antimicrobial compounds present in the medium. The best-growing strains, Rhodotorula toruloides CCY 062-002-004 and Rhodotorula kratochvilovae CCY 020-002-026, were selected for fed-batch cultivation in a laboratory bioreactor in a medium containing a mixture of coffee oil and waste glycerol. The results show that both strains were able to produce more than 18 g of biomass per litre of media with a high content of carotenoids (10.757 ± 1.007 mg/g of CDW in R. kratochvilovae and 10.514 ± 1.520 mg/g of CDW in R. toruloides, respectively). The overall results prove that combining different waste substrates is a promising option for producing yeast biomass enriched with carotenoids, lipids, and beta-glucans.

Zobrazit více v PubMed

Schilling C., Weiss S.A. Roadmap for Industry to Harness Biotechnology for a More Circular Economy. New Biotechnol. 2021;60:9–11. doi: 10.1016/j.nbt.2020.08.005. PubMed DOI

Fan Y., Fang C. Circular economy development in China-current situation, evaluation and policy implications. Environ. Impact Assess. Rev. 2020;84:106441. doi: 10.1016/j.eiar.2020.106441. DOI

Scarlat N., Dallemand J.-F., Monforti-Ferrario F., Nita V. The role of biomass and bioenergy in a future bioeconomy: Policies and facts. Environ. Dev. 2015;15:3–34. doi: 10.1016/j.envdev.2015.03.006. DOI

Velasco-Muñoz J.F., Aznar-Sánchez J.A., López-Felices B., Román-Sánchez I.M. Circular economy in agriculture. An analysis of the state of research based on the life cycle. Sustain. Prod. Consum. 2022;34:257–270. doi: 10.1016/j.spc.2022.09.017. DOI

Carmona-Cabello M., Garcia I.L., Leiva-Candia D., Dorado M.P. Valorization of food waste based on its composition through the concept of biorefinery. Curr. Opin. Green Sustain. Chem. 2018;14:67–79. doi: 10.1016/j.cogsc.2018.06.011. DOI

Historical Data on the Global Coffee. International Coffee Organization; London, UK: 2020. Total production by all exporting countries.

Jenkins R.W., Stageman N.E., Fortune C.M., Chuck C.J. Effect of the Type of Bean, Processing, and Geographical Location on the Biodiesel Produced from Waste Coffee Grounds. Energy Fuels. 2014;28:1166–1174. doi: 10.1021/ef4022976. DOI

Martinez-Saez N., García A.T., Peréz I.D., Rebollo-Hernanz M., Mesías M., Morales F.J., Martín-Cabrejas M.A., Del Castillo M.D. Use of spent coffee grounds as food ingredient in bakery products. Food Chem. 2017;216:114–122. doi: 10.1016/j.foodchem.2016.07.173. PubMed DOI

Girotto F., Pivato A., Cossu R., Nkeng G.E., Lavagnolo M.C. The broad spectrum of possibilities for spent coffee grounds valorisation. J. Mater. Cycles Waste Manag. 2018;20:695–701. doi: 10.1007/s10163-017-0621-5. DOI

Kumar L.R., Kaur R., Tygi R.D., Drogui P. Identifying economical route for crude glycerol valorisation: Biodiesel versus polyhydroxy-butyrate (PHB) Bioresour. Technol. 2021;323:124565. doi: 10.1016/j.biortech.2020.124565. PubMed DOI

Santos C., Fonseca J., Aaires A., Coutinho J., Trindade H. Effect of different rates of spent coffee grounds (SCG) on composting process, gaseous emissions and quality of end-product. Waste Manag. 2017;59:37–47. doi: 10.1016/j.wasman.2016.10.020. PubMed DOI

Limousy L., Jeguirim M., Dutournié P., Kraiem N., Lajili M., Said R. Gaseous products and particulate matter emissions of biomass residential boiler fired with spent coffee grounds pellets. Fuel. 2013;107:323–329. doi: 10.1016/j.fuel.2012.10.019. DOI

Obruca S., Benesova P., Kucera D., Petrik S., Marova I. Biotechnological conversion of spent coffee grounds into polyhydroxyalkanoates and carotenoids. New Biotechnol. 2015;32:569–574. doi: 10.1016/j.nbt.2015.02.008. PubMed DOI

Aksu Z., Eren A.T. Carotenoids production by the yeast Rhodotorula mucilaginosa: Use of agricultural wastes as a carbon source. Process Biochem. 2005;40:2985–2991. doi: 10.1016/j.procbio.2005.01.011. DOI

Kamilah H., Tsuge T., Yang T.A., Sudesh K. Waste cooking oil as substrate for biosynthesis of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate): Turning waste into a value-added product. Malays. J. Microbiol. 2013;9:51–59. doi: 10.21161/mjm.45012. DOI

Marova I., Certik M., Breierova E. Biomass—Detection, Production and Usage. InTech; London, UK: 2011. Production of Enriched Biomass by Carotenogenic Yeasts—Application of Whole-Cell Yeast Biomass to Production of Pigments and Other Lipid Compounds.

Szotkowski M., Byrtusova D., Haronikova A., Vysoka M., Rapta M., Shapaval V., Marova I. Study of metabolic adaptation of red yeast to waste animal fat substrate. Microorganisms. 2019;7:578. doi: 10.3390/microorganisms7110578. PubMed DOI PMC

Byrtusova D., Shapaval V., Holub J., Simansky S., Rapta M., Szotkowski M., Kohler A., Marova I. Revealing the Potential of Lipid and β-Glucans Coproduction in Basidiomycetes Yeast. Microorganisms. 2020;8:1034. doi: 10.3390/microorganisms8071034. PubMed DOI PMC

Walker G.M. Encyclopedia of Microbiology. Elsevier; Amsterdam, The Netherlands: 2009. Yeasts; pp. 478–491.

Mannazu I., Landolfo S., Da Silva T.L., Buzzini P. Red yeasts and carotenoid production: Outlining a future for non-conventional yeasts of biotechnological interest. World J. Microbiol. Biotechnol. 2015;31:1665–1673. doi: 10.1007/s11274-015-1927-x. PubMed DOI

Szotkowski M., Holub J., Šimanský S., Hubačová K., Hladká D., Němcová A., Marová I. Production of Enriched Sporidiobolus sp. Yeast Biomass Cultivated on Mixed Coffee Hydrolyzate and Fat/Oil Waste Materials. Microorganisms. 2021;9:1848. doi: 10.3390/microorganisms9091848. PubMed DOI PMC

Dong W., Chen Q., Wei C., Hu R., Long Y., Zong Y., Chu Z. Comparison of the effect of extraction methods on the quality of green coffee oil from Arabica coffee beans: Lipid yield, fatty acid composition, bioactive components, and antioxidant activity. Ultrason. Sonochemistry. 2021;74:105578. doi: 10.1016/j.ultsonch.2021.105578. PubMed DOI PMC

Loyao A.S., Jr., Villasica S.L.G., Dela Peña P.L.L., Go A.W. Extraction of lipids from spent coffee grounds with non-polar renewable solvents as alternative. Ind. Crops Prod. 2018;119:152–161. doi: 10.1016/j.indcrop.2018.04.017. DOI

Passadis K., Fragoulis V., Stoumpou V., Novakovic J., Barampouti E.M., Mai S., Moustakas K., Malamis D., Loizidou M. Study of Valorisation Routes of Spent Coffee Grounds. Waste Biomass Valor. 2020;11:5295–5306. doi: 10.1007/s12649-020-01096-0. DOI

Bautista L.F., Vicente G., Rodríguez R., Pacheco M. Optimisation of FAME production from waste cooking oil for biodiesel use. Biomass Bioen. 2009;33:862–872. doi: 10.1016/j.biombioe.2009.01.009. DOI

Paul S., Mittal G.S. Dynamics of fat/oil degradation during frying based on optical properties. J. Food Eng. 1996;30:389–403. doi: 10.1016/S0260-8774(96)00020-9. DOI

Papanikolaou S., Dimou A., Fakas S., Diamantopoulou P., Philippoussis A., Galiotou-Panayotou M., Aggelis G. Biotechnological conversion of waste cooking olive oil into lipid-rich biomass using Aspergillus and Penicillium strains. J. Appl. Microbiol. 2011;110:1138–1150. doi: 10.1111/j.1365-2672.2011.04961.x. PubMed DOI

Spalvins K., Geiba Z., Kusnere Z., Blumberga D. Waste cooking oil as substrate for single cell protein production by yeast Yarrowia lipolytica. Environ. Clim. Technol. 2020;24:457–469. doi: 10.2478/rtuect-2020-0116. DOI

Petrik S., Hároniková A., Márová I., Kostovová I., Breierová E. Production of biomass, carotenoids and other lipid metabolites by several red yeast strains cultivated on waste glycerol from biofuel production-a comparative screening study. Ann. Microbiol. 2013;63:1537–1551. doi: 10.1007/s13213-013-0617-x. DOI

Klein M., Swinnen S., Thevelein J.M., Nevoigt E. Glycerol metabolism and transport in yeast and fungi: Established knowledge and ambiguities. Environ. Microbiol. 2017;19:878–893. doi: 10.1111/1462-2920.13617. PubMed DOI

Juarez G.F.Y., Pabilona K.B.C., Manlangit K.B.L., Go A.W. Direct Dilute Acid Hydrolysis of Spent Coffee Grounds: A New Approach in Sugar and Lipid Recovery. Waste Biomass Valorization. 2018;9:235–246. doi: 10.1007/s12649-016-9813-9. DOI

Szotkowski M., Holub J., Simansky S., Hubacova K., Sikorova P., Marinicova V., Nemcova A., Marova I. Bioreactor co-cultivation of high lipid and carotenoid producing yeast Rhodotorula kratochvilovae and several microalgae under stress. Microorganisms. 2021;9:1160. doi: 10.3390/microorganisms9061160. PubMed DOI PMC

Byrtusova D., Szotkowski M., Kurowska K., Shapaval V., Marova I. Rhodotorula kratochvilovae CCY 20-2-26—The source of multifunctional metabolites. Microorganisms. 2021;9:1280. doi: 10.3390/microorganisms9061280. PubMed DOI PMC

Donzella S., Serra I., Fumagalli A., Pellegrino L., Mosconi G., Scalzo R.L., Compagno C. Recycling industrial food wastes for lipid production by oleaginous yeasts Rhodosporidiobolus azoricus and Cutaneotrichosporon oleaginosum. Biotechnol. Biofuels Bioprod. 2022;15:51. doi: 10.1186/s13068-022-02149-3. PubMed DOI PMC

Li M., Alotaibi M.K.H., Li L., Abomohra A.E.-F. Enhanced waste glycerol recycling by yeast for efficient biodiesel production: Towards waste biorefinery. Biomass Bioenergy. 2022;159:106410. doi: 10.1016/j.biombioe.2022.106410. DOI

Nemcova A., Szotkowski M., Samek O., Caganova L., Sipiczki M., Marova I. Use of Waste Substrates for the Lipid Production by Yeasts of the Genus Metschnikowia—Screening Study. Microorganisms. 2021;9:2295. doi: 10.3390/microorganisms9112295. PubMed DOI PMC

Drzymala K., Mironczuk A.M., Pietrzak W., Dobrowolski A. Rye and Oat Agricultural Wastes as Substrate Candidates for Biomass Production of the Non-Conventional Yeast Yarrowia lipolytica. Sustainability. 2020;12:7704. doi: 10.3390/su12187704. DOI

Rubio F.T.V., Haminiuk C.W.I., Martelli-Tosi M., da Silva M.P., Makimori G.Y.F., Favaro-Trindade C.S. Utilization of grape pomaces and brewery waste Saccharomyces cerevisiae for the production of bio-based microencapsulated pigments. Food Res. Int. 2020;136:109470. doi: 10.1016/j.foodres.2020.109470. PubMed DOI

Holub J., Szotkowski M., Chujanov O., Spackova D., Sniegonova P., Marova I. Production of enriched biomass by carotenogenic yeasts cultivated on by-roducts of poultry processing—A screening study. Microorganisms. 2022;11:321. doi: 10.3390/microorganisms11020321. PubMed DOI PMC

Linder T. Making the case for edible microorganisms as an integral part of a more sustainable and resilient food production system. Food Secur. 2019;11:265–278. doi: 10.1007/s12571-019-00912-3. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace