Rhodotorula kratochvilovae CCY 20-2-26-The Source of Multifunctional Metabolites
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Byprovalue Nr 301834
Research Council of the Norway
PubMed
34208382
PubMed Central
PMC8231246
DOI
10.3390/microorganisms9061280
PII: microorganisms9061280
Knihovny.cz E-zdroje
- Klíčová slova
- Rhodotorula kratochvilovae, carotenoids, extracellular glycolipids, lipids, β-glucan,
- Publikační typ
- časopisecké články MeSH
Multifunctional biomass is able to provide more than one valuable product, and thus, it is attractive in the field of microbial biotechnology due to its economic feasibility. Carotenogenic yeasts are effective microbial factories for the biosynthesis of a broad spectrum of biomolecules that can be used in the food and feed industry and the pharmaceutical industry, as well as a source of biofuels. In the study, we examined the effect of different nitrogen sources, carbon sources and CN ratios on the co-production of intracellular lipids, carotenoids, β-glucans and extracellular glycolipids. Yeast strain R. kratochvilovae CCY 20-2-26 was identified as the best co-producer of lipids (66.7 ± 1.5% of DCW), exoglycolipids (2.42 ± 0.08 g/L), β-glucan (11.33 ± 1.34% of DCW) and carotenoids (1.35 ± 0.11 mg/g), with a biomass content of 15.2 ± 0.8 g/L, by using the synthetic medium with potassium nitrate and mannose as a carbon source. It was shown that an increased C/N ratio positively affected the biomass yield and production of lipids and β-glucans.
Faculty of Chemistry Brno University of Technology Purkyňova 464 118 612 00 Brno Czech Republic
Faculty of Science and Technology Norwegian University of Life Sciences P O Box 5003 1432 Ås Norway
Zobrazit více v PubMed
Cao J., Perez-Pinera P., Lowenhaupt K., Wu M.R., Purcell O., Fuente-Nunez C., Lu T.K. Versatile and on-demand biologics co-production in yeast. Nat. Commun. 2018;9:77. doi: 10.1038/s41467-017-02587-w. PubMed DOI PMC
Han M., Xu J.Z., Liu Z.M., Qian H., Zhang W.G. Co-production of microbial oil and exopolysaccharides by the oleaginous yeast Sporidiobolus pararoseus grown in fed-batch culture. RSC Adv. 2018;8:3348–3356. doi: 10.1039/C7RA12813D. PubMed DOI PMC
Kot A.M., Blazejak S., Kieliszek M., Gientka I., Piwowarek K., Brzezinska R. Production of lipids and carotenoids by Rhodotorula gracilis ATCC 10788 yeast in a bioreactor using low-cost wastes. Biocatal. Agric. Biotechnol. 2020;26:101634. doi: 10.1016/j.bcab.2020.101634. DOI
Pi H.W., Anandharaj M., Kao Y.Y., Lin Y.J., Chang J.J., Li W.H. Engineering the oleaginous red east Rhodotorula glutinis for simultaneous β-carotene and cellulase production. Sci. Rep. 2018;8:10850. doi: 10.1038/s41598-018-29194-z. PubMed DOI PMC
Money N.P. Fungal diversity. In: Watkinson S.C., Boddy L., Money N.P., editors. The Fungi. 3rd ed. Academic Press; Cambridge, MA, USA: 2015. pp. 1–36.
Kot A.M., Blazejak S., Kurcz A., Gientka I., Kieliszek M. Rhodotorula glutinis—Potential source of lipids, carotenoids, and enzymes for use in industries. Appl. Microbiol. Biotechnol. 2016;100:6103–6117. doi: 10.1007/s00253-016-7611-8. PubMed DOI PMC
Meng X., Yang J.M., Xu X., Zhang L., Nie Q.J., Xian M. Biodiesel production from oleaginous microorganisms. Renew. Energy. 2009;34:1–5. doi: 10.1016/j.renene.2008.04.014. DOI
Marova I., Carnecka M., Halienova A., Breierova E., Koci R. Production of carotenoid-/ergosterol-supplemented biomass by red yeast Rhodotorula glutinis grown under external stress. Food Technol. Biotechnol. 2010;48:56–61.
Lario L.D., Pillaca-Pullo O.S., Sette L.D., Converti A., Casati P., Spampinato C., Pessoa A. Optimization of protease production and sequence analysis of the purified enzyme from the cold adapted yeast Rhodotorula mucilaginosa CBMAI 1528. Biotechnol. Rep. 2020;28:e00546. doi: 10.1016/j.btre.2020.e00546. PubMed DOI PMC
Li H., Huang L., Zhang Y., Yan Y. Production, characterization and immunomodulatory activity of an extracellular polysaccharide from Rhodotorula mucilaginosa YL-1 isolated from sea salt field. Mar. Drugs. 2020;18:595. doi: 10.3390/md18120595. PubMed DOI PMC
Byrtusova D., Shapaval V., Holub J., Rapta M., Szotkowski M., Kohler A., Marova I. Revealing the potential of lipid and β-glucans coproduction in Basidiomycetes yeast. Microorganisms. 2020;8:1034. doi: 10.3390/microorganisms8071034. PubMed DOI PMC
Mata-Gomez L.C., Montanez J.C., Mendez-Zavala A., Aguilar C.N. Biotechnological production of carotenoids by yeast: An overview. Microb. Cell Fact. 2014;13:12. doi: 10.1186/1475-2859-13-12. PubMed DOI PMC
Krinsky N.I., Johnson E.J. Carotenoid actions and their relation to health and disease. Mol. Aspects Med. 2005;6:459–516. doi: 10.1016/j.mam.2005.10.001. PubMed DOI
Chew B.P., Park J.S. Carotenoid action on the immune response. J. Nutr. 2004;1:257S–261S. doi: 10.1093/jn/134.1.257S. PubMed DOI
Guedes A.C., Amaro H.M., Malcata F.X. Microalgae as a source of carotenoids. Mar. Drugs. 2011;9:625–644. doi: 10.3390/md9040625. PubMed DOI PMC
Kot A.M., Blazejak S., Gientka I., Kieliszek M., Brys J. Torulene and torularhodin: “new” fungal carotenoids for industry? Microb. Cell Fact. 2018;17:49. doi: 10.1186/s12934-018-0893-z. PubMed DOI PMC
Tiukova I.A., Brandenburg J., Blomqvist J., Sampels S., Mikkelsen N., Skaugen M., Arntzen M., Nielsen J., Sandgren M., Kerkhoven E.J. Proteome analysis of xylose metabolism in Rhodotorula toruloides during lipid production. Biotechnol. Biofuels. 2019;12:137. doi: 10.1186/s13068-019-1478-8. PubMed DOI PMC
Stier H., Ebbeskotte V., Gruenwald J. Immune-modulatory effects of dietary yeast beta-1,3/1,6-D-glucan. Nutr. J. 2014;13:1. PubMed PMC
Rop O., Mlcek J., Jurikova T. Beta-glucans in higher fungi and their health effects. Nutr. Rev. 2009;67:624–631. PubMed
Sima P., Vannucci L., Vetvicka V., Pradhan B.B., Chatterjee S., Nilson L., Wang W. Β-glucans and cholesterol (Review) Int. J. Mol. Med. 2018;52:275–288. PubMed PMC
Velasques G.L., de Lima O.F., Boffo E.F., Santos J.D.G., da Silva B.C., de Assis S.A. Extraction optimization and antinociceptive activity of (1→3)-β-d-glucan from Rhodotorula mucilaginosa: An overview. Carbohydr. Polym. 2014;105:293–299. doi: 10.1016/j.carbpol.2014.01.064. PubMed DOI
Gründemann C., Garcia-Kaufer M., Sauer B., Scheer R., Merdivan S., Bettin P., Huber R., Lindequist U. Comparative chemical and biological investigations of β-glucan-containing products from shiitake mushrooms: An overview. J. Funct. Foods. 2015;18:692–702. doi: 10.1016/j.jff.2015.08.022. DOI
Synytsya A., Mickova K., Synytsya A., Jablonsky I., Spevacek J., Erban V., Kovariková E., Copiková J. Glucans from fruit bodies of cultivated mushrooms Pleurotus ostreatus and Pleurotus eryngii: Structure and potential prebiotic activity. Carbohydr. Polym. 2009;76:548–556. doi: 10.1016/j.carbpol.2008.11.021. DOI
Szotkowski M., Byrtusova D., Haronikova A., Vysoka M., Rapta M., Shapaval V., Marova I. Study of metabolic adaptation of red yeast to waste animal fat substrate. Microorganisms. 2019;7:578. doi: 10.3390/microorganisms7110578. PubMed DOI PMC
Wang M., Mao W., Wang X., Li F., Wang J., Chi Z., Chi Z., Liu G. Efficient simultaneous production of extracellular polyol esters of fatty acids and intracellular lipids from inulin by a deep-sea yeast Rhodotorula paludigena P4R5. Microb. Cell Fact. 2019;18:149. doi: 10.1186/s12934-019-1200-3. PubMed DOI PMC
Braunwald T., Schwemmlein L., Graeff-Hönninger S., French W.T., Hernandez R., Holmes W.E., Claupein W. Effect of different C/N ratios on carotenoid and lipid production by Rhodotorula glutinis. Appl. Microbiol. 2013;97:6581–6588. doi: 10.1007/s00253-013-5005-8. PubMed DOI
Jiru T.M., Groenewald M., Pohl C., Steyn L., Kiggundu N., Abate D. Optimization of cultivation conditions for biotechnological production of lipid by Rhodotorula kratochvilovae (syn, Rhodosporidium kratochvilovae) SY89 for biodiesel preparation. 3Biotech. 2017;7:145. doi: 10.1007/s13205-017-0769-7. PubMed DOI PMC
Dourou M., Aggeli D., Papanikolaou S., Aggelis G. Critical steps in carbon metabolism affecting lipid accumulation and their regulation in oleaginous microorganisms. Appl. Microbiol. Biotechnol. 2018;102:2509–2523. doi: 10.1007/s00253-018-8813-z. PubMed DOI
Tchakouteu S.S., Chatzifragkou A., Kalantzi O., Koutinas A.A., Aggelis G., Papanikolaou S. Oleaginous yeast Cryoptococcus curvatus exhibits interplay between biosynthesis of intracellular sugars and lipids. Eur. J. Lipid Sci. Technol. 2015;117:657–672. doi: 10.1002/ejlt.201400347. DOI
Diamantopoulou P., Stoforos N.G., Xenopoulos E., Sarrisa D., Psarianos D., Philippoussis A., Papanikolaou S. Lipid production by Cryptococcus curvatus growing on commercial xylose and subsequent valorization of fermentation waste-waters for the production of edible and medicinal mushrooms. Biochem. Engineer. J. 2020;162:107706. doi: 10.1016/j.bej.2020.107706. DOI
Tchakouteu S.S., Kalantzi O., Gardeli C., Koutinas A.A., Aggelis G., Papanikolaou S. Lipid production by yeasts growing on biodiesel-derived crude glycerol: Strain selection and impact of substrate concentration on the fermentation efficiency. J. Appl. Microbiol. 2015;118:911–927. doi: 10.1111/jam.12736. PubMed DOI
Sarantou S., Stoforos N.G., Kalantzi O., Papanikolaou S. Biotechnological valorization of biodiesel-derived glycerol: Trials with the non-conventional yeasts Yarrowia lipolytica and Rhodosporidium sp. Carb. Resour. Conver. 2021;4:61–75.
Kostovova I., Byrtusova D., Rapta M., Babak V., Marova I. The variability of carotenoid pigments and fatty acids produced by some yeasts within Sporidiobolales and Cystofilobasidiales. Chem. Papers. 2021;75:3353–3362. doi: 10.1007/s11696-021-01567-1. DOI
Garay L.A., Sitepu I.R., Cajka T., Fiehn O., Cathcart E., Fry R.W., Kanti A., Nugroho A.J., Faulina S.A., Stephanandra S., et al. Discovery of synthesis and secretion of polyol esters of fatty acids by four basidiomycetous yeast species in the order Sporidiobolales. J. Ind. Microbiol. Biotechnol. 2017;44:923–936. doi: 10.1007/s10295-017-1919-y. PubMed DOI
Guerfali M., Ayadi I., Mohamed N., Ayadi W., Belghith H., Bronze M.R., Ribeiro M.H.L., Gargouri A. Triacylglycerols accumulation and glycolipids secretion by the oleaginous yeast Rhodotorula babjevae Y-SL7: Structural identification and biotechnological applications. Bioresour. Technol. 2019;273:326–334. doi: 10.1016/j.biortech.2018.11.036. PubMed DOI
Garay L.A., Sitepu I.R., Cajka T., Cathcart E., Fiehn O., German J.B., Block D.E., Boundy-Mills K.L. Simultaneous production of intracellular triacylglycerols and extracellular polyol esters of fatty acids by Rhodotorula babjevae and Rhodotorula aff. paludigena. J. Ind. Microbiol. Biotechnol. 2017;44:1397–1413. doi: 10.1007/s10295-017-1964-6. PubMed DOI
Kot A.M., Blazejak S., Kieliszek M., Gientka I., Brys J. Simultaneous production of lipids and carotenoids by the red yeast Rhodotorula from waste glycerol fraction and potato wastewater. Appl. Biochem. Biotechnol. 2019;189:589–607. doi: 10.1007/s12010-019-03023-z. PubMed DOI PMC
Garay L., Sitepu I., Cajka T., Xu J., Teh H.E., German J.B., Pan Z., Dungan S.R., Block D.E., Boundy-Mills K. L Extracellular fungal polyol lipids: A new class of potential high value lipids. Biotechnol. Adv. 2018;36:397–414. doi: 10.1016/j.biotechadv.2018.01.003. PubMed DOI
Aimanianda V., Clavaud C., Sinemel C., Fontaine T., Delepierre M., Latgé J.P. Cell wall β-(1,6)-glucan of Saccharomyces cerevisiae: Structural characterization and in situ synthesis. J. Biol. Chem. 2009;284:13401–13412. doi: 10.1074/jbc.M807667200. PubMed DOI PMC