-
Something wrong with this record ?
2-Hydroxy-N-phenylbenzamides and Their Esters Inhibit Acetylcholinesterase and Butyrylcholinesterase
M. Krátký, Š. Štěpánková, NH. Houngbedji, R. Vosátka, K. Vorčáková, J. Vinšová,
Language English Country Switzerland
Document type Journal Article, Research Support, Non-U.S. Gov't
NLK
Directory of Open Access Journals
from 2011
PubMed Central
from 2011
Europe PubMed Central
from 2011
ProQuest Central
from 2011-01-01
Open Access Digital Library
from 2011-01-01
Open Access Digital Library
from 2011-01-01
Health & Medicine (ProQuest)
from 2011-01-01
ROAD: Directory of Open Access Scholarly Resources
from 2011
PubMed
31694272
DOI
10.3390/biom9110698
Knihovny.cz E-resources
- MeSH
- Acetylcholinesterase metabolism MeSH
- Benzamides chemistry pharmacology MeSH
- Butyrylcholinesterase metabolism MeSH
- Cholinesterase Inhibitors chemistry pharmacology MeSH
- Electrophorus MeSH
- Esters chemistry pharmacology MeSH
- Phosphorus chemistry MeSH
- Inhibitory Concentration 50 MeSH
- Horses MeSH
- Molecular Structure MeSH
- Structure-Activity Relationship MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The development of novel inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) represents a viable approach to alleviate Alzheimer's disease. Thirty-six halogenated 2-hydroxy-N-phenylbenzamides (salicylanilides) with various substitution patterns and their esters with phosphorus-based acids were synthesized in yields of 72% to 92% and characterized. They were evaluated for in vitro inhibition of AChE from electric eel and BuChE from equine serum using modified Ellman's spectrophotometric method. The benzamides exhibited a moderate inhibition of AChE with IC50 values in a narrow concentration range from 33.1 to 85.8 µM. IC50 values for BuChE were higher (53.5-228.4 µM). The majority of derivatives inhibit AChE more efficiently than BuChE and are comparable or superior to rivastigmine-an established cholinesterases inhibitor used in the treatment of Alzheimer's disease. Phosphorus-based esters especially improved the activity against BuChE with 5-chloro-2-{[4-(trifluoromethyl)phenyl]carbamoyl}phenyl diethyl phosphite 5c superiority (IC50 = 2.4 µM). This derivative was also the most selective inhibitor of BuChE. It caused a mixed inhibition of both cholinesterases and acted as a pseudo-irreversible inhibitor. Several structure-activity relationships were identified, e.g., favouring esters and benzamides obtained from 5-halogenosalicylic acids and polyhalogenated anilines. Both 2-hydroxy-N-phenylbenzamides and esters share convenient physicochemical properties for blood-brain-barrier penetration and thus central nervous system delivery.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20025507
- 003
- CZ-PrNML
- 005
- 20201222160237.0
- 007
- ta
- 008
- 201125s2019 sz f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3390/biom9110698 $2 doi
- 035 __
- $a (PubMed)31694272
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a sz
- 100 1_
- $a Krátký, Martin $u Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
- 245 10
- $a 2-Hydroxy-N-phenylbenzamides and Their Esters Inhibit Acetylcholinesterase and Butyrylcholinesterase / $c M. Krátký, Š. Štěpánková, NH. Houngbedji, R. Vosátka, K. Vorčáková, J. Vinšová,
- 520 9_
- $a The development of novel inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) represents a viable approach to alleviate Alzheimer's disease. Thirty-six halogenated 2-hydroxy-N-phenylbenzamides (salicylanilides) with various substitution patterns and their esters with phosphorus-based acids were synthesized in yields of 72% to 92% and characterized. They were evaluated for in vitro inhibition of AChE from electric eel and BuChE from equine serum using modified Ellman's spectrophotometric method. The benzamides exhibited a moderate inhibition of AChE with IC50 values in a narrow concentration range from 33.1 to 85.8 µM. IC50 values for BuChE were higher (53.5-228.4 µM). The majority of derivatives inhibit AChE more efficiently than BuChE and are comparable or superior to rivastigmine-an established cholinesterases inhibitor used in the treatment of Alzheimer's disease. Phosphorus-based esters especially improved the activity against BuChE with 5-chloro-2-{[4-(trifluoromethyl)phenyl]carbamoyl}phenyl diethyl phosphite 5c superiority (IC50 = 2.4 µM). This derivative was also the most selective inhibitor of BuChE. It caused a mixed inhibition of both cholinesterases and acted as a pseudo-irreversible inhibitor. Several structure-activity relationships were identified, e.g., favouring esters and benzamides obtained from 5-halogenosalicylic acids and polyhalogenated anilines. Both 2-hydroxy-N-phenylbenzamides and esters share convenient physicochemical properties for blood-brain-barrier penetration and thus central nervous system delivery.
- 650 _2
- $a acetylcholinesterasa $x metabolismus $7 D000110
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a benzamidy $x chemie $x farmakologie $7 D001549
- 650 _2
- $a butyrylcholinesterasa $x metabolismus $7 D002091
- 650 _2
- $a cholinesterasové inhibitory $x chemie $x farmakologie $7 D002800
- 650 _2
- $a Electrophorus $7 D004593
- 650 _2
- $a estery $x chemie $x farmakologie $7 D004952
- 650 _2
- $a koně $7 D006736
- 650 _2
- $a inhibiční koncentrace 50 $7 D020128
- 650 _2
- $a molekulární struktura $7 D015394
- 650 _2
- $a fosfor $x chemie $7 D010758
- 650 _2
- $a vztahy mezi strukturou a aktivitou $7 D013329
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Štěpánková, Šárka $u Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic.
- 700 1_
- $a Houngbedji, Neto-Honorius $u Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
- 700 1_
- $a Vosátka, Rudolf $u Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
- 700 1_
- $a Vorčáková, Katarína $u Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic.
- 700 1_
- $a Vinšová, Jarmila $u Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
- 773 0_
- $w MED00188737 $t Biomolecules $x 2218-273X $g Roč. 9, č. 11 (2019)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31694272 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201222160233 $b ABA008
- 999 __
- $a ok $b bmc $g 1599652 $s 1116193
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 9 $c 11 $e 20191105 $i 2218-273X $m Biomolecules $n Biomolecules $x MED00188737
- LZP __
- $a Pubmed-20201125