β-glucans and cholesterol (Review)

. 2018 Apr ; 41 (4) : 1799-1808. [epub] 20180122

Jazyk angličtina Země Řecko Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid29393350

Hypercholesterolemia is one of primary risk factors of cardiovascular disease, together with metabolic syndrome, hypertension and diabetes. Although progress has been made, the search for novel methods of preventing and treating dyslipidemia is ongoing and current therapies for cardiovascular disease induce various side effects. β‑glucans are linear unbranched polysaccharides found in various natural sources, such as mushrooms. Due to their structure they are able to interact with innate immunity receptors, however they also act as dietary fibers in the digestive tract. As there are two forms of β‑glucans, insoluble and soluble forms, they are able to interact with lipids and biliary salts in the bowel and consequently reduce cholesterol levels. Therefore, they may be developed as a suitable therapeutic option to treat patients with dyslipidemia, as they are natural molecules that do not induce any significant side effects. The current review discusses the evidence supporting the effects of β‑glucans on cholesterol levels.

Zobrazit více v PubMed

World Health Organization . Cardiovascular disease. 2016.

World Health Organization . Obesity and overweight fact sheet. 2017.

World Health Organization . Obesity and overweight fact sheet. 2016.

CDC, National Center for Chronic Disease Prevention and Health Promotion and Division for Heart Disease and Stroke Prevention . Heart Disease Facts and Statistics. CDC;

Murray CJ, Lopez AD. Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study. Lancet. 1997;349:1498–1504. doi: 10.1016/S0140-6736(96)07492-2. PubMed DOI

Oreopoulos A, Padwal R, Kalantar-Zadeh K, Fonarow GC, Norris CM, McAlister FA. Body mass index and mortality in heart failure: A meta-analysis. Am Heart J. 2008;156:13–22. doi: 10.1016/j.ahj.2008.02.014. PubMed DOI

Clark JM, Brancati FL. The challenge of obesity-related chronic diseases. J Gen Intern Med. 2000;15:828–829. doi: 10.1046/j.1525-1497.2000.00923.x. PubMed DOI PMC

Oreopoulos A, Ezekowitz JA, McAlister FA, Kalantar-Zadeh K, Fonarow GC, Norris CM, Johnson JA, Padwal RS. Association between direct measures of body composition and prognostic factors in chronic heart failure. Mayo Clin Proc. 2010;85:609–617. doi: 10.4065/mcp.2010.0103. PubMed DOI PMC

Bose KS, Gupta SK, Vyas P. Adipocytokine levels in genetically high risk for type 2 diabetes in the Indian population: A cross-sectional study. Exp Diabetes Res. 2012;2012:386524. doi: 10.1155/2012/386524. PubMed DOI PMC

Olson NC, Callas PW, Hanley AJ, Festa A, Haffner SM, Wagenknecht LE, Tracy RP. Circulating levels of TNF-α are associated with impaired glucose tolerance, increased insulin resistance, and ethnicity: The insulin resistance atherosclerosis study. J Clin Endocrinol Metab. 2012;97:1032–1040. doi: 10.1210/jc.2011-2155. PubMed DOI PMC

Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation. 2002;105:1135–1143. doi: 10.1161/hc0902.104353. PubMed DOI

Emanuela F, Grazia M, Marco de R, Maria Paola L, Giorgio F, Marco B. Inflammation as a link between obesity and metabolic syndrome. J Nutr Metab. 2012;2012:476380. doi: 10.1155/2012/476380. PubMed DOI PMC

Harland JI. Food combinations for cholesterol lowering. Nutr Res Rev. 2012;25:249–266. doi: 10.1017/S0954422412000170. PubMed DOI

Johnston TP, Korolenko TA, Pirro M, Sahebkar A. Preventing cardiovascular heart disease: Promising nutraceutical and non-nutraceutical treatments for cholesterol management. Pharmacol Res. 2017;120:219–225. doi: 10.1016/j.phrs.2017.04.008. PubMed DOI

Chatzizisis YS, Koskinas KC, Misirli G, Vaklavas C, Hatzitolios A, Giannoglou GD. Risk factors and drug interactions predisposing to statin-induced myopathy: Implications for risk assessment, prevention and treatment. Drug Saf. 2010;33:171–187. doi: 10.2165/11319380-000000000-00000. PubMed DOI

Camerino GM, Musumeci O, Conte E, Musaraj K, Fonzino A, Barca E, Marino M, Rodolico C, Tricarico D, Camerino C, et al. Risk of myopathy in patients in therapy with statins: Identification of biological markers in a pilot study. Front Pharmacol. 2017;8:500. doi: 10.3389/fphar.2017.00500. PubMed DOI PMC

Caparros-Martin JA, Lareu RR, Ramsay JP, Peplies J, Reen FJ, Headlam HA, Ward NC, Croft KD, Newsholme P, Hughes JD, et al. Statin therapy causes gut dysbiosis in mice through a PXR-dependent mechanism. Microbiome. 2017;5:95. doi: 10.1186/s40168-017-0312-4. PubMed DOI PMC

Verhaegh BP, de Vries F, Masclee AA, Keshavarzian A, de Boer A, Souverein PC, Pierik MJ, Jonkers DM. High risk of drug-induced microscopic colitis with concomitant use of NSAIDs and proton pump inhibitors. Aliment Pharmacol Ther. 2016;43:1004–1013. doi: 10.1111/apt.13583. PubMed DOI

O'Keefe SJ. Diet, microorganisms and their metabolites, and colon cancer. Nat Rev Gastroenterol Hepatol. 2016;13:691–706. doi: 10.1038/nrgastro.2016.165. PubMed DOI PMC

Peters U, Sinha R, Chatterjee N, Subar AF, Ziegler RG, Kulldorff M, Bresalier R, Weissfeld JL, Flood A, Schatzkin A, et al. Dietary fibre and colorectal adenoma in a colorectal cancer early detection programme. Lancet. 2003;361:1491–1495. doi: 10.1016/S0140-6736(03)13173-X. PubMed DOI

Mao QQ, Lin YW, Chen H, Qin J, Zheng XY, Xu X, Xie LP. Dietary fiber intake is inversely associated with risk of pancreatic cancer: A meta-analysis. Asia Pac J Clin Nutr. 2017;26:89–96. PubMed

Ohira H, Tsutsui W, Fujioka Y. Are short chain fatty acids in hut microbiota defensive players for inflammation and atherosclerosis. J Atheroscler Thromb. 2017;24:660–672. doi: 10.5551/jat.RV17006. PubMed DOI PMC

Hernandez-Rodas MC, Valenzuela R, Videla LA. Relevant aspects of nutritional and dietary interventions in non-alcoholic fatty liver disease. Int J Mol Sci. 2015;16:25168–25198. doi: 10.3390/ijms161025168. PubMed DOI PMC

Burton-Freeman B, Liyanage D, Rahman S, Edirisinghe I. Ratios of soluble and insoluble dietary fibers on satiety and energy intake in overweight pre- and postmenopausal women. Nutr Healthy Aging. 2017;4:157–168. doi: 10.3233/NHA-160018. PubMed DOI PMC

Adam CL, Thomson LM, Williams PA, Ross AW. Soluble fermentable dietary fibre (Pectin) decreases caloric intake, adiposity and lipidaemia in high-fat diet-induced obese rats. PLoS One. 2015;10:e0140392. doi: 10.1371/journal.pone.0140392. PubMed DOI PMC

Torcello-Gómez A, Fernández Fraguas C, Ridout MJ, Woodward NC, Wilde PJ, Foster TJ. Effect of substituent pattern and molecular weight of cellulose ethers on interactions with different bile salts. Food Funct. 2015;6:730–739. doi: 10.1039/C5FO00099H. PubMed DOI

Meneses ME, Martinez-Carrera D, Torres N, Sánchez-Tapia M, Aguilar-López M, Morales P, Sobal M, Bernabé T, Escudero H, Granados-Portillo O, Tovar AR. Hypocholesterolemic properties and prebiotic effects of Mexican Ganoderma lucidum in C57BL/6 mice. PLoS One. 2016;11:e0159631. doi: 10.1371/journal.pone.0159631. PubMed DOI PMC

Hung TV, Suzuki T. Dietary fermentable fiber reduces intestinal barrier defects and inflammation in colitic mice. J Nutr. 2016;146:1970–1979. doi: 10.3945/jn.116.232538. PubMed DOI

Zhong Y, Marungruang N, Fak F, Nyman M. Effects of two whole-grain barley varieties on caecal SCFA, gut microbiota and plasma inflammatory markers in rats consuming low- and high-fat diets. Br J Nutr. 2015;113:1558–1570. doi: 10.1017/S0007114515000793. PubMed DOI

Luo Y, Zhang L, Li H, Smidt H, Wright AG, Zhang K, Ding X, Zeng Q, Bai S, Wang J, et al. Different types of dietary fibers trigger specific alterations in composition and predicted functions of colonic bacterial communities in BALB/c mice. Front Microbiol. 2017;8:966. doi: 10.3389/fmicb.2017.00966. PubMed DOI PMC

Winglee K, Fodor AA. Intrinsic association between diet and the gut microbiome: Current evidence. Nutr Diet Suppl. 2015;7:69–76. PubMed PMC

Jakobsdottir G, Xu J, Molin G, Ahrné S, Nyman M. High-fat diet reduces the formation of butyrate, but increases succinate, inflammation, liver fat and cholesterol in rats, while dietary fibre counteracts these effects. PLoS One. 2013;8:e80476. doi: 10.1371/journal.pone.0080476. PubMed DOI PMC

Vannucci L, Krizan J, Sima P, Stakheev D, Caja F, Rajsiglova L, Horak V, Saieh M. Immunostimulatory properties and anti-tumor activities of glucans (Review) Int J Oncol. 2013;43:357–364. doi: 10.3892/ijo.2013.1974. PubMed DOI PMC

Chanput W, Reitsma M, Kleinjans L, Mes JJ, Savelkoul HF, Wichers HJ. β-Glucans are involved in immune-modulation of THP-1 macrophages. Mol Nutr Food Res. 2012;56:822–833. doi: 10.1002/mnfr.201100715. PubMed DOI

Ho HV, Sievenpiper JL, Zurbau A, Blanco Mejia S, Jovanovski E, Au-Yeung F, Jenkins AL, Vuksan V. The effect of oat β-glucan on LDL-cholesterol, non-HDL-cholesterol and apoB for CVD risk reduction: A systematic review and meta-analysis of randomized-controlled trials. Br J Nutr. 2016;116:1369–1382. doi: 10.1017/S000711451600341X. PubMed DOI

Caz V, Gil-Ramirez A, Largo C, Tabernero M, Santamaría M, Martín-Hernández R, Marín FR, Reglero G, Soler-Rivas C. Modulation of cholesterol-related gene expression by dietary fiber fractions from edible mushrooms. J Agric Food Chem. 2015;63:7371–7380. doi: 10.1021/acs.jafc.5b02942. PubMed DOI

Barsanti L, Passarelli V, Evangelista V, Frassanito AM, Gualtieri P. Chemistry, physico-chemistry and applications linked to biological activities of β-glucans. Nat Prod Rep. 2011;28:457–466. doi: 10.1039/c0np00018c. PubMed DOI

Anderson JW, Baird P, Davis RH, Jr, Ferreri S, Knudtson M, Koraym A, Waters V, Williams CL. Health benefits of dietary fiber. Nutr Rev. 2009;67:188–205. doi: 10.1111/j.1753-4887.2009.00189.x. PubMed DOI

Van Horn L, McCoin M, Kris-Etherton PM, Burke F, Carson JA, Champagne CM, Karmally W, Sikand G. The evidence for dietary prevention and treatment of cardiovascular disease. J Am Diet Assoc. 2008;108:287–331. doi: 10.1016/j.jada.2007.10.050. PubMed DOI

Vetvicka V, Vetvickova J. Effects of yeast-derived beta-glucans on blood cholesterol and macrophage functionality. J Immunotoxicol. 2009;6:30–35. doi: 10.1080/15476910802604317. PubMed DOI

de Groot A, Luyken R, Pikaar NA. Cholesterol-lowering effect of rolled oats. Lancet. 1963;2:303–304. doi: 10.1016/S0140-6736(63)90210-1. PubMed DOI

Czop JK. The role of beta-glucan receptors on blood and tissue leukocytes in phagocytosis and metabolic activation. Pathol Immunopathol Res. 1986;5:286–296. doi: 10.1159/000157022. PubMed DOI

Estrada A, Yun CH, Van Kessel A, Li B, Hauta S, Laarveld B. Immunomodulatory activities of oat beta-glucan in vitro and in vivo. Microbiol Immunol. 1997;41:991–998. doi: 10.1111/j.1348-0421.1997.tb01959.x. PubMed DOI

Torrence PF. Biological response modifiers: New approaches to disease intervention. Academic Press; Orlando: 1985. p. 397.

Novak M, Vetvicka V. Beta-glucans, history, and the present: Immunomodulatory aspects and mechanisms of action. J Immunotoxicol. 2008;5:47–57. doi: 10.1080/15476910802019045. PubMed DOI

Vetvicka V, Vetvickova J. β1,3-Glucan: Silver bullet or hot air. Open Glycoscience. 2010;3:1–6.

Vetvicka V, Vetvickova J. Comparison of immunological effects of commercially available β-glucans: Part III. Int J Clin Pathol. 2006;2 doi: 10.15406/icpjl.2016.02.00046. DOI

Würsch P, Pi-Sunyer FX. The role of viscous soluble fiber in the metabolic control of diabetes. A review with special emphasis on cereals rich in beta-glucan. Diabetes Care. 1997;20:1774–1780. doi: 10.2337/diacare.20.11.1774. PubMed DOI

Mosikanon K, Arthan D, Kettawan A, Tungtrongchitr R, Prangthip P. Yeast β-glucan modulates inflammation and waist circumference in overweight and obese subjects. J Diet Suppl. 2017;14:173–185. doi: 10.1080/19390211.2016.1207005. PubMed DOI

Browder W, Williams D, Lucore P, Pretus H, Jones E, McNamee R. Effect of enhanced macrophage function on early wound healing. Surgery. 1988;104:224–230. PubMed

Vetvicka V, Vetvickova J. Anti-stress action of an orally-given combination of resveratrol, β-glucan, and vitamin C. Molecules. 2014;19:13724–13734. doi: 10.3390/molecules190913724. PubMed DOI PMC

Vetvicka V, Vetvickova J. β-glucan attenuates chronic fatigue syndrome in murine model. J Nat Sci. 2015;1:e112.

Sima P, Vannucci L, Vetvicka V. Glucans and cancer: Historical perspective. Cancer Translational Med. 2015;1:209–214. doi: 10.4103/2395-3977.172860. DOI

Barbieri A, Quagliariello V, Del Vecchio V, Falco M, Luciano A, Amruthraj NJ, Nasti G, Ottaiano A, Berretta M, Iaffaioli RV, Arra C. Anticancer and anti-inflammatory properties of gano-derma lucidum extract effects on melanoma and triple-negative breast cancer treatment. Nutrients. 2017;9:pii:E210. doi: 10.3390/nu9030210. PubMed DOI PMC

Richter J, Kral V, Svozil V, Rajnohova DL, Pohorska JI, Vetvicka V. Effects of transfer point glucan #300 supplementation on children exposed to passive smoking-placebo-driven double-blind clinical trials. J Nutr Health. 2014;1:105.

Vetvicka V, Richter J, Svozil V, Rajnohová Dobiášová L, Král V. Placebo-driven clinical trials of yeast-derived β-(1-3) glucan in children with chronic respiratory problems. Ann Transl Med. 2013;1:26. PubMed PMC

Brown GD, Gordon S. Immune recognition. A new receptor for beta-glucans. Nature. 2001;413:36–37. doi: 10.1038/35092620. PubMed DOI

Stambach NS, Taylor ME. Characterization of carbohydrate recognition by langerin, a C-type lectin of Langerhans cells. Glycobiology. 2003;13:401–410. doi: 10.1093/glycob/cwg045. PubMed DOI

Allendorf DJ, Ostroff GR, BAran JT, et al. BTR 2003: Unified Science & Technology for Reducing Biological Threats & Counterin Terrorism. Albuquesrque: University of New Mexico; 2003. Oral WGP beta glucan treatment accelerates myeloid recovery and survival after irradiation wxposure; pp. 104–113.

Ross GD, Vĕtvicka V. CR3 (CD11b. CD18): A phagocyte and NK cell membrane receptor with multiple ligand specificities and functions. Cell Exp Immunol. 1993;92:181–184. doi: 10.1111/j.1365-2249.1993.tb03377.x. PubMed DOI PMC

Xia Y, Vetvicka V, Yan J, Hanikyrová M, Mayadas T, Ross GD. The beta-glucan-binding lectin site of mouse CR3 (CD11b/CD18) and its function in generating a primed state of the receptor that mediates cytotoxic activation in response to iC3b-opsonized target cells. J Immunol. 1999;162:2281–2290. PubMed

Legentil L, Paris F, Ballet C, Trouvelot S, Daire X, Vetvicka V, Ferrières V. Molecular interactions of β-(1→>3)-glucans with their receptors. Molecules. 2015;20:9745–9766. doi: 10.3390/molecules20069745. PubMed DOI PMC

Williams DL, Ha T, Li C, Laffan J, Kalbfleisch J, Browder W. Inhibition of LPS-induced NFkappaB activation by a glucan ligand involves down-regulation of IKKbeta kinase activity and altered phosphorylation and degradation of IkappaBalpha. Shock. 2000;13:446–452. doi: 10.1097/00024382-200006000-00005. PubMed DOI

Rogers NC, Slack EC, Edwards AD, Nolte MA, Schulz O, Schweighoffer E, Williams DL, Gordon S, Tybulewicz VL, Brown GD, Reis e Sousa C. Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity. 2005;22:507–517. doi: 10.1016/j.immuni.2005.03.004. PubMed DOI

Elcombe SE, Naqvi S, Van Den Bosch MW, MacKenzie KF, Cianfanelli F, Brown GD, Arthur JS. Dectin-1 regulates IL-10 production via a MSK1/2 and CREB dependent pathway and promotes the induction of regulatory macrophage markers. PLoS One. 2013;8:e60086. doi: 10.1371/journal.pone.0060086. PubMed DOI PMC

Větvička V. (Beta)-glucans as natural biological response modifiers. Nova Science Publishers Inc; New York: 2013.

Orth M, Bellosta S. Cholesterol: Its regulation and role in central nervous system disorders. Cholesterol. 2012;2012:292598. doi: 10.1155/2012/292598. PubMed DOI PMC

Li T, Chiang JY. Regulation of bile acid and cholesterol metabolism by PPARs. PPAR Res. 2009;2009:501739. doi: 10.1155/2009/501739. PubMed DOI PMC

Worthmann A, John C, Rühlemann MC, Baguhl M, Heinsen FA, Schaltenberg N, Heine M, Schlein C, Evangelakos I, Mineo C, et al. Cold-induced conversion of cholesterol to bile acids in mice shapes the gut microbiome and promotes adaptive thermogenesis. Nat Med. 2017;23:839–849. doi: 10.1038/nm.4357. PubMed DOI

Li T, Chiang JY. Bile acids as metabolic regulators. Curr Opin Gastroenterol. 2015;31:159–165. doi: 10.1097/MOG.0000000000000156. PubMed DOI PMC

Brown MS, Goldstein JL. How LDL receptors influence cholesterol and atherosclerosis. Sci Am. 1984;251:58–66. doi: 10.1038/scientificamerican1184-58. PubMed DOI

Russell DW. The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem. 2003;72:137–174. doi: 10.1146/annurev.biochem.72.121801.161712. PubMed DOI

Kuipers F, Bloks VW, Groen AK. Beyond intestinal soap-bile acids in metabolic control. Nat Rev Endocrinol. 2014;10:488–498. doi: 10.1038/nrendo.2014.60. PubMed DOI

Gibbons GF, Wiggins D, Brown AM, Hebbachi AM. Synthesis and function of hepatic very-low-density-lipoprotein. Biochem Soc Trans. 2004;32:59–64. doi: 10.1042/bst0320059. PubMed DOI

Davidson WS, Hilliard GM. The spatial organization of apolipoprotein A-I on the edge of discoidal high density lipo-protein particles. J Biol Chem. 2003;278:27199–27207. doi: 10.1074/jbc.M302764200. PubMed DOI

de Oliveira Alvim R, Mourao-Junior CA, Magalhaes GL, de Oliveira CM, Krieger JE, Mill JG, Pereira AC. Non-HDL cholesterol is a good predictor of the risk of incfeased arterial stiffness in postmenopausal women in an urban Brazilian population. Clinics (Sao Paulo) 2017;72:106–110. doi: 10.6061/clinics/2017(02)07. PubMed DOI PMC

Gordon DJ, Probstfield JL, Garrison RJ, Neaton JD, Castelli WP, Knoke JD, Jacobs DR, Jr, Bangdiwala S, Tyroler HA. High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. Circulation. 1989;79:8–15. doi: 10.1161/01.CIR.79.1.8. PubMed DOI

Srinivasan SR, Myers L, Berenson GS. Distribution and correlates of non-high-density lipoprotein cholesterol in children: The Bogalusa heart study. Pediatrics. 2002;110:e29. doi: 10.1542/peds.110.3.e29. PubMed DOI

Hoenig MR. Implications of the obesity epidemic for lipid-lowering therapy: Non-HDL cholesterol should replace LDL cholesterol as the primary therapeutic target. Vasc Health Risk Manag. 2008;4:143–156. doi: 10.2147/VHRM.S2364. PubMed DOI PMC

The National Cholesterol Education Program. https://www.nhlbi.nih.gov/files/docs/guidelines/atglance.pdf.

Masson D, Koseki M, Ishibashi M, Larson CJ, Miller SG, King BD, Tall AR. Increased HDL cholesterol and apoA-I in humans and mice treated with a novel SR-BI inhibitor. Arterioscler Thromb Vasc Biol. 2009;29:2054–2060. doi: 10.1161/ATVBAHA.109.191320. PubMed DOI PMC

White CR, Garber DW, Anantharamaiah GM. Anti-inflammatory and cholesterol-reducing properties of apolipoprotein mimetics: A review. J Lipid Res. 2014;55:2007–2021. doi: 10.1194/jlr.R051367. PubMed DOI PMC

Parathasarathy S, Raghavamenon A, Garelnabi MO, Santanam N. Oxidized low-density lipoprotein. Methods Mol Biol. 2010;610:403–417. doi: 10.1007/978-1-60327-029-8_24. PubMed DOI PMC

Besler C, Lüscher TF, Landmesser U. Molecular mechanisms of vascular effects of high-density lipoprotein: Alternations in cardiovascular disease. EMBO Mol Med. 2012;4:251–268. doi: 10.1002/emmm.201200224. PubMed DOI PMC

Stary HC. The sequence of cell and matrix changes in athero-sclerotic lesions of coronary arteries in the first forty years of life. Eur Heart J. 1990;11(Suppl E):S3–S19. doi: 10.1093/eurheartj/11.suppl_E.3. PubMed DOI

Sullivan MP, Cerda JJ, Robbins FL, Burgin CW, Beatty RJ. The gerbil, hamster, and guinea pig as rodent models for hyper-lipidemia. Lab Anim Sci. 1993;43:575–578. PubMed

Sima A, Stancu C, Constantinescu E, Ologeanu L, Simionescu M. The hyperlipemic hamster-a model for testing the anti-atherogenic effect of amlodipine. J Cell Mol Med. 2001;5:153–162. doi: 10.1111/j.1582-4934.2001.tb00148.x. PubMed DOI PMC

Ohmura H, Fukushima Y, Mizuno A, Niwa K, Kobayashi Y, Ebina T, Kimura K, Ishibashi S, Daida H. Research Committee on Primary Hyperlipidemia of the Ministry of Health and Welfare of Japan: Estimated prevalence of heterozygous familial hypercholesterolemia in patients with acute coronary syndrome. Int Heart J. 2017;58:88–94. doi: 10.1536/ihj.16-188. PubMed DOI

Rosenson RS, Brewer HB, Jr, Ansell BJ, Barter P, Chapman MJ, Heinecke JW, Kontush A, Tall AR, Webb NR. Dysfunctional HDL and atherosclerotic cardiovascular disease. Nat Rev Cardiol. 2016;13:48–60. doi: 10.1038/nrcardio.2015.124. PubMed DOI PMC

Gistera A, Hansson GK. The immunology of atherosclerosis. Nat Rev Nephrol. 2017;13:368–380. doi: 10.1038/nrneph.2017.51. PubMed DOI

Jonsson AL, Bäckhed F. Role of gut microbiota in atherosclerosis. Nat Rev Cardiol. 2017;14:79–87. doi: 10.1038/nrcardio.2016.183. PubMed DOI

Babicek K, Cehová I, Simon RR, Harwood M, Cox DJ. Toxicological assesment of a particulate yeast (1,3/1,6)-beta-D-glucan in rats. Food Chem Toxicol. 2007;45:1719–1730. doi: 10.1016/j.fct.2007.03.013. PubMed DOI

Brown L, Rosner B, Willett WW, Sacks FM. Cholesterol-lowering effects of dietary fiber: A meta-analysis. Am J Clin Nutr. 1999;69:30–42. PubMed

Phillips GO, Cui SW. An introduction: Evolution and finalisation of the regulatory definition of dietary fibre. Food Hydrocolloids. 2011;25:139–143. doi: 10.1016/j.foodhyd.2010.04.011. DOI

Slavin JL. Dietary fiber and body weight. Nutrition. 2005;21:411, 418. doi: 10.1016/j.nut.2004.08.018. PubMed DOI

Cheung PCK. Mini-review on edible mushrooms as source of dietary fiber: Preparation and health benefits. Food Sci Human Wellness. 2013;2:162–166. doi: 10.1016/j.fshw.2013.08.001. DOI

Jenkins DJ, Kendall CW, Axelsen M, Augustin LS, Vuksan V. Viscous and nonviscous fibres, nonabsorbable and low glycaemic index carbohydrates, blood lipids and coronary heart disease. Curr Opin Lipidol. 2000;11:49–56. doi: 10.1097/00041433-200002000-00008. PubMed DOI

Gee JM, Blackburn NA, Johnson IT. The influence of guar gum on intestinal cholesterol transport in the rat. Br J Nutr. 1983;50:215–224. doi: 10.1079/BJN19830091. PubMed DOI

Chau CF, Huang YL. Effects of the insoluble fiber derived from Passiflora edulis seed on plasma and hepatic lipids and fecal output. Mol Nutr Food Res. 2005;49:786–790. doi: 10.1002/mnfr.200500060. PubMed DOI

Cho IJ, Lee C, Ha TY. Hypolipidemic effect of soluble fiber isolated from seeds of Cassia tora Linn. In rats fed a high-cholesterol diet. J Agric Food Chem. 2007;55:1592–1596. doi: 10.1021/jf0622127. PubMed DOI

Zacherl C, Eisner P, Engel KH. In vitro model to correlate viscosity and bile acid-binding capacity of digested water-soluble and insoluble dietary fibres. Food Chem. 2011;126:423–428. doi: 10.1016/j.foodchem.2010.10.113. DOI

Aoki S, Iwai A, Kawata K, Muramatsu D, Uchiyama H, Okabe M, Ikesue M, Maeda N, Uede T. Oral administration of the Aureobasidium pullulans-derived β-glucan effectively prevents the development of high fat diet-induced fatty liver in mice. Sci Rep. 2015;5:10457. doi: 10.1038/srep10457. PubMed DOI PMC

Steinberg GR, Kemp BE. AMPK in health and disease. Physiol Rev. 2009;89:1025–1078. doi: 10.1152/physrev.00011.2008. PubMed DOI

Kaczmarczyk MM, Miller MJ, Freund GG. The health benefits of dietary fiber: Beyond the usual suspects of type 2 diabetes mellitus, cardiovascular disease and colon cancer. Metabolism. 2012;61:1058–1066. doi: 10.1016/j.metabol.2012.01.017. PubMed DOI PMC

Drew BG, Fidge NH, Gallon-Beaumier G, Kemp BE, Kingwell BA. High-density lipoprotein and apolipoprotein AI increase endothelial NO synthase activity by protein association and multisite phosphorylation. Proc Natl Acad Sci USA. 2004;101:6999–7004. doi: 10.1073/pnas.0306266101. PubMed DOI PMC

Roy CC, Kien CL, Bouthillier L, Levy E. Short-chain fatty acids: Ready for prime time. Nutr Clin Pract. 2006;21:351–366. doi: 10.1177/0115426506021004351. PubMed DOI

den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54:2325–2340. doi: 10.1194/jlr.R036012. PubMed DOI PMC

Chan GC, Chan WK, Sze DM. The effects of beta-glucan on human immune and cancer cells. J Hematol Oncol. 2009;2:25. doi: 10.1186/1756-8722-2-25. PubMed DOI PMC

Al-Lahham SH, Peppelenbosch MP, Roelofsen H, Vonk RJ, Venema K. Biological effects of propionic acid in humans; metabolism, potential applications and underlying mechanisms. Biochim Biophys Acta. 2010;1801:1175–1183. doi: 10.1016/j.bbalip.2010.07.007. PubMed DOI

Wismar R, Brix S, Frøkiaer H, Laerke HN. Dietary fibers as immunoregulatory compounds in health and disease. Ann NY Acad Sci. 2010;1190:70–85. doi: 10.1111/j.1749-6632.2009.05256.x. PubMed DOI

Vangaveti V, Shashidhar V, Jarrod G, Baune BT, Kennedy RL. Free fatty acid receptors: Emerging targets for treatment of diabetes and its complications. Ther Adv Endocrinol Metab. 2010;1:165–175. doi: 10.1177/2042018810381066. PubMed DOI PMC

Warnberg J, Gomez-Martinez S, Romeo J, Diaz LE, Marcos A. Nutrition, inflammation, and cognitive function. Ann N Y Acad Sci. 2009;1153:164–175. doi: 10.1111/j.1749-6632.2008.03985.x. PubMed DOI

Cosola C, De Angelis M, Rocchetti MT, Montemurno E, Maranzano V, Dalfino G, Manno C, Zito A, Gesualdo M, Ciccone MM, et al. Beta-glucans supplementation associates with reduction in P-Cresyl sulfate levels and improved endo-thelial vascular reactivity in healthy individuals. PLoS One. 2017;12:e0169635. doi: 10.1371/journal.pone.0169635. PubMed DOI PMC

Mansbach CM, II, Gorelick F. Development and physiological regulation of intestinal lipid absorption. II. Dietary lipid absorption, complex lipid synthesis, and the intracellular packaging and secretion of chylomicrons. Am J Physiol Gastrointest Liver Physiol. 2007;293:G645–G650. doi: 10.1152/ajpgi.00299.2007. PubMed DOI

Black DD. Development and physiological regulation of intestinal lipid absorption. I. Development of intestinal lipid absorption: Cellular events in chylomicron assembly and secretion. Am J Physiol Gastrointest Liver Physiol. 2007;293:G519–G524. doi: 10.1152/ajpgi.00189.2007. PubMed DOI

Brown MS, Goldstein JL. The SREBP pathway: Regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell. 1997;89:331–340. doi: 10.1016/S0092-8674(00)80213-5. PubMed DOI

Sato R. Sterol metabolism and SREBP activation. Arch Biochem Biophys. 2010;501:177–181. doi: 10.1016/j.abb.2010.06.004. PubMed DOI

Drozdowski LA, Reimer RA, Temelli F, Bell RC, Vasanthan T, Thomson AB. Beta-glucan extracts inhibit the in vitro intestinal uptake of long-chain fatty acids and cholesterol and down-regulate genes involved in lipogenesis and lipid transport in rats. J Nutr Biochem. 2010;21:695–701. doi: 10.1016/j.jnutbio.2009.04.003. PubMed DOI PMC

Chen J, Huang XF. The effects of diets enriched in beta-glucans on blood lipoprotein concentrations. J Clin Lipidol. 2009;3:154–158. doi: 10.1016/j.jacl.2009.04.054. PubMed DOI

Rondanelli M, Opizzi A, Monteferrario F, Klersy C, Cazzola R, Cestaro B. Beta-glucan- or rice bran-enriched foods: A comparative crossover clinical trial on lipidic pattern in mildly hypercholesterolemic men. Eur J Clin Nutr. 2011;65:864–871. doi: 10.1038/ejcn.2011.48. PubMed DOI

Wolever TM, Tosh SM, Gibbs AL, Brand-Miller J, Duncan AM, Hart V, Lamarche B, Thomson BA, Duss R, Wood PJ. Physicochemical properties of oat β-glucan influence its ability to reduce serum LDL cholesterol in humans: A randomized clinical trial. Am J Clin Nutr. 2010;92:723–732. doi: 10.3945/ajcn.2010.29174. PubMed DOI

Johnson IT, Gee JM. Effect of gel-forming gums on the intestinal unstirred layer and sugar transport in vitro. Gut. 1981;22:398–403. doi: 10.1136/gut.22.5.398. PubMed DOI PMC

Kirby RW, Anderson JW, Sieling B, Rees ED, Chen WJ, Miller RE, Kay RM. Oat-bran intake selectively lowers serum low-density lipoprotein cholesterol concentrations of hypercholesterolemic men. Am J Clin Nutr. 1981;34:824–829. PubMed

Fadel JG, Newman RK, Newman CW, Barnes AE. Hypocholesterolemic effects of beta-glucans in different barley diets fed to broiler chicks. Nutr Rep Int. 1987;35:1049–1058.

Li J, Kaneko T, Qin LQ, Wang J, Wang Y, Sato A. Long-term effects of high dietary fiber intake on glucose tolerance and lipid metabolism in GK rats: Comparison among barley, rice, and cornstarch. Metabolism. 2003;52:1206–1210. doi: 10.1016/S0026-0495(03)00159-8. PubMed DOI

Sima A, Bulla A, Simionescu N. Experimental obstructive coronary atherosclerosis in the hyperlipidemic hamster. J Submicrosc Cytol Pathol. 1990;22:1–16. PubMed

Lim MK, Ku SK, Choi JS, Kim JW. Effect of polycan, a β-glucan originating from Aureobasidium, on a high-fat diet-induced hyperlipemic hamster model. Exp Ther Med. 2015;9:1369–1378. doi: 10.3892/etm.2015.2238. PubMed DOI PMC

Delaney B, Nicolosi RJ, Wilson TA, Carlson T, Frazer S, Zheng GH, Hess R, Ostergren K, Haworth J, Knutson N. Beta-glucan fractions from barley and oats are similarly anti-atherogenic in hypercholesterolemic Syrian golden hamsters. J Nutr. 2003;133:468–475. doi: 10.1093/jn/133.2.468. PubMed DOI

Wilson TA, Nicolosi RJ, Delaney B, Chadwell K, Moolchandani V, Kotyla T, Ponduru S, Zheng GH, Hess R, Knutson N, et al. Reduced and high molecular weight barley beta-glucans decrease plasma total and non-HDL-cholesterol in hypercholesterolemic Syrian golden hamsters. J Nutr. 2004;134:2617–2622. doi: 10.1093/jn/134.10.2617. PubMed DOI

Wu YS, Ho SY, Nan FH, Chen SN. Ganoderma lucidum beta 1,3/1,6 glucan as an immunomodulator in inflammation induced by a high-cholesterol diet. BMC Complement Altern Med. 2016;16:500. doi: 10.1186/s12906-016-1476-3. PubMed DOI PMC

Kusmiati, Dhewantara FX. Cholesterol-lowering effect of beta glucan extracted from Saccharomyces cerevisiae in rats. Sci Pharm. 2016;84:153–165. doi: 10.3797/scipharm.ISP.2015.07. PubMed DOI PMC

Tong LT, Zhong K, Liu L, Zhou X, Qiu J, Zhou S. Effects of dietary hull-less barley β-glucan on the cholesterol metabolism of hypercholesterolemic hamsters. Food Chem. 2015;169:344–349. doi: 10.1016/j.foodchem.2014.07.157. PubMed DOI

Vetvicka V, Vetvickova J. Physiological effects of different types of beta-glucan. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2007;151:225–231. doi: 10.5507/bp.2007.038. PubMed DOI

Malkki Y. Oat fiber. In: Cho S, Dreher ML, editors. Food Science and Technology: Handbook of Dietary Fiber. M. Dekker; New York: 2001. pp. 497–512.

Veniant MM, Withycombe S, Young SG. Lipoprotein size and atherosclerosis susceptibility in Apoe−/− and Ldlr−/− mice. Arterioscler Thromb Vasc Biol. 2001;21:1567–1570. doi: 10.1161/hq1001.097780. PubMed DOI

Pendse AA, Arbones-Mainar JM, Johnson LA, Altenburg MK, Maeda N. Apolipoprotein E knock-out and knock-in mice: Atherosclerosis, metabolic syndrome, and beyond. J Lipid Res. 2009;50(Suppl):S178–S182. doi: 10.1194/jlr.R800070-JLR200. PubMed DOI PMC

Anderson JW, Story L, Sieling B, Chen WJ, Petro MS, Story J. Hypocholesterolemic effects of oat-bran or bean intake for hypercholesterolemic men. Am J Clin Nutr. 1984;40:1146–1155. doi: 10.1093/ajcn/40.6.1146. PubMed DOI

Anderson JW, Gustafson NJ. Hypocholesterolemic effects of oat and bean products. Am J Clin Nutr. 1988;48(Suppl 3):S749–S753. doi: 10.1093/ajcn/48.3.749. PubMed DOI

Braaten JT, Wood PJ, Scott FW, Wolynetz MS, Lowe MK, Bradley-White P, Collins MW. Oat beta-glucan reduces blood cholesterol concentration in hypercholesterolemic subjects. Eur J Clin Nutr. 1994;48:465–474. PubMed

Newman RK, Lewis SE, Newman CW, Boik RJ, Ramage RT. Hypocholesterolemic effect of barley foods on healthy men. Nutr Rep Int. 1989;39:749–760.

McIntosh GH, Whyte J, McArthur R, Nestel PJ. Barley and wheat foods: Influence on plasma cholesterol concentrations in hypercholesterolemic men. Am J Clin Nutr. 1991;53:1205–1209. doi: 10.1093/ajcn/53.5.1205. PubMed DOI

Lupton JR, Robinson MC, Morin JL. Cholesterol-lowering effect of barley bran flour and oil. J Am Diet Assoc. 1994;94:65–70. doi: 10.1016/0002-8223(94)92044-3. PubMed DOI

Lia A, Hallmans G, Sandberg AS, Sundberg B, Aman P, Anderson H. Oat beta-glucan increases bile excretion and a fiber rich barley fracton increases cholesterol excretion in ileostomy subjects. Am J Clin Nutr. 1995;62:1245–1251. doi: 10.1093/ajcn/62.6.1245. PubMed DOI

Bell S, Goldman VM, Bistrian BR, Arnold AH, Ostroff G, Forse RA. Effect of beta-glucan from oats and yeast on serum lipids. Crit Rev Food Sci Nutr. 1999;39:189–202. doi: 10.1080/10408399908500493. PubMed DOI

Li J, Kaneko T, Qin LQ, Wang J, Wang Y. Effects of barley intake on glucose tolerance, lipid metabolism, and bowel function in women. Nutrition. 2003;19:926–929. doi: 10.1016/S0899-9007(03)00182-5. PubMed DOI

Behall KM, Scholfield DJ, Hallfrisch J. Diets containing barley significantly reduce lipids in mildly hypercholesterolemic men and women. Am J Clin Nutr. 2004;80:1185–1193. doi: 10.1093/ajcn/80.5.1185. PubMed DOI

Behall KM, Scholfield DJ, Hallfrisch J. Lipids significantly reduced by diets containing barley in moderately hypercholes-terolemic men. J Am Coll Nutr. 2004;23:55–62. doi: 10.1080/07315724.2004.10719343. PubMed DOI

Keenan JM, Goulson M, Shamliyan T, Knutson N, Kolberg L, Curry L. The effects of concentrated barley beta-glucan on blood lipids in a population of hypercholesterolaemic men and women. Br J Nutr. 2007;97:1162–1168. doi: 10.1017/S0007114507682968. PubMed DOI

Shimizu C, Kihara M, Aoe S, Araki S, Ito K, Hayashi K, Watari J, Sakata Y, Ikegami S. Effect of high beta-glucan barley on serum cholesterol concentrations and visceral fat area in Japanese men-a randomized, double-blinded, placebo-controlled trial. Plant Foods Hum Nutr. 2008;63:21–25. doi: 10.1007/s11130-007-0064-6. PubMed DOI

Sundberg B. Cholesterol lowering effects of a barley fibre flake product. Agro Food Industry Hi-Tech. 2008;19:14–17.

Zhu X, Sun X, Wang M, Zhang C, Cao Y, Mo G, Liang J, Zhu S. Quantitative assessment of the effects of beta-glucan consumption on serum lipid profile and glucose level in hypercholesterolemic subjects. Nutr Metab Cardiovasc Dis. 2015;25:714–723. doi: 10.1016/j.numecd.2015.04.008. PubMed DOI

Keogh GF, Cooper GJ, Mulvey TB, McArdle BH, Coles GD, Monro JA, Poppitt SD. Randomized controlled crossover study of the effect of a highly beta-glucan-enriched barley on cardiovascular disease risk factors in mildly hypercholesterol-emic men. Am J Clin Nutr. 2003;78:711–718. doi: 10.1093/ajcn/78.4.711. PubMed DOI PMC

Biörklund M, van Rees A, Mensink RP, Onning G. Changes in serum lipids and postprandial glucose and insulin concentrations after consumption of beverages with beta-glucans from oats or barley: A randomised dose-controlled trial. Eur J Clin Nutr 5. 2005;9:1272–1281. doi: 10.1038/sj.ejcn.1602240. PubMed DOI

Ibrügger S, Kristensen M, Poulsen MW, Mikkelsen MS, Ejsing J, Jespersen BM, Dragsted LO, Engelsen SB, Bügel S. Extracted oat and barley β-glucans do not affect cholesterol metabolism in young healthy adults. J Nutr. 2013;143:1579–1585. doi: 10.3945/jn.112.173054. PubMed DOI

Talati R, Baker WL, Pabilonia MS, White CM, Coleman CI. The effects of barley-derived soluble fiber on serum lipids. Ann Fam Med. 2009;7:157–163. doi: 10.1370/afm.917. PubMed DOI PMC

AbuMweis SS, Jew S, Ames NP. β-glucan from barley and its lipid-lowering capacity: A meta-analysis of randomized, controlled trials. Eur J Clin Nutr. 2010;64:1472–1480. doi: 10.1038/ejcn.2010.178. PubMed DOI

Anderson TJ, Grégoire J, Hegele RA, Couture P, Mancini GB, McPherson R, Francis GA, Poirier P, Lau DC, Grover S, et al. 2012 update of the Canadian Cardiovascular Society guidelines for the diagnosis and treatment of dyslipidemia for the prevention of cardiovascular disease in the adult. Can J Cardiol. 2013;29:151–167. doi: 10.1016/j.cjca.2012.11.032. PubMed DOI

Newman RK, Newman CW. Genetics and Nutrient Composition. John Wiley & Sons; Hoboken, NJ: 2008. Barley for food and health: Science, technology, and products; pp. 56–94.

Ho HV, Sievenpiper JL, Zurbau A, Blanco Mejia S, Jovanovski E, Au-Yeung F, Jenkins AL, Vuksan V. A systematic review and meta-analysis of randomized controlled trials of the effect of barley β-glucan on LDL-C, non-HDL-C and apoB for cardiovascular disease risk reductioni-iv. Eur J Clin Nutr. 2016;70:1340. doi: 10.1038/ejcn.2016.129. PubMed DOI

Mori K, Kobayashi C, Tomita T, Inatomi S, Ikeda M. Antiatherosclerotic effect of the edible mushrooms Pleurotus eryngii (Eringi), Grifola frondosa (Maitake), and Hypsizygus marmoreus (Bunashimeji) in apolipoprotein E-deficient mice. Nutr Res. 2008;28:335–342. doi: 10.1016/j.nutres.2008.03.010. PubMed DOI

Sun JE, Ao ZH, Lu ZM, Xu HY, Zhang XM, Dou WF, Xu ZH. Antihyperglycemic and antilipidperoxidative effects of dry matter of culture broth of Inonotus obliquus in submerged culture on normal and alloxan-diabetes mice. J Ethnopharmacol. 2008;118:7–13. doi: 10.1016/j.jep.2008.02.030. PubMed DOI

Bays HE, Evans JL, Maki KC, Evans M, Maquet V, Cooper R, Anderson JW. Chitin-glucan fiber effects on oxidized low-density lipoprotein: A randomized controlled trial. Eur J Clin Nutr. 2013;67:2–7. doi: 10.1038/ejcn.2012.121. PubMed DOI PMC

Serra-Majem L, Roman B, Estruch R. Scientific evidence of interventions using the Mediterranean diet: A systematic review. Nutr Rev. 2006;64(Suppl):S27–S47. doi: 10.1111/j.1753-4887.2006.tb00232.x. PubMed DOI

Wang Y, Harding SV, Eck P, Thandapilly SJ, Gamel TH, Abdel-Aal el-SM, Crow GH, Tosh SM, Jones PJ, Ames NP. High-molecular-weight β-glucan decreases serum cholesterol differentially based on the CYP7A1 rs3808607 polymorphism in mildly hypercholesterolemic adults. J Nutr. 2016;146:720–727. doi: 10.3945/jn.115.223206. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...