Immunostimulatory properties and antitumor activities of glucans (Review)
Jazyk angličtina Země Řecko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
23739801
PubMed Central
PMC3775562
DOI
10.3892/ijo.2013.1974
Knihovny.cz E-zdroje
- MeSH
- adjuvancia imunologická chemie terapeutické užití MeSH
- Agaricales chemie MeSH
- antitumorózní látky chemie imunologie terapeutické užití MeSH
- beta-glukany chemie terapeutické užití MeSH
- buněčné extrakty terapeutické užití MeSH
- dendritické buňky účinky léků MeSH
- lektiny typu C metabolismus MeSH
- lidé MeSH
- makrofágy účinky léků imunologie MeSH
- myši MeSH
- přirozená imunita účinky léků MeSH
- signální transdukce imunologie MeSH
- tradiční orientální medicína MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- adjuvancia imunologická MeSH
- antitumorózní látky MeSH
- beta-glukany MeSH
- buněčné extrakty MeSH
- dectin 1 MeSH Prohlížeč
- lektiny typu C MeSH
New foods and natural biological modulators have recently become of scientific interest in the investigation of the value of traditional medical therapeutics. Glucans have an important part in this renewed interest. These fungal wall components are claimed to be useful for various medical purposes and they are obtained from medicinal mushrooms commonly used in traditional Oriental medicine. The immunotherapeutic properties of fungi extracts have been reported, including the enhancement of anticancer immunity responses. These properties are principally related to the stimulation of cells of the innate immune system. The discovery of specific receptors for glucans on dendritic cells (dectin-1), as well as interactions with other receptors, mainly expressed by innate immune cells (e.g., Toll-like receptors, complement receptor-3), have raised new attention toward these products as suitable therapeutic agents. We briefly review the characteristics of the glucans from mycelial walls as modulators of the immunity and their possible use as antitumor treatments.
Zobrazit více v PubMed
Tzianabos A. Polysaccharide immunomodulators as therapeutic agents: structural aspects and biologic function. Clin Microbiol Rev. 2000;13:523–533. PubMed PMC
Han SB, Lee CW, Jeon YJ, Hong ND, Yoo ID, Yang KH, Kim HM. The inhibitory effect of polysaccharides isolated from Phellinus liteus on tumor growth and metastasis. Immunopharmacology. 1999;41:157–164. PubMed
Ooi VE, Liu F. Immunomodulation and anticancer activity of polysaccharide-protein complex. Curr Med Chem. 2000;7:715–729. PubMed
Falch BH, Espevik T, Ryan L, Stokke BT. The cytokine stimulating activity of (1→3)-beta-D-glucans is dependent on the triple helix conformation. Carbohydr Res. 2000;329:587–596. PubMed
Barsanti L, Passarelli V, Evangelista V, Frassanito AM, Gualtieri P. Chemistry, physico-chemistry and applications linked to biological activities of β-glucans. Nat Prod Rep. 2011;28:457–466. PubMed
Yap AT, Ng ML. An improved method for the isolation of lentina from the edible and medicinal shiitake mushroom, Lentinus edodes(Berk.) Sing. (Agaricomycetideae) Int J Med Mushr. 2001;3:6–19.
Riggi SJ, Di Luzio NR. Identification of a reticuloendothelial stimulating agent in zymosan. Am J Physiol. 1961;200:297–300. PubMed
Wasser SP. Current findings, future trends and unsolved problems in studies of medicinal mushrooms. Appl Microbiol Biotechnol. 2011;89:1323–1332. PubMed
Chang ST, Wasser S. The role of culinary-medicinal mushrooms on human welfare with a pyramid model for human health. Int J Med Mushr. 2012;14:95–134. PubMed
Pillemer L, Ecker EE. Anticomplementry factor in fresh yeast. J Biol Chem. 1941;137:139–142.
Pillemer L, Blum L, Pensky J, Lepow IH. The requirement for magnesium ions in the inactivation of the third component of human complement (C'3) by insoluble residues of yeast cells (zymosan) J Immunol. 1953;71:331–338. PubMed
Ohano N, Miura NN, Nakajima M, Yadomae T. Antitumor 1,3-beta-glucan from cultured fruit body of Sparassis crispa. Biol Pharm Bull. 2000;7:866–872. PubMed
Novak M, Vetvicka V. Glucans as biological response modifiers. Endocr Metab Immune Disord Drug Targets. 2009;9:67–75. PubMed
Hong F, Hansen RD, Yan J, Allendorf DJ, Baran JT, Ostroff CR, Ross GD. Beta-glucans functions as an adjuvant for monoclonal antibody immunotherapy by recruiting tumoricidal granulocytes as killer cells. Cancer Res. 2003;63:9023–9031. PubMed
Kamiryo Y, Yajima T, Saito K, Nishimura H, Fushimi T, Ohshima Y, Tsukamoto Y, Naito S, Yoshikai Y. Soluble branched (1,4)- β-D-glucans from Acetobacter species enhance antitumor activitiese against MHC class I-negative and postitive malignant melanoma through augmented NK activity and cytotoxic T-cell response. Int J Cancer. 2005;115:769–776. PubMed
Ryoyama K, Kidachi Y, Yamaguchi H, Kajiura H, Takata H. Antitumor activity of an enzymatically synthesized α-1,6 branched α-1,4-glucan, glycogen. Biosci Biotechnol Biochem. 2004;68:2332–2340. PubMed
Chan GC, Chan WK, Sze DM. The effects of beta-glucan on human immune and cancer cells. J Hematol Oncol. 2009;2:25. PubMed PMC
Aleem E. β-glucans and their applications in cancer therapy: focus on human studies. Anticancer Agents Med Chem. Nov 5, 2012. (Epub ahead of print) PubMed
Usui S, Tomono Y, Sakai M, Kiho T, Ukai S. Preparation and antitumor activities of beta-(1→6) branched (1→3)-beta-D-glucan derivatives. Biol Pharm Bull. 1995;18:1630–1636. PubMed
Synytsya A, Novák M. Structural diversity of fungal glucans. Carbohydr Polym. 2013;92:792–809. PubMed
Sawai M, Adachi Y, Kanai M, Matsui S, Yadomae T. Extraction of conformationally stable (1–6)–branched (1–3)-β-D-glucans from premixed edible mushroom powders by cold alkaline solution. Int J Med Mushr. 2002;4:197–205.
Kitamura S, Hori T, Kurita K, Takeo K, Hara C, Itoh W, Tabata K, Elgsaeter A, Stokke BT. An antitumor, branched (1→3)-beta-D-glucan from a water extract of fruiting bodies of Cryptoporus volvatus. Carbohydr Res. 1994;263:111–121. PubMed
Ohno N, Kurachi K, Yadomae T. Antitumor activity of a highly branched (1–3)-beta-D-glucan, SSG, obtained from Sclerotinia sclerotiorum IFO 9395. J Pharmacobiodyn. 1987;10:478–486. PubMed
Fujimoto S, Furue H, Kimura T, Kondo T, Orita K, Taguchi T, Yoshida K, Ogawa N. Clinical outcome of postoperative adjuvant immunochemotherapy with sizofiran for patients with resectable gastric cancer: a randomised controlled study. Eur J Cancer. 1991;27:1114–1118. PubMed
Ishibashi K, Miura NN, Adachi Y, Ohno N, Yadomae T. Relationship between solubility of grifolan, a fungal 1,3-beta-D-glucan and production of tumor necrosis factor by macrophages in vitro. Biosci Biotechnol Biochem. 2001;65:1993–2000. PubMed
Blecher P, Mackin W. Betafectin PGG-glucan: a novel carbohydrate immunodulator with anti-infective properties. J Biotechnol Healthcare. 1995;2:207–222.
Chihara G, Maeda Y, Hamuro J, Sasaki T, Fukuoka F. Inhibition of mouse sarcoma 180 by polysaccharides from Lentinus edodes. Nature. 1969;222:687–696. PubMed
Ohno N, Uchiyama M, Tsuzuki A, Tokunaka K, Miura NN, Adachi Y, Aizawa MW, Tamura H, Tanaka S, Yadomae T. Solubilization of yeast cell-wall β-(1–3)-D-glucans by sodium hypochlorite oxidation and dimethyl sulfoxide extraction. Carbohydr Res. 1999;316:161–172. PubMed
Majtan J. Pleuran (β-Glucan from Pleurotus ostreatus): an effective nutritional supplement against upper respiratory tract infections? Med Sport Sci. 2013;59:57–61. PubMed
Volman JJ, Helsper JP, Wei S, Baars JJ, van Griensven LJ, Sonnenberg AS, Plat J. Effects of mushroom-derived beta-glucan-rich polysaccharide extracts on nitric oxide production by bone marrow-derived macrophages and nuclear factor-kappaB transactivation in Caco-2 reporter cells: can effects be explained by structure? Mol Nutr Food Res. 2010;54:268–276. PubMed
Zhang P, Zhang L, Cheng S. Chemical structure and molecular weights of α-(1,3)-D-glucan from Lentinus edodes. Biosci Biotechnol Biochem. 1999;63:1197–1202. PubMed
Brown GD, Gordon S. Fungal β-glucans and mammalian immunity. Immunity. 2003;19:311–315. PubMed
Sasaki T, Takasuka N. Further study of the structure of lentinan, an antitumor polysaccharide from Lentinus edodes. Carbohydr Res. 1976;47:99–104. PubMed
Zhang M, Cui SW, Cheung PCK, Wang Q. Antitumor polysaccharides from mushrooms: a review on their isolation process, structural characteristics and antitumor activity. Trends Food Sci Technol. 2007;18:4–19.
Zimmerman JW, Lindermuth J, Fish PA, Palace GP, Stevenson TT, DeMong DE. A novel carbohydrate-glycosphingolipid interaction between a beta-(1–3)-glucan immunomodulator, PGG-glucan and lactosylceramide of human leukocytes. J Biol Chem. 1998;273:22014–22020. PubMed
Zimmermann G, Krueger K. Ultracentrifuge studies on properdin sera of zymosan-vaccinated cattle, rabbits, guinea pigs, rats and mice and on bovine properdin serum fractions. Acta Biol Med Ger. 1963;11:902–917. (In German). PubMed
Cassone A, Bistoni F, Cenci E, Pesce CD, Tissi L, Marconi P. Immunopotentiation of anticancer chemotherapy by Candida albicans, other yeasts and insoluble glucan in an experimental lymphoma model. Sabouraudia. 1982;20:115–125. PubMed
Haggård L, Andersson M, Punga AR. β-glucans reduce LDL cholesterol in patients with myasthenia gravis. Eur J Clin Nutr. 2013;67:226–227. PubMed
Zhang Y, Xia L, Pang W, Wang T, Chen P, Zhu B, Zhang J. A novel soluble β-1,3-d-glucan Salecan reduces adiposity and improves glucose tolerance in high-fat diet-fed mice. Br J Nutr. 2012;13:1–9. PubMed
Di Luzio NR. Update on the immunomodulating activities of glucans. Springer Semin Immunopathol. 1985;8:387–400. PubMed
Di Luzio NR. Immunopharmacology of glucan: a broadspectrum enhancer of host defence mechanisms. Trends Pharmacol Sci. 1983;4:344–347.
Kaneko Y, Chihara G. Potentiation of host resistance against microbal infections by lentinan and its related polysaccharides. In: Friedman H, Klein TW, Yamaguchi H, editors. Microbal Infections: Role of Biological Response Modifers. Plenum Press; New York, NY: 1992. pp. 201–215. PubMed
Williams DL, Browder IW, Di Luzio NR. Immunotherapeutic modification of Escherichia coli-induced experimental peritonitis and bacteremia by glucan. Surgery. 1983;93:448–454. PubMed
Ling J, Melican D, Cafro L, Palace G, Fisette L, Armstrong R, Patchen ML. Enhanced clearance of a multiple antibiotic resistance Staphilococcus aureus in rats treated with PGG-glucans is associated with increased leukocyte counts and increased neutrophil oxidative burst activity. Int J Immunopharmacol. 1998;20:595–614. PubMed
Wakshull E, Brunke-Reese D, Lindermuth J, Fisette L, Nathans RS, Crowley JJ, Tufts JC, Zimmerman J, Mackin W, Adams DS. PGG-glucan, a soluble beta-(1,3)-glucan, enhances the oxidative burst response, microbicidal activity and activates an NF-kappa B-like factor in human PMN: evidence for a glycosphingolipid beta-(1,3)-glucan receptor. Immunopharmacology. 1999;41:89–107. PubMed
Burgaletta C, Territo MC, Quan SG, Golde DW. Glucan activated macrophages: functional characteristics and surface morphology. J Reticuloendothel Soc. 1978;23:195–104. PubMed
Chanput W, Reitsma M, Kleinjans L, Mes JJ, Savelkoul HF, Wichers HJ. β-glucans are involved in immune-modulation of THP-1 macrophages. Mol Nutr Food Res. 2012;56:822–833. PubMed
Adachi Y, Ohno N, Ohsawa S, Yadomae T. Change biological activities of (1–3)-beta-D-glucan from Grifola frondosa upon molecular weight reduction by heat treatment. Chem Pharm Bull (Tokyo) 1990;38:477–481. PubMed
Selijelid R, Bogwald J, Rasmussen LT, Larm O, Hoffman J, Berge A, Ugelstad J. In vivo activation of mouse macrophages with beta-1,3-D-glucan-derivatized plastic beads. Scand J Immunol. 1985;6:601–605. PubMed
Patchen ML, Lotzova E. Modulation of murine hemopoiesis by glucans. Exp Hematol. 1980;8:409–422. PubMed
Hofer M, Pospíšil M. Modulation of animal and human hematopoiesis by β-glucans: a review. Molecules. 2011;16:7969–7979. PubMed PMC
Tsuzuki A, Tateishi T, Ohno N, Adachi Y, Yadomae T. Increase of hematopoietic responses by triple or single helical conformer of an antitumor (1→3)-beta-D-glucan preparation, Sonifilan, in cyclophosphamide-induced leukopenic mice. Biosci Biotechnol Biochem. 1999;63:104–110. PubMed
Browder W, Williams D, Preutes H, Olivero G, Enrichens F, Mao P, Franchello A. Beneficial effect of enhanced macrophage function in the trauma patient. Ann Surg. 1990;211:605–613. PubMed PMC
Czop JK, Austen KF. Generation of leukotrienes by human monocytes upon stimulation of their beta-glucan receptor during phagocytosis. Proc Natl Acad Sci USA. 1985;82:2751–2755. PubMed PMC
Goodridge HS, Wolf AJ, Underhill DM. Beta-glucan recognition by the innate immune system. Immunol Rev. 2009;230:38–50. PubMed PMC
Czop JK, Austen KF. Properties of glycans that activate the human alternative complement pathway and interact with human monocyte beta-glucan receptor. J Immunol. 1985;135:3388–3393. PubMed
Doita M, Rasmussen LT, Seljelid R, Lipsky PE. Effect of soluble aminated beta-1,3-D-polyglucose on human monocytes: stimulation of cytokine and prostaglandin E2 production but not antigen-presenting function. J Leukoc Biol. 1991;49:342–351. PubMed
Konopski Z, Seljelid R, Eskeland T. Cytokines and PGE2 modulate the phagocytic function of beta-glucan receptor in macrophages. Scand J Immunol. 1993;37:587–592. PubMed
Volman JJ, Ramakers JD, Plat J. Dietary modulation of immune function by beta-glucans. Physiol Behav. 2008;94:276–284. PubMed
Senoglu N, Yuzbasioglu MF, Aral M, Ezberci M, Kurutas EB, Bulbuloglu E, Ezberci F, Oksuz H, Ciragil P. Protective effects of N-acetylcysteine and beta-glucan pretreatment on oxidative stress in cecal ligation and puncture model of sepsis. J Invest Surg. 2008;21:237–243. PubMed
Bedirli A, Kerem M, Pasaoglu H, Akyurek N, Tezcaner T, Elbeg S, Memis L, Sakrak O. Beta-glucan attenuates inflammatory cytokine release and prevents acute lung injury in an experimental model of sepsis. Shock. 2007;27:397–401. PubMed
Sener G, Toklu H, Ercan F, Erkanli G. Protective effect of beta-glucan against oxidative organ injury in a rat model of sepsis. Int Immunopharmacol. 2005;5:1387–1396. PubMed
Williams DL, Sherwood ER, Browder IW, McNamee RB, Jones EL, Rakinic J, DiLuzio NR. Effect of glucan on neutrophil dynamics and immune function in Escherichia coli peritonitis. J Surg Res. 1988;44:54–61. PubMed
Onderdonk AB, Cisneros RL, Hinkson PL, Ostroff GR. Anti-infective effect of poly β1-6 glucotriosyle-β1-3glucopyranose glucan in vivo. Infect Immun. 1992;60:1642–1647. PubMed PMC
Stashenko P, Wang CY, Riley E, Wu Y, Ostroff G, Niederman R. Reduction of infection-stimulated periapical bone resorption by the biological response modifier PGG-glucan. J Dent Res. 1995;74:323–330. PubMed
Berovic M, Habijanic J, Zore I, Wraber B, Hodzar D, Boh B, Pohleven F. Submerged cultivation of Ganoderm lucidum biomass and immunostimulatory effects of fungal polysaccharides. J Biotecnol. 2003;103:77–86. PubMed
Dellinger EP, Babineau TJ, Bleicher P, Kaiser AB, Seibert GB, Postier RG, Vogel SB, Norman J, Kaufman D, Galandiuk S, Condon RE. Effect of PGG-glucan on the rate of serious postoperative infection or death observed after high-risk gastrointestinal operations. Betafectin Gastrointestinal Study Group Arch Surg. 1999;134:977–983. PubMed
Mueller A, Raptis J, Rice PJ, Kalbffleisch JH, Stout RD, Ensley HE, Browder W, Williams DL. The influence of glucan polymer structure and solution conformation on binding to (1–3)-β-D-glucans receptors in human monocyte-like cell line. Glycobiology. 2000;10:339–346. PubMed
Williams DL, Mueller A, Browder W. Glucan-based macrophages stimulators: a review of their anti-infective potential. Clin Immunother. 1996;5:392–399.
Hardison SE, Brown GD. C-type lectin receptors orchestrate antifungal immunity. Nat Immunol. 2012;13:817–822. PubMed PMC
Saijo S, Iwakura Y. Dectin-1 and Dectin-2 in innate immunity against fungi. Int Immunol. 2011;23:467–472. PubMed
Kapetanovic R, Cavaillon JM. Early events in innate immunity in the recognition of microbial pathogens. Expert Opin Biol Ther. 2007;7:907–918. PubMed
Tsoni SV, Brown GD. beta-glucans and dectin-1. Ann NY Acad Sci. 2008;1143:45–60. PubMed
Murphy EA, Davis JM, Carmichael MD. Immune modulating effects of β-glucan. Curr Opin Clin Nutr Metab Care. 2010;13:656–661. PubMed
Albeituni SH, Yan J. The effects of β-glucans on dendritic cells and implications for cancer therapy. Anticancer Agents Med Chem. Oct 18, 2012. (Epub ahead of print) PubMed
Józefowski S, Yang Z, Marcinkiewicz J, Kobzik L. Scavenger receptors and β-glucan receptors participate in the recognition of yeasts by murine macrophages. Inflamm Res. 2012;61:113–126. PubMed PMC
Chen JT, Hasumi K. Activation of peritoneal macrophages in patients with gynecological malignancies by sizofiran and recombinant interferon-gamma. Biotherapy. 1993;6:189–194. PubMed
Kelly EK, Wang L, Ivashkiv LB. Calcium-activated pathways and oxidative burst mediate zymosan-induced signaling and IL-10 production in human macrophages. J Immunol. 2010;184:5545–5552. PubMed PMC
Kougias P, Wei D, Rice PJ, Ensley HE, Kalbfleisch J, Williams DL, Browder IW. Normal human fibroblasts express pattern recognition receptors for fungal (1→3)-beta-D-glucans. Infect Immun. 2001;69:3933–3938. PubMed PMC
Vetvicka V, Thornton BP, Ross GD. Soluble β-glucan polysaccharide binding to the lectin site of neutrophil or natural killer cell complemet receptor type 3 (CD11b/CD18) generates a primed state of the receptor capable of mediating cytotoxicity of iC3b-opsonized target cells. J Clin Invest. 1998;98:50–61. PubMed PMC
Ross GD, Vetvicka V, Yan J, Xia Y, Vetvickova J. Therapeutic intervention with complement and beta-glucan in cancer. Immunopharmacology. 1999;42:61–74. PubMed
Rice PJ, Kelley JL, Kogan G, Ensley HE, Kalbfleisch JH, Browder IW, Williams DL. Human monocyte scavenger receptors are pattern recognition receptors for (1→3)-beta-D-glucans. J Leukoc Biol. 2002;72:140–146. PubMed
Brown GD, Taylor PR, Reid DM, Willment JA, Williams DL, Martinez-Pomares L, Wong SY, Gordon S. Dectin-1 is a major beta-glucan receptor on macrophages. J Exp Med. 2002;196:407–412. PubMed PMC
Ariizumi K, Shen GL, Shikano S, Xu S, Ritter R, III, Kumamoto T, Edelbaum D, Morita A, Bergstresser PR, Takashima A. Identification of a novel, dendritic cell-associated molecule, dectin-1, by subtractive cDNA cloning. J Biol Chem. 2000;275:20157–20167. PubMed
Willment JA, Gordon S, Brown GD. Characterization of the human beta-glucan receptor and its alternatively spliced isoforms. J Biol Chem. 2001;276:43818–43823. PubMed
Brown GD, Gordon S. Immune recognition: a new receptor for beta-glucans. Nature. 2001;413:36–37. PubMed
Taylor PR, Brown GD, Reid DM, Willment JA, Martinez-Pomares L, Gordon S, Wong SY. The beta-glucan receptor, dectin-1, is predominantly expressed on the surface of cells of the monocyte/macrophage and neutrophil lineages. J Immunol. 2002;169:3876–3882. PubMed
Agrawal S, Gupta S, Agrawal A. Human dendritic cells activated via dectin-1 are efficient at priming Th17, cytotoxic CD8 T and B cell responses. PLoS One. 2010;5:e13418. PubMed PMC
Ozment-Skelton TR, Goldman MP, Gordon S, Brown GD, Williams DL. Prolonged reduction of leukocyte membrane-associated Dectin-1 levels following beta-glucan administration. J Pharmacol Exp Ther. 2006;318:540–546. PubMed
Brown GD, Herre J, Williams DL, Willment JA, Marshall AS, Gordon S. Dectin-1 mediates the biological effects of beta-glucans. J Exp Med. 2003;197:1119–1124. PubMed PMC
Taylor PR, Tsoni SV, Willment JA, Dennehy KM, Rosas M, Findon H, Haynes K, Steele C, Botto M, Gordon S, Brown GD. Dectin-1 is required for beta-glucan recognition and control of fungal infection. Nat Immunol. 2007;8:31–38. PubMed PMC
Ni L, Gayet I, Zurawski S, Duluc D, Flamar AL, Li XH, O'Bar A, Clayton S, Palucka AK, Zurawski G, Banchereau J, Oh S. Concomitant activation and antigen uptake via human dectin-1 results in potent antigen-specific CD8+ T cell responses. J Immunol. 2010;185:3504–3513. PubMed PMC
Ma J, Becker C, Lowell CA, Underhill DM. Dectin-1-triggered recruitment of light chain 3 protein to phagosomes facilitates major histocompatibility complex class II presentation of fungal-derived antigens. J Biol Chem. 2012;287:34149–34156. PubMed PMC
Dragicevic A, Dzopalic T, Vasilijic S, Vucevic D, Tomic S, Bozic B, Colic M. Signaling through Toll-like receptor 3 and Dectin-1 potentiates the capability of human monocyte-derived dendritic cells to promote T-helper 1 and T-helper 17 immune responses. Cytotherapy. 2012;14:598–607. PubMed
Bulmer GS, Beneke ES, Stevens JA. Studies on Calvatia gigantea. III. Antitumor substances produced by mycelium from germinated spores and parent basidiocarps. Mycologia. 1962;54:621–625.
Lukas EH, Ringler RL, Byerrum RU, Stevens JA, Clarke DA, Stock CC. Tumor inhibitors in Boletus edulis and other holobasidiomycetes. Antibiot Chemother. 1957;7:1–14. PubMed
Tukonaka K, Ohano N, Adachi Y, Tanaka S, Tamura H, Yadomae T. Immunopharmacological and immunotoxicological activities of a water-soluble (1–3)-β-glucan, CSBG from Candiada spp. Int J Immunopharmacol. 2000;5:383–394. PubMed
Suzuki I, Takeyama T, Ohano N, Oikawa S, Sato K, Suzuki Y, Yadomae T. Antitumor effect of polysaccharide griofolan NMF-5N on syngeneic tumor in mice. J Pharmacobiodyn. 1987;2:72–77. PubMed
Ren L, Perera C, Hemar Y. Antitumor activity of mushroom polysaccharides: a review. Food Funct. 2012;3:1118–1130. PubMed
Borchers AT, Keen CL, Gershwin ME. Mushrooms, tumors and immunity: an update. Exp Biol Med. 2004;229:393–406. PubMed
Itoh H, Ito H, Amano H, Noda H. Inhibitory action of a (1→6)-beta-D-glucan-protein complex (F III-2-b) isolated from Agaricus blazei Murill (‘himematsutake’) on Meth A fibrosarcoma-bearing mice and its antitumor mechanism. Jpn J Pharmacol. 1994;66:265–271. PubMed
Mizuno M, Morimoto M, Minato K, Tsuchida H. Polysaccharides from Agaricus blazei stimulate lymphocyte T-cell subsets in mice. Biosci Biotechnol Biochem. 1998;62:434–437. PubMed
Mizuno M, Minato K, Ito H, Kawade M, Terai H, Tsuchida H. Antitumor polysaccharide from the mycelium of liquid-cultured Agaricus blazei mill. Biochem Mol Biol Int. 1999;47:707–714. PubMed
Pinheiro F, Faria RR, de Camargo JLV, Spinardi-Barbisan ALT, da Eira AF, Barbisan LF. Chemoprevention of preneoplastic liver foci by dietary mushroom Agaricus blazei Murill in the rat. Food Chem Toxicol. 2003;41:1543–1550. PubMed
Alves de Lima PL, Delmanto RD, Sugui MM, da Eira AF, Salvadori DM, Speit G, Ribeiro LR. Letinula edodes(Berk.) Pegler (Shiitake) modulates genotoxic and mutagenic effects induced by alkylating agents in vivo. Mutat Res. 2001;496:23–32. PubMed
Sugui MM, Alves de Lima PL, Delmanto RD, da Eira AF, Salvadori DMF, Ribeiro LR. Antimutagenic effect of Lentinula edodes(BERK.) Pegler mushroom and possible variation among lineages. Food Chem Toxicol. 2003;41:555–560. PubMed
Zhang Y, Mills GL, Nair MG. Cyclooxygenase inhibitory and antioxidant compounds from the mycelia of the edible mushroom Grifola frondosa. J Agric Food Chem. 2002;50:7581–7585. PubMed
Prescott SM, Fitzpatrick FA. Cyclooxygenase-2 and carcinogenesis. Biochim Biophys Acta. 2000;1470:M69–M78. PubMed
Kodama N, Komuta K, Sakai N, Nanba H. Effects of D-fraction, a polysaccharide from Grifola frondosa on tumor growth involve activation of NK cells. Biol Pharm Bull. 2002;25:1647–1650. PubMed
Lin ZB, Zhang HN. Anti-tumor and immunoregulatory activities of Ganoderma lucidum and its possible mechanisms. Acta Pharmacol Sin. 2004;25:1387–1395. PubMed
Youn MJ, Kim JK, Park SY, Kim Y, Park C, Kim ES, Park KI, So HS, Park R. Potential anticancer properties of the water extract of Inonotus [corrected] obliquus by induction of apoptosis in melanoma B16-F10 cells. J Ethnopharmacol. 2009;121:221–228. PubMed
Lavi I, Levinson D, Peri I, Tekoah Y, Hadar Y, Schwartz B. Chemical characterization, antiproliferative and antiadhesive properties of polysaccharides extracted from Pleurotus pulmonarius mycelium and fruiting bodies. Appl Microbiol Biotechnol. 2010;85:1977–1990. PubMed
Di Luzio NR, Williams DL, McNamee RB, Edwads BF, Kitahama A. Comparative tumor inhibitory and anti-bacterial activity of soluble and particlate glucan. Int J Cancer. 1979;24:773–779. PubMed
Yoon TJ, Kim TJ, Lee H, Shin KS, Yun YP, Moon WK, Kim DW, Lee KH. Anti-tumor metastatic activity of beta-glucan purified from mutated Saccharomyces cerevisiae. Int Immunopharmacol. 2008;8:36–42. PubMed
Yamamoto K, Kimura T, Sugitachi A, Matsuura N. Anti-angiogenic and anti-metastatic effects of beta-1,3-D-glucan purified from Hanabiratake, Sparassis crispa. Biol Pharm Bull. 2009;32:259–263. PubMed
Ishihara Y, Fujii T, Iijima H, Saito K, Matsunaga K. The role of neutrophils as cytotoxic cells in lung metastasis: suppression of tumor cell metastasis by a biological response modifier (PSK) In Vivo. 1998;12:175–182. PubMed
Lee IS, Nishikawa A. Polyozellus multiplex, a Korean wild mushroom, as a potent chemopreventive agent against stomach cancer. Life Sci. 2003;73:3225–3234. PubMed
Fujimiya Y, Suzuki Y, Oshiman K, Kobori H, Moriguchi K, Nakashima H, Matumoto Y, Takahara S, Ebina T, Katakura R. Selective tumoricidal effect of soluble proteoglucan extracted from the basidiomycete, Agaricus blazei Murill, mediated via natural killer cell activation and apoptosis. Cancer Immunol Immunother. 1998;46:147–159. PubMed PMC
Chihara G, Hamuro J, Maeda Y, Arai Y, Fukuoka F. Antitumor polysaccharide derived chemically from natural glucan (pachyman) Nature. 1970;225:943–944. PubMed
Ohno N, Furukawa M, Miura NN, Adachi Y, Motoi M, Yadomae T. Antitumor betaglucan from the cultured fruit body of Agaricus blazei. Biol Pharm Bull. 2001;24:820–828. PubMed
Sasaki T, Abiko N, Sugino Y, Nitta K. Dependence on chain length of antitumor activity of (1→3)-β-D-glucan from Alcaligenes faecalis var. myxogenes, IFO 13140 and its acid-degraded products. Cancer Res. 1978;38:379–383. PubMed
Iino K, Ohno N, Suzuki I, Miyazaki T, Yadomae T. Structural characterization of a neutral antitumour beta-D-glucan extracted with hot sodium-hydroxide from cultured fruit bodies of Grifola Frondosa. Carbohyd Res. 1985;141:111–119.
Furusawa E, Chou SC, Furusawa S, Hirazum A, Dang Y. Antitumor activity of Gonoderma lucidum and edible mushroom, on interaperitoneally implanted Lewis lung carcinoma in synergeneic mice. Phytother Res. 1992;6:300–304.
Gelderman KA, Tomlinson S, Ross GD, Gorter A. Complement function in mAb-mediated cancer immunotherapy. Trends Immunol. 2004;25:158–164. PubMed
Akramiene D, Kondrotas A, Didziapetriene J, Kevelaitis EP. Effects of beta-glucans on the immune system. Medicina (Kaunas) 2007;43:597–606. PubMed
Cheung NV, Modal S. Oral (1–3),(1–4)-β-D-Glucan synergizes with antiganglioside GD2 monoclonal antibody 3F8 in the therapy of neuroblastoma. Clin Cancer Res. 2002;8:1217–1223. PubMed
Sier CFM, Gelderman KA, Prins FA, Gorter A. Beta-glucan enhanced killing of renal cell carcinoma micrometastases by monoclonal antibody G250 directed complement activation. Int J Cancer. 2001;109:900–908. PubMed
Modak S, Koehne G, Vickers A, O'Reilly RJ, Cheung NV. Rituximab therapy of lymphoma is enhanced by orally administered (1–3),(1–4)-D-β-glucan. Leuk Res. 2005;29:679–683. PubMed
Hong F, Yan J, Baran JT, Allendorf DJ, Hansen RD, Ostroff GR, Xing PX, Cheung NK, Ross GD. Mechanism by which orally administered beta-1,3-glucans enhance the tumoricidal activity of antitumor monoclonal antibodies in murine tumor models. J Immunol. 2004;173:797–806. PubMed
Liu J, Gunn L, Hansen R, Yan J. Combined yeast-derived beta-glucan with anti-tumor monoclonal antibody for cancer immunotherapy. Exp Mol Pathol. 2009;86:208–214. PubMed PMC
Huang H, Ostroff GR, Lee CK, Agarwal S, Ram S, Rice PA, Specht CA, Levitz SM. Relative contributions of dectin-1 and complement to immune responses to particulate β-glucans. J Immunol. 2012;189:312–317. PubMed PMC
Xiang D, Sharma VR, Freter CE, Yan J. Anti-tumor monoclonal antibodies in conjunction with β-glucans: a novel anti-cancer immunotherapy. Curr Med Chem. 2012;19:4298–4305. PubMed
Ina K, Ando T. The use of Lentinan for treating gastric cancer. Anticancer Agents Med Chem. 2012 Oct 18; (Epub ahead of print) PubMed PMC
Kataoka H, Shimura T, Mizoshita T, Kubota E, Mori Y, Mizushima T, Wada T, Ogasawara N, Tanida S, Sasaki M, Togawa S, Sano H, Hirata Y, Ikai M, Mochizuki H, Seno K, Itoh S, Kawai T, Joh T. Lentinan with S-1 and paclitaxel for gastric cancer chemotherapy improve patient quality of life. Hepatogastroenterology. 2009;56:547–550. PubMed
Chen J, Zhang XD, Jiang Z. The application of fungal beta-glucans for the treatment of colon cancer. Anticancer Agents Med Chem. 2012 Dec 24; (Epub ahead of print) PubMed
Hamuro J, Chihara G. Effect of antitumour polysaccharides on the higher structure of serum protein. Nature. 1973;245:40–41. PubMed
Soto ER, Caras AC, Kut LC, Castle MK, Ostroff GR. Glucan particles for macrophage targeted delivery of nanoparticles. J Drug Deliv. 2012;2012:143524. PubMed PMC
Huang H, Ostroff GR, Lee CK, Specht CA, Levitz SM. Robust stimulation of humoral and cellular immune responses following vaccination with antigen-loaded beta-glucan particles. MBio. 2010;1:e00164–10. PubMed PMC
Lehtovaara BC, Gu FX. Pharmacological, structural and drug delivery properties and applications of 1,3-β-glucans. J Agric Food Chem. 2011;59:6813–6828. PubMed
Browder W, Williams D, Lucore P, Pretus H, Jones E, Mcnamee R. Effect of enhanced macrophage function on early wound-healing. Surgery. 1988;104:224–230. PubMed
Portera CA, Love EJ, Memore L, Zhang L, Müller A, Browder W, Williams DL. Effect of macrophage stimulation on collagen biosynthesis in the healing wound. Am Surg. 1997;63:125–131. PubMed
β-glucans and cholesterol (Review)