Pichia kudriavzevii yeast cell wall as a novel source of β-glucan: Extraction, characterization, and prebiotic functionality
Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
05/2019-20
Gazi Üniversitesi
PubMed
41196550
DOI
10.1007/s12223-025-01376-z
PII: 10.1007/s12223-025-01376-z
Knihovny.cz E-zdroje
- Klíčová slova
- Pichia kudriavzevii, Beta-glucan, Functional food, Optimization, Prebiotic,
- Publikační typ
- časopisecké články MeSH
In this study, β-glucan extraction was optimized from the Pichia kudriavzevii M10 strain, which was randomly selected from five yeast candidates (M5, M10, M13, M16, and M57). The goal was not only to maximize extraction yield but also to thoroughly characterize the structural and functional properties of the obtained β-glucan. β-glucan yields from cell walls were evaluated under optimized extraction conditions (inoculation, autolysis, hot water, sonication, and protease). Among the five yeast strains initially screened, P. kudriavzevii M13 exhibited the highest β-glucan content (87.8%) and was therefore selected for the optimization process and further analysis of its prebiotic properties. Fermentability of β-gluM13 by Ligilactobacillus plantarum GD2, Bifidobacterium bifidum A12, and Saccharomyces cerevisiae BD1 was assessed. Viability of these strains increased in media with β-gluM13 as the sole carbon source compared to controls. Lactobacillus Growth-Promoting (LGP), Bifido Growth-Promoting (BGP), and Yeast Growth-Promoting (MGP) activities of β-gluM13 at 0.5-10 mg/mL were compared with inulin. The highest LGP, BGP, and MGP activity were designated in the media containing 10 mg/mL (9.4 ± 0.1 log CFU/mL), 5 mg/mL (9.4 ± 0.1 log CFU/mL), and 10 mg/mL (9.4 ± 0.3 log CFU/mL) β- gluM13, respectively. Antioxidant activity of β-gluM13 (0.2-50 mg/mL) was measured via DPPH (2,2-diphenyl-1-picrylhydrazil) assay, showing lower activity than ascorbic acid. Gastrointestinal stability was tested in simulated gastric and bile fluids; β-gluM13 exhibited minimal hydrolysis (1.14% at 5 mg/mL, pH 2, 180 min; 1.16% at 10 mg/mL, 0.5% bile). β-gluM13's notable LGP, BGP, and MGP activities, moderate antioxidant properties, and gastrointestinal stability suggest its potential for gut health and functional food applications.
Faculty of Science Department of Biology Gazi University Ankara Türkiye
Graduate School of Natural and Applied Science Gazi University Ankara Türkiye
Vocational School of Health Services Gazi University Ankara Türkiye
Zobrazit více v PubMed
Aakef JNA (2018) Investigation of some probiotic properties of yeasts isolated from dates (Master’s Thesis). Gazi University Institute of Science and Technology, Ankara
Al-Sheraji SH, Ismail A, Manap MY, Mustafa S, Yusof RM, Hassan FA (2012) Hypocholesterolaemic effect of yoghurt containing Bifidobacterium pseudocatenulatum G4 or Bifidobacterium longum BB536. Food Chem 135(2):356–361. https://doi.org/10.1016/j.foodchem.2012.04.120 PubMed DOI
Alzorqi I, Sudheer S, Lu TJ, Manickam S (2017) Ultrasonically extracted β-d-glucan from artificially cultivated mushroom, characteristic properties and antioxidant activity. Ultrason Sonochem 35:531–540. https://doi.org/10.1016/j.ultsonch.2016.04.017 PubMed DOI
Ao J, Liu Y, Wei Y, Wang D, Wang C, Wei L, Wei G (2025) Antibacterial and antioxidant activities of β-glucans derived from Aureobasidium pullulans. Food Biosci 70:107074. https://doi.org/10.1016/j.fbio.2025.107074 DOI
Baek KR, Ramakrishnan SR, Kim SJ, Seo SO (2024) Yeast cell wall mannan structural features, biological activities, and production strategies. Heliyon. https://doi.org/10.1016/j.heliyon.2024.e27896 PubMed DOI PMC
Bamigbade GB, Subhash AJ, Kamal-Eldin A, Nyström L, Ayyash M (2022) An updated review on prebiotics: ınsights on potentials of food seeds waste as source of potential prebiotics. Molecules 27(18):5947. https://doi.org/10.3390/molecules27185947 PubMed DOI PMC
Bikric S, Aslim B, Dincer İ, Yuksekdag Z, Ulusoy S, Yavuz S (2022) Characterization of exopolysaccharides (EPSs) obtained from Ligilactobacillus salivarius strains and investigation of the prebiotic potential as an alternative to plant prebiotics at poultry. Probiotics Antimicrob Proteins 14(1):49–49. https://doi.org/10.1007/s12602-021-09790-8 PubMed DOI
Borman AM, Johnson EM (2021) New names for fungi of medical importance: can we have our cake & eat it too? J Clin Microbiol 59(3). https://doi.org/10.1128/JCM.02896-20
Burkhardt L (2022) Eine enzyklopädie Zu eponymischen Pflanzennamen [Encyclopedia of eponymic plant names] (in German). Botanic Garden & Botanical Museum, Freie Universität Berlin, Berlin. https://doi.org/10.3372/epolist2022 DOI
Bzducha-Wróbel A, Błażejak S, Kawarska A, Stasiak-Różańska L, Gientka I, Majewska E (2014) Evaluation of the efficiency of different disruption methods on yeast cell wall preparation for β-glucan isolation. Molecules 19(12):20941–20961. https://doi.org/10.3390/molecules191220941 PubMed DOI PMC
Celik K, Yuksekdag Z, Acar BÇ, Kara F (2024) Determination of antioxidant and antimicrobial activities of cell-free supernatant (CFS DOI
Chu Y, Li M, Jin J, Dong X, Xu K, Jin L, Qiao Y, Ji H (2023) Advances in the application of the non-conventional yeast Pichia kudriavzevii in food and biotechnology industries. J Fungi 9(2):170. https://doi.org/10.3390/jof9020170 DOI
Das D, Baruah R, Goyal A (2014) A food additive with prebiotic properties of an α-d-glucan from Lactobacillus plantarum DM5. Int J Biol Macromol 69:20–26. https://doi.org/10.1016/j.ijbiomac.2014.05.029 PubMed DOI
Deng C, Hu Z, Fu H, Hu M, Xu X, Chen J (2012) Chemical analysis and antioxidant activity in vitro of a β-D-glucan isolated from Dictyophora indusiata. Int J Biol Macromol 51(1–2):70–75. https://doi.org/10.1016/j.ijbiomac.2012.05.001 PubMed DOI
Ding J, Hou X, Li J, Zhao X, Hu S (2025) The effects of pasteurization and beer type on the functional compounds and flavor substances in beer. Beverages 11(3):63. https://doi.org/10.3390/beverages11030063 DOI
Dong W, Li Y, Xue S, Wen F, Meng D, Zhang Y, Yang R (2024) Yeast polysaccharides: the environmentally friendly polysaccharides with broad application potentials. Compr Rev Food Sci Food Saf 23(5):e70003. https://doi.org/10.1111/1541-4337.70003 PubMed DOI
Douglass AP, Offei B, Galleani SB, Coughlan AY, Martos AAR, Ortiz-Merino RA, Byrne KP, Wolfe KH (2018) Population genomics shows no distinction between pathogenic Candida Krusei & environmental Pichia kudriavzevii: one species, four names. PLoS Pathog 14(7):e1007138. https://doi.org/10.1371/journal.ppat.1007138 PubMed DOI PMC
Dubois M, Gilles KA, Hamilton JK, Rebers PT, Smith F (1956) Colorimetric method for determination of sugars and related substances. Analytic Chem 28:350–356. https://doi.org/10.1021/ac60111a017 DOI
Edo GI, Mafe AN, Ali AB, Akpoghelie PO, Yousif E, Isoje EF, Igbuku UA, Zainulabdeen K, Owheruo JO, Essaghah AEA, Umar H, Ahmed DS, Alamiery AA (2025) Mechanistic insights into β-glucans and gut microbiota interactions for enhancing human health. Discover Food 5(1):282. https://doi.org/10.1007/s44187-025-00503-6 DOI
Freimund S, Sauter M, Käppeli O, Dutler H (2003) A new non-degrading isolation process for 1,3-β-d-glucan of high purity from baker’s yeast Saccharomyces cerevisiae. Carbohydr Polym 54(2):159–171. https://doi.org/10.1016/S0144-8617(03)00162-0 DOI
Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, Scott K, Stanton C, Swanson KS, Cani PD, Verbeke K, Reid G (2017) Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 14(8):491–502. https://doi.org/10.1038/nrgastro.2017.75 PubMed DOI
Gulcin İ, Alwasel SH (2023) DPPH radical scavenging assay. Processes 11(8):2248. https://doi.org/10.3390/pr11082248 DOI
Günal-Köroğlu D, Karabulut G, Mohammadian F, Can Karaca A, Capanoglu E, Esatbeyoglu T (2025) Production of yeast cell wall polysaccharides‐β‐glucan and chitin by using food waste substrates: biosynthesis, production, extraction, and purification methods. Compr Rev Food Sci Food Saf 24(3):e70161. https://doi.org/10.1111/1541-4337.70161 PubMed DOI PMC
Hongpattarakere T, Cherntong N, Wichienchot S, Kolida S, Rastall RA (2012) In vitro prebiotic evaluation of exopolysaccharides produced by marine isolated lactic acid bacteria. Carbohydr Polym 87(1):846–852. https://doi.org/10.1016/j.carbpol.2011.08.085 PubMed DOI
Hunter KW Jr, Gault R, Berner MD (2002) Preparation of microparticulate β-glucan from Saccharomyces cerevisiae for use in immune potentiation. Lett Appl Microbiol 35(4):267–271. https://doi.org/10.1046/j.1472-765x.2002.01201.x PubMed DOI
Ishimoto Y, Ishibashi KI, Yamanaka D, Adachi Y, Kanzaki K, Okita K, Iwakura Y, Ohno N (2017) Modulation of an innate immune response by soluble yeast β-glucan prepared by a heat degradation method. Int J Biol Macromol 104:367–376. https://doi.org/10.1016/j.ijbiomac.2017.06.036 PubMed DOI
Ishimoto Y, Ishibashi KI, Yamanaka D, Adachi Y, Kanzaki K, Iwakura Y, Ohno N (2018) Production of low-molecular weight soluble yeast β-glucan by an acid degradation method. Int J Biol Macromol 107:2269–2278. https://doi.org/10.1016/j.ijbiomac.2017.10.094 PubMed DOI
Jaehrig SC, Rohn S, Kroh LW, Wildenauer FX, Lisdat F, Fleischer LG, Kurz T (2008) Antioxidative activity of (1→ 3), (1→ 6)-β-D-glucan from Saccharomyces cerevisiae grown on different media. LWT-Food Sci Technol 41(5):868–877. https://doi.org/10.1016/j.lwt.2007.06.004 DOI
Jatoi AS, Nguyen HM, Ahmed J (2025) Enhanced acido-thermophilic invertase production via a derepressed mutant of Pichia kudriavzevii in batch cultures. Biomass Convers Biorefin 15(1):713–727. https://doi.org/10.1007/s13399-024-05450-3 DOI
Jayachandran M, Chen J, Chung SSM, Xu B (2018) A critical review on the impacts of β-glucans on gut microbiota and human health. J Nutr Biochem 61:101–110. https://doi.org/10.1016/j.jnutbio.2018.06.010 PubMed DOI
Kaur R, Sharma M, Ji D, Xu M, Agyei D (2020) Structural features, modification, and functionalities of beta-glucan. Fibers 8(1). https://doi.org/10.3390/fib8010001
Korolenko TA, Bgatova NP, Vetvicka V (2019) Glucan and mannan two peas in a pod. Int J Mol Sci 20(13):3189. https://doi.org/10.3390/ijms20133189 PubMed DOI PMC
Kremmyda A, MacNaughtan W, Arapoglou D, Eliopoulos C, Metafa M, Harding SE, Israilides C (2021) The detection, purity and structural properties of partially soluble mushroom and cereal β-D-glucans: a solid-state NMR study. Carbohydr Polym 266:118103. https://doi.org/10.1016/j.carbpol.2021.118103 PubMed DOI
Laroche C, Michaud P (2007) New developments and prospective applications for β (1, 3) glucans. Recent Pat Biotechnol 1(1):59–73. https://doi.org/10.2174/187220807779813938 PubMed DOI
Lee WM, Song YB, Han KS, Sim WS, Lee BH (2023) Hydrolysis of oligosaccharides in the gastrointestinal tract alters their prebiotic effects on probiotic strains. Food Sci Biotechnol. 20, 33(9), 2255–2260. https://doi.org/10.1007/s10068-023-01474-z DOI
Li W, Ji J, Chen X, Jiang M, Rui X, Dong M (2014) Structural elucidation and antioxidant activities of exopolysaccharides from Lactobacillus helveticus MB2-1. Carbohydr Polym 102:351–359. https://doi.org/10.1016/j.carbpol.2013.11.053 PubMed DOI
Li X, Liu Y, Wei L, Rao L, Mao J, Li X (2025) From model organism to pharmaceutical powerhouse: innovative applications of yeast in modern drug research. Biocell 49(5):813–832. https://doi.org/10.32604/biocell.2025.062124 DOI
Liu XY, Wang Q, Cui SW, Liu HZ (2008) A new isolation method of β-D-glucans from spent yeast Saccharomyces cerevisiae. Food Hydrocoll 22(2):239–247. https://doi.org/10.1016/j.foodhyd.2006.11.008 DOI
Liu Y, Wu Q, Wu X, Algharib SA, Gong F, Hu J, Luo W, Zhou M, Pan Y, Yan, Wang Y (2021) Structure, preparation, modification, and bioactivities of β-glucan and Mannan from yeast cell wall: A review. Int J Biol Macromol 173:445–456. https://doi.org/10.1016/j.ijbiomac.2021.01.125 PubMed DOI
Magnani M, Calliari CM, de Macedo FC Jr, Mori MP, de Syllos Cólus IM, Castro-Gomez RJ (2009) Optimized methodology for extraction of (1→ 3) (1→ 6)-β-D-glucan from Saccharomyces cerevisiae and in vitro evaluation of the cytotoxicity and genotoxicity of the corresponding carboxymethyl derivative. Carbohydr Polym 78(4):658–665. https://doi.org/10.1016/j.carbpol.2009.05.023 DOI
Mäkelä N, Brinck O, Sontag-Strohm T (2020) Viscosity of β-glucan from oat products at the intestinal phase of the gastrointestinal model. Food Hydrocoll 100:105422. https://doi.org/10.1016/j.foodhyd.2019.105422 DOI
Muccilli S, Restuccia C (2015) Bioprotective role of yeasts. Microorganisms 3:588–611. https://doi.org/10.3390/microorganisms3040588 PubMed DOI PMC
Mueller A, Mayberry W, Acuff R, Thedford S, Browder W, Williams D (1994) Lipid content of microparticulate (1–> 3)-beta-D-glucan isolated from Saccharomyces cerevisiae. Microbios 79(321):253–261
Murphy EJ, Rezoagli E, Major I, Rowan NJ, Laffey JG (2020) β-glucan metabolic and immunomodulatory properties and potential for clinical application. J Fungi 6(4):356 DOI
Oberoi HS, Babbar N, Sandhu SK, Dhaliwal SS, Kaur U, Chadha BS, Bhargav VK (2012) Ethanol production from alkali-treated rice straw via simultaneous saccharification & fermentation using newly isolated thermotolerant Pichia kudriavzevii HOP-1. J Ind Microbiol Biotechnol 39(4):547–556. https://doi.org/10.1007/s10295-011-1060-2 DOI
Pham-Huy LA, He H, Pham-Huy C (2008) Free radicals, antioxidants in disease and health. Int J Biomed Sci IJBS 4(2):89–96 PubMed DOI
Prins A, Shewry P, Lovegrove A (2023) Analysis of mixed linkage β-glucan content and structure in different wheat flour milling fractions. J Cereal Sci 113:103753 DOI
Roohvand F, Shokri M, Abdollahpour-Alitappeh M, Parastoo Ehsani P (2017) Biomedical applications of yeast- a patent view, part one: yeasts as workhorses for the production of therapeutics and vaccines. Expert Opin Ther Pat 27(8):929–951. https://doi.org/10.1080/13543776.2017.1339789 PubMed DOI
Sarikaya H, Aslim B, Yuksekdag Z (2017) Assessment of anti-biofilm activity and bifidogenic growth stimulator (BGS) effect of lyophilized exopolysaccharides (l-EPSs) from Lactobacilli strains. Int J Food Prop 20(2):362–371. https://doi.org/10.1080/10942912.2016.1160923 DOI
Sarkar N, Mahajan AA, Pathak S, Seth P, Chowdhury A, Ghose I, Das S, Chowdhury R, Bera A, Dey A, Dutta A, Majumder I, Ghosh S, Rajendran RL, Gangadaran P (2025) Beta-glucans in biotechnology: a holistic review with a special focus on yeast. Bioengineering 12(4):365. https://doi.org/10.3390/bioengineering12040365 PubMed DOI PMC
Scheithauer TP, Fernandes de Oliveira IM, Ossendrijver M, Dehay E, Van Der Wurff M, Rahaoui H, Ballet N, Keijser BJ (2025) Yeast cell wall derivatives as a potential strategy for modulating oral microbiota and dental plaque biofilm. Front Oral Health 6:1543667. https://doi.org/10.3389/froh.2025.1543667 PubMed DOI PMC
Selvaraj V, Sampath K, Sekar V (2005) Administration of yeast glucan enhances survival and some non-specific and specific immune parameters in carp (Cyprinus carpio) infected with Aeromonas hydrophila. Fish Shellfish Immunol 19(4):293–306. https://doi.org/10.1016/j.fsi.2005.01.001 PubMed DOI
Shah A, Gani A, Masoodi FA, Wani SM, Ashwar BA (2017) Structural, rheological and nutraceutical potential of β-glucan from barley and oat. Bioact Carbohydr Diet Fibre 10:10–16. https://doi.org/10.1016/j.bcdf.2017.03.001 DOI
Shi Y, Liu J, Yan Q, You X, Yang S, Jiang Z (2018) In vitro digestibility and prebiotic potential of curdlan (1→ 3)-β-d-glucan oligosaccharides in Lactobacillus species. Carbohydr Polym 188:17–26. https://doi.org/10.1016/j.carbpol.2018.01.085 PubMed DOI
Sima P, Vannuccı L, Vetvıcka V (2018) β-glucans and cholesterol. Int J Mol Med 41(4):1799–1808. https://doi.org/10.3892/ijmm.2018.3411 PubMed DOI PMC
Singh RP, Bhardwaj A (2023) Β-glucans: a potential source for maintaining gut microbiota and the immune system. Front Nutr 10:1143682. https://doi.org/10.3389/fnut.2023.1143682 PubMed DOI PMC
Singla A, Gupta OP, Sagwal V, Kumar A, Patwa N, Mohan N, Singh G (2024) Beta-glucan as a soluble dietary fiber source: Origins, biosynthesis, extraction, purification, structural characteristics, bioavailability, biofunctional attributes, industrial utilization, and global trade. Nutrients 16(6):900. https://doi.org/10.3390/nu16060900 PubMed DOI PMC
Sinthusamran S, Benjakul S (2018) Physical, rheological and antioxidant properties of gelatin gel as affected by the incorporation of β-glucan. Food Hydrocoll 79:409–415. https://doi.org/10.1016/j.foodhyd.2018.01.018 DOI
Şirinyıldız F, Mavi Bulut A (2022) Effects of beta glucans on immune system. Curr Approaches IKCUSBFD 7(1):173–178
Sun M, Huang H, Tang H, Chen J, Chen W, Yang D (2025) Effects of simulated digestion and prebiotics properties of polysaccharides extracted from imperatae rhizoma based on different pilot processes. Front Microbiol 16:1544261. https://doi.org/10.3389/fmicb.2025.1544261 PubMed DOI PMC
Tamang JP, Lama S (2022) Probiotic properties of yeasts in traditional fermented foods and beverages. . 132(5), 3533–3542. 10.1111/jam.15467. J. Appl. Microbiol 132(5):3533–3542. https://doi.org/10.1111/jam.15467 PubMed DOI
Tumilaar SG, Hardianto A, Dohi H, Kurnia D (2024) A comprehensive review of free radicals, oxidative stress, and antioxidants: Overview, clinical applications, global perspectives, future directions, and mechanisms of antioxidant activity of flavonoid compounds. J Chem 1:5594386. https://doi.org/10.1155/2024/5594386 DOI
Vasudevan L, Chandra TS (2025) Beta-glucan as a potent growth enhancer for autochthonous gut isolate Ligilactobacillus salivarius C57. Microbe 7:100399. https://doi.org/10.1016/j.microbe.2025.100399) DOI
Vetvicka V, Vetvickova J (2020) Anti-infectious and anti-tumor activities of β-glucans. Anticancer Res 40(6):3139–3145. https://doi.org/10.21873/anticanres.14295 PubMed DOI
Wadhwa K, Kapoor N, Kaur H, Abu-Seer EA, Tariq M, Siddiqui S, Yadav VK, Niazi P, Kumar P, Alghamdi S (2024) A comprehensive review of the diversity of fungal secondary metabolites and their emerging applications in healthcare and environment. Mycobiology. https://doi.org/10.1080/12298093.2024.2416736 PubMed DOI PMC
Wang J, Li M, Zheng F, Niu C, Liu C, Li Q, Sun J (2018) Cell wall polysaccharides: before and after autolysis of brewer’s yeast. World J Microbiol Biotechnol 34(9):137. https://doi.org/10.1007/s11274-018-2508-6 PubMed DOI
Wichienchot S, Jatupornpipat M, Rastall RA (2010) Oligosaccharides of Pitaya (dragon fruit) flesh and their prebiotic properties. Food Chem 120(3):850–857. https://doi.org/10.1016/j.foodchem.2009.11.026 DOI
Williams S (1984) Official methods of analysis (No. 630.24 A8 1984). Association of Official Analytical Chemists
Yadav AS, Kolluri G, Gopi M, Kumaragurubaran K, Malik SY, Dhama K (2016) Exploring alternatives to antibiotics as health promoting agents in poultry- a review. J Exp Biol Agric Sci 4(3S):368–383 DOI
You S, Ma Y, Yan B, Pei W, Wu Q, Ding C, Huang C (2022) The promotion mechanism of prebiotics for probiotics: a review. Front Nutr 9:1000517. https://doi.org/10.3389/fnut.2022.1000517 PubMed DOI PMC
Yuan H, Lan P, He Y, Li C, Ma X (2020) Effect of the modifications on the physicochemical and biological properties of β-glucan a critical review. Molecules 25(1):57. https://doi.org/10.3390/molecules25010057 DOI
Zheng Y, Li Y, Wang WD (2014) Optimization of ultrasonic-assisted extraction and in vitro antioxidant activities of polysaccharides from trametes orientalis. Carbohydr Polym 111:315–323. https://doi.org/10.1016/j.carbpol.2014.04.034 PubMed DOI
Zhong X, Wang G, Li F, Fang S, Zhou S, Ishiwata A, Tonevitsky AG, Shkurnikov M, Cai H, Ding F (2023) Immunomodulatory effect and biological significance of β-glucans. Pharmaceutics 15(6):1615. https://doi.org/10.3390/pharmaceutics15061615 PubMed DOI PMC