Production of Enriched Sporidiobolus sp. Yeast Biomass Cultivated on Mixed Coffee Hydrolyzate and Fat/Oil Waste Materials

. 2021 Aug 31 ; 9 (9) : . [epub] 20210831

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34576745
Odkazy

PubMed 34576745
PubMed Central PMC8472217
DOI 10.3390/microorganisms9091848
PII: microorganisms9091848
Knihovny.cz E-zdroje

One of the most addressed topics today is the transfer from a linear model of economics to a model of circular economics. It is a discipline that seeks to eliminate waste produced by various industries. The food industry generates huge amounts of waste worldwide, particularly the coffee industry, and related industries produce millions of tons of waste a year. These wastes have potential utility in biotechnology, and in the production of energy, fuels, fertilizers and nutrients, using green techniques such as anaerobic digestion, co-digestion, composting, enzymatic action, and ultrasonic and hydrothermal carbonization. This work is focused on the biotechnological use of processed spent coffee grounds (SCG) and waste fat/oil materials by some Sporidiobolus sp. carotenogenic yeasts in the model of circular economics. The results show that selected yeast strains are able to grow on SCG hydrolysate and are resistant to antimicrobial compounds present in media. The most productive strain Sporidiobolus pararoseus CCY19-9-6 was chosen for bioreactor cultivation in media with a mixture of coffee lignocellulose fraction and some fat wastes. Sporidiobolus pararoseus CCY19-9-6 was able to produce more than 22 g/L of biomass in mixture of SCG hydrolysate and both coffee oil and frying oil. The combined waste substrates induced the production of lipidic metabolites, whereby the production of carotenoids exceeded 5 mg/g of dry biomass. On media with coffee oil, this strain produced high amounts of ubiquinone (8.265 ± 1.648 mg/g) and ergosterol (13.485 ± 1.275 mg/g). Overall, the results prove that a combination of waste substrates is a promising option for the production of carotenoid- and lipid-enriched yeast biomass.

Zobrazit více v PubMed

Schilling C., Weiss S.A. Roadmap for industry to harness biotechnology for a more circular economy. New Biotech. 2021;60:9–11. doi: 10.1016/j.nbt.2020.08.005. PubMed DOI

Fan Y., Fang C. Circular economy development in China-current situation, evaluation and policy implications. Environ. Impact Assess. Rev. 2020;84:106441. doi: 10.1016/j.eiar.2020.106441. DOI

International Coffee Organization Coffee Development Report. [(accessed on 22 July 2021)]. Available online: http://www.ico.org.

Jenkins R.W., Stageman N.E., Fortune C.M., Chuck C.J. Effect of the type of bean, processing, and geographical location on the biodiesel produced from waste coffee grounds. Energy Fuels. 2014;28:1166–1174. doi: 10.1021/ef4022976. DOI

Martinez-Saez N., García A.T., Peréz I.D., Rebollo-Hernanz M., Mesías M., Morales F.J., Martín-Cabrejas M.A., del Castillo M.D. Use of spent coffee grounds as food ingredient in bakery products. Food Chem. 2017;216:114–122. doi: 10.1016/j.foodchem.2016.07.173. PubMed DOI

Santos C., Fonseca J., Aaires A., Coutinho J., Trindade H. Effect of different rates of spent coffee grounds (SCG) on composting process, gaseous emissions and quality of end-product. Waste Manag. 2017;59:37–47. doi: 10.1016/j.wasman.2016.10.020. PubMed DOI

Limousy L., Jeguirim M., Dutournié P., Kraiem N., Lajili M., Said R. Gaseous products and particulate matter emissions of biomass residential boiler fired with spent coffee grounds pellets. Fuel. 2013;107:323–329. doi: 10.1016/j.fuel.2012.10.019. DOI

Obruca S., Benesova P., Kucera D., Petrik S., Marova I. Biotechnological conversion of spent coffee grounds into polyhydroxyalkanoates and carotenoids. New Biotechnol. 2015;32:569–574. doi: 10.1016/j.nbt.2015.02.008. PubMed DOI

Passadis K., Fragoulis V., Stoumpou V., Novakovic J., Barampouti E.M., Mai S., Moustakas K., Malamis D., Loizidou M. Study of valorisation routes of spent coffee grounds. Waste Biomass Valor. 2020;11:5295–5306. doi: 10.1007/s12649-020-01096-0. DOI

Bautista L.F., Vicente G., Rodríguez R., Pacheco M. Optimisation of FAME production from waste cooking oil for biodiesel use. Biomass Bioen. 2009;33:862–872. doi: 10.1016/j.biombioe.2009.01.009. DOI

Paul S., Mittal G.S. Dynamics of fat/oil degradation during frying based on optical properties. J. Food Eng. 1996;30:389–403. doi: 10.1016/S0260-8774(96)00020-9. DOI

Papanikolaou S., Dimou A., Fakas S., Diamantopoulou P., Philippoussis A., Galiotou-Panayotou M., Aggelis G. Biotechnological conversion of waste cooking olive oil into lipid-rich biomass using Aspergillus and Penicillium strains. J. Appl. Microbiol. 2011;110:1138–1150. doi: 10.1111/j.1365-2672.2011.04961.x. PubMed DOI

Felizardo P.M., Correia J.N., Raposo I., Mendes J.F., Berkemeier R., Bordaddo J.M. Production of biodiesel from waste frying oils. Waste Manag. 2006;26:487–494. doi: 10.1016/j.wasman.2005.02.025. PubMed DOI

Mannu A., Ferro M., di Pietro M.E., Mele A. Innovative applications of waste cooking oil as raw material. Sci. Progress. 2019;102:153–160. doi: 10.1177/0036850419854252. PubMed DOI PMC

Kamilah H., Tsuge T., Yang T.A., Sudesh K. Waste cooking oil as substrate for biosynthesis of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate): Turning waste into a value-added product. Malaysian J. Microbiol. 2013;9:51–59. doi: 10.21161/mjm.45012. DOI

Spalvins K., Geiba Z., Kusnere Z., Blumberga D. Waste cooking oil as substrate for single cell protein production by yeast Yarrowia lipolytica. Environ. Clim. Technol. 2020;24:457–469. doi: 10.2478/rtuect-2020-0116. DOI

Walker G.M. Yeasts. Encyclopedia of Microbiology. Elsevier; Amsterdam, The Netherlands: 2009. pp. 478–491.

Mannazu I., Landolfo S., da Silva T.L., Buzzini P. Red yeasts and carotenoid production: Outlining a future for non-conventional yeasts of biotechnological interest. World J. Microbiol. Biotechnol. 2015;31:1665–1673. doi: 10.1007/s11274-015-1927-x. PubMed DOI

Szotkowski M., Byrtusova D., Haronikova A., Vysoka M., Rapta M., Shapaval V., Marova I. Study of metabolic adaptation of red yeast to waste animal fat substrate. Microorganisms. 2019;7:578. doi: 10.3390/microorganisms7110578. PubMed DOI PMC

Byrtusova D., Shapaval V., Holub J., Simansky S., Rapta M., Szotkowski M., Kohler A., Marova I. Revealing the potential of lipid and β-glucans coproduction in basidiomycetes yeast. Microorganisms. 2020;8:1034. doi: 10.3390/microorganisms8071034. PubMed DOI PMC

Byrtusova D., Szotkowski M., Kurowska K., Shapaval V., Marova I. Rhodotorula kratochvilovae CCY 20-2-26—The source of multifunctional metabolites. Microorganisms. 2021;9:1280. doi: 10.3390/microorganisms9061280. PubMed DOI PMC

Jiru T.M., Groenewald M., Pohl C., Steyn L., Kiggundu N., Abate D. Optimization of cultivation conditions for biotechnological production of lipid by Rhodotorula kratochvilovae (syn, Rhodosporidium kratochvilovae) SY89 for biodiesel preparation. 3 Biotech. 2017;7:145. doi: 10.1007/s13205-017-0769-7. PubMed DOI PMC

Lopes M., Gomes A.S., Silva C.M., Belo I. Microbial lipids and added value metabolites production by Yarrowia lipolytica from pork lard. J. Biotechnol. 2018;265:76–85. doi: 10.1016/j.jbiotec.2017.11.007. PubMed DOI

Papanikolaou S., Aggelis G. Yarrowia lipolytica: A model microorganism used for the production of tailor-made lipids. Eur. J. Lipid Sci. Technol. 2010;112:639–654. doi: 10.1002/ejlt.200900197. DOI

Braunwald T., Schwemmlein L., Graeff-Hönninger S. Effect of different C/N ratios on carotenoid and lipid production by Rhodotorula glutinis. Appl. Microbiol. Biotechnol. 2013;97:6581–6588. doi: 10.1007/s00253-013-5005-8. PubMed DOI

Gründemann C., Garcia-Käufer M., Sauer B., Scheer R., Merdivan S., Bettin P., Huber R., Lindequist U. Comparative chemical and biological investigations of β-glucan-containing products from shiitake mushrooms. J. Funct. Foods. 2015;18:692–702. doi: 10.1016/j.jff.2015.08.022. DOI

Szotkowski M., Holub J., Simansky S., Hubacova K., Sikorova P., Marinicova V., Nemcova A., Marova I. Bioreactor co-cultivation of high lipid and carotenoid producing yeast Rhodotorula kratochvilovae and several microalgae under stress. Microorganisms. 2021;9:1160. doi: 10.3390/microorganisms9061160. PubMed DOI PMC

Yurkov A.M., Vustin M.M., Tyaglov B.V., Maksimova I.A., Sinekoiy S.P. Pigmented Basidiomycetous yeasts are a promising source of carotenoids and ubiquinone Q10. Microbiology. 2008;77:1–6. doi: 10.1134/S0026261708010013. PubMed DOI

Petrik S., Hároniková A., Márová I., Kostovová I., Breierová E. Production of biomass, carotenoids and other lipid metabolites by several red yeast strains cultivated on waste glycerol from biofuel production-a comparative screening study. Ann. Microbiol. 2013;63:1537–1551. doi: 10.1007/s13213-013-0617-x. DOI

Linder T. Making the case for edible microorganisms as an integral part of a more sustainable and resilient food production system. Food Secur. 2019;11:265–278. doi: 10.1007/s12571-019-00912-3. ISSN 1876-4517. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...