Production of Enriched Sporidiobolus sp. Yeast Biomass Cultivated on Mixed Coffee Hydrolyzate and Fat/Oil Waste Materials
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34576745
PubMed Central
PMC8472217
DOI
10.3390/microorganisms9091848
PII: microorganisms9091848
Knihovny.cz E-zdroje
- Klíčová slova
- carotenogenic yeasts, carotenoids, coffee oil, lipids, spent coffee grounds hydrolysate, waste animal fat, waste frying oil,
- Publikační typ
- časopisecké články MeSH
One of the most addressed topics today is the transfer from a linear model of economics to a model of circular economics. It is a discipline that seeks to eliminate waste produced by various industries. The food industry generates huge amounts of waste worldwide, particularly the coffee industry, and related industries produce millions of tons of waste a year. These wastes have potential utility in biotechnology, and in the production of energy, fuels, fertilizers and nutrients, using green techniques such as anaerobic digestion, co-digestion, composting, enzymatic action, and ultrasonic and hydrothermal carbonization. This work is focused on the biotechnological use of processed spent coffee grounds (SCG) and waste fat/oil materials by some Sporidiobolus sp. carotenogenic yeasts in the model of circular economics. The results show that selected yeast strains are able to grow on SCG hydrolysate and are resistant to antimicrobial compounds present in media. The most productive strain Sporidiobolus pararoseus CCY19-9-6 was chosen for bioreactor cultivation in media with a mixture of coffee lignocellulose fraction and some fat wastes. Sporidiobolus pararoseus CCY19-9-6 was able to produce more than 22 g/L of biomass in mixture of SCG hydrolysate and both coffee oil and frying oil. The combined waste substrates induced the production of lipidic metabolites, whereby the production of carotenoids exceeded 5 mg/g of dry biomass. On media with coffee oil, this strain produced high amounts of ubiquinone (8.265 ± 1.648 mg/g) and ergosterol (13.485 ± 1.275 mg/g). Overall, the results prove that a combination of waste substrates is a promising option for the production of carotenoid- and lipid-enriched yeast biomass.
Zobrazit více v PubMed
Schilling C., Weiss S.A. Roadmap for industry to harness biotechnology for a more circular economy. New Biotech. 2021;60:9–11. doi: 10.1016/j.nbt.2020.08.005. PubMed DOI
Fan Y., Fang C. Circular economy development in China-current situation, evaluation and policy implications. Environ. Impact Assess. Rev. 2020;84:106441. doi: 10.1016/j.eiar.2020.106441. DOI
International Coffee Organization Coffee Development Report. [(accessed on 22 July 2021)]. Available online: http://www.ico.org.
Jenkins R.W., Stageman N.E., Fortune C.M., Chuck C.J. Effect of the type of bean, processing, and geographical location on the biodiesel produced from waste coffee grounds. Energy Fuels. 2014;28:1166–1174. doi: 10.1021/ef4022976. DOI
Martinez-Saez N., García A.T., Peréz I.D., Rebollo-Hernanz M., Mesías M., Morales F.J., Martín-Cabrejas M.A., del Castillo M.D. Use of spent coffee grounds as food ingredient in bakery products. Food Chem. 2017;216:114–122. doi: 10.1016/j.foodchem.2016.07.173. PubMed DOI
Santos C., Fonseca J., Aaires A., Coutinho J., Trindade H. Effect of different rates of spent coffee grounds (SCG) on composting process, gaseous emissions and quality of end-product. Waste Manag. 2017;59:37–47. doi: 10.1016/j.wasman.2016.10.020. PubMed DOI
Limousy L., Jeguirim M., Dutournié P., Kraiem N., Lajili M., Said R. Gaseous products and particulate matter emissions of biomass residential boiler fired with spent coffee grounds pellets. Fuel. 2013;107:323–329. doi: 10.1016/j.fuel.2012.10.019. DOI
Obruca S., Benesova P., Kucera D., Petrik S., Marova I. Biotechnological conversion of spent coffee grounds into polyhydroxyalkanoates and carotenoids. New Biotechnol. 2015;32:569–574. doi: 10.1016/j.nbt.2015.02.008. PubMed DOI
Passadis K., Fragoulis V., Stoumpou V., Novakovic J., Barampouti E.M., Mai S., Moustakas K., Malamis D., Loizidou M. Study of valorisation routes of spent coffee grounds. Waste Biomass Valor. 2020;11:5295–5306. doi: 10.1007/s12649-020-01096-0. DOI
Bautista L.F., Vicente G., Rodríguez R., Pacheco M. Optimisation of FAME production from waste cooking oil for biodiesel use. Biomass Bioen. 2009;33:862–872. doi: 10.1016/j.biombioe.2009.01.009. DOI
Paul S., Mittal G.S. Dynamics of fat/oil degradation during frying based on optical properties. J. Food Eng. 1996;30:389–403. doi: 10.1016/S0260-8774(96)00020-9. DOI
Papanikolaou S., Dimou A., Fakas S., Diamantopoulou P., Philippoussis A., Galiotou-Panayotou M., Aggelis G. Biotechnological conversion of waste cooking olive oil into lipid-rich biomass using Aspergillus and Penicillium strains. J. Appl. Microbiol. 2011;110:1138–1150. doi: 10.1111/j.1365-2672.2011.04961.x. PubMed DOI
Felizardo P.M., Correia J.N., Raposo I., Mendes J.F., Berkemeier R., Bordaddo J.M. Production of biodiesel from waste frying oils. Waste Manag. 2006;26:487–494. doi: 10.1016/j.wasman.2005.02.025. PubMed DOI
Mannu A., Ferro M., di Pietro M.E., Mele A. Innovative applications of waste cooking oil as raw material. Sci. Progress. 2019;102:153–160. doi: 10.1177/0036850419854252. PubMed DOI PMC
Kamilah H., Tsuge T., Yang T.A., Sudesh K. Waste cooking oil as substrate for biosynthesis of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate): Turning waste into a value-added product. Malaysian J. Microbiol. 2013;9:51–59. doi: 10.21161/mjm.45012. DOI
Spalvins K., Geiba Z., Kusnere Z., Blumberga D. Waste cooking oil as substrate for single cell protein production by yeast Yarrowia lipolytica. Environ. Clim. Technol. 2020;24:457–469. doi: 10.2478/rtuect-2020-0116. DOI
Walker G.M. Yeasts. Encyclopedia of Microbiology. Elsevier; Amsterdam, The Netherlands: 2009. pp. 478–491.
Mannazu I., Landolfo S., da Silva T.L., Buzzini P. Red yeasts and carotenoid production: Outlining a future for non-conventional yeasts of biotechnological interest. World J. Microbiol. Biotechnol. 2015;31:1665–1673. doi: 10.1007/s11274-015-1927-x. PubMed DOI
Szotkowski M., Byrtusova D., Haronikova A., Vysoka M., Rapta M., Shapaval V., Marova I. Study of metabolic adaptation of red yeast to waste animal fat substrate. Microorganisms. 2019;7:578. doi: 10.3390/microorganisms7110578. PubMed DOI PMC
Byrtusova D., Shapaval V., Holub J., Simansky S., Rapta M., Szotkowski M., Kohler A., Marova I. Revealing the potential of lipid and β-glucans coproduction in basidiomycetes yeast. Microorganisms. 2020;8:1034. doi: 10.3390/microorganisms8071034. PubMed DOI PMC
Byrtusova D., Szotkowski M., Kurowska K., Shapaval V., Marova I. Rhodotorula kratochvilovae CCY 20-2-26—The source of multifunctional metabolites. Microorganisms. 2021;9:1280. doi: 10.3390/microorganisms9061280. PubMed DOI PMC
Jiru T.M., Groenewald M., Pohl C., Steyn L., Kiggundu N., Abate D. Optimization of cultivation conditions for biotechnological production of lipid by Rhodotorula kratochvilovae (syn, Rhodosporidium kratochvilovae) SY89 for biodiesel preparation. 3 Biotech. 2017;7:145. doi: 10.1007/s13205-017-0769-7. PubMed DOI PMC
Lopes M., Gomes A.S., Silva C.M., Belo I. Microbial lipids and added value metabolites production by Yarrowia lipolytica from pork lard. J. Biotechnol. 2018;265:76–85. doi: 10.1016/j.jbiotec.2017.11.007. PubMed DOI
Papanikolaou S., Aggelis G. Yarrowia lipolytica: A model microorganism used for the production of tailor-made lipids. Eur. J. Lipid Sci. Technol. 2010;112:639–654. doi: 10.1002/ejlt.200900197. DOI
Braunwald T., Schwemmlein L., Graeff-Hönninger S. Effect of different C/N ratios on carotenoid and lipid production by Rhodotorula glutinis. Appl. Microbiol. Biotechnol. 2013;97:6581–6588. doi: 10.1007/s00253-013-5005-8. PubMed DOI
Gründemann C., Garcia-Käufer M., Sauer B., Scheer R., Merdivan S., Bettin P., Huber R., Lindequist U. Comparative chemical and biological investigations of β-glucan-containing products from shiitake mushrooms. J. Funct. Foods. 2015;18:692–702. doi: 10.1016/j.jff.2015.08.022. DOI
Szotkowski M., Holub J., Simansky S., Hubacova K., Sikorova P., Marinicova V., Nemcova A., Marova I. Bioreactor co-cultivation of high lipid and carotenoid producing yeast Rhodotorula kratochvilovae and several microalgae under stress. Microorganisms. 2021;9:1160. doi: 10.3390/microorganisms9061160. PubMed DOI PMC
Yurkov A.M., Vustin M.M., Tyaglov B.V., Maksimova I.A., Sinekoiy S.P. Pigmented Basidiomycetous yeasts are a promising source of carotenoids and ubiquinone Q10. Microbiology. 2008;77:1–6. doi: 10.1134/S0026261708010013. PubMed DOI
Petrik S., Hároniková A., Márová I., Kostovová I., Breierová E. Production of biomass, carotenoids and other lipid metabolites by several red yeast strains cultivated on waste glycerol from biofuel production-a comparative screening study. Ann. Microbiol. 2013;63:1537–1551. doi: 10.1007/s13213-013-0617-x. DOI
Linder T. Making the case for edible microorganisms as an integral part of a more sustainable and resilient food production system. Food Secur. 2019;11:265–278. doi: 10.1007/s12571-019-00912-3. ISSN 1876-4517. DOI