Production of Enriched Biomass by Carotenogenic Yeasts Cultivated on by-Products of Poultry Processing-A Screening Study
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
ByProValue" Nr.301834
Research Council of Norway
CZ.02.2.69/0.0/0.0/19_073/0016948 specifically by KInG No. 7746
Ministry of Education Youth and Sports
PubMed
36838286
PubMed Central
PMC9960738
DOI
10.3390/microorganisms11020321
PII: microorganisms11020321
Knihovny.cz E-zdroje
- Klíčová slova
- biorefinery, carotenogenic yeasts, carotenoids, enriched biomass, lipids, poultry feather, poultry waste fat,
- Publikační typ
- časopisecké články MeSH
Carotenogenic yeasts are a group of microorganisms producing valuable metabolites such as carotenoids, ergosterol, ubiquinone or fatty acids. Their exceptional adaptability allows them to grow in diverse conditions. Owing to their extracellular lipase activity, they are capable of processing many lipid-type waste substrates. This study discusses the processing of poultry waste, specifically fat and feathers by using carotenogenic yeasts. Poultry fat does not require any pre-treatment to be utilized by yeast, but hydrolytic pre-treatment is required for the utilization of the nitrogen contained in feathers. Glycerol was used as a supplementary substrate to support the culture in the early stages of growth. Seven yeast strains were used for the experiments, of which the strain Rhodotorula mucilaginosa CCY19-4-25 achieved exceptional results of biomass production: 29.5 g/L on poultry fat + 10% glycerol at C/N ratio 25 and 28.3 g/L on media containing poultry fat + 25% glycerol at C/N 50. The bioreactor cultivation of the Rhodosporidium toruloides strain in media containing glycerol and feather hydrolysate as a nitrogen substrate achieved a biomass yield of 34.92 g/L after 144 h of cultivation. The produced enriched yeast biomass can be used as a component for poultry feeding; thus, the study is performed under the biorefinery concept.
Zobrazit více v PubMed
Keller N.P., Turner G., Bennett J.W. Fungal secondary metabolism—From biochemistry to genomics. Nat. Rev. Microbiol. 2005;3:937–947. doi: 10.1038/nrmicro1286. PubMed DOI
Frengova G.I., Beshkova D.M. Carotenoids from Rhodotorula and Phaffia: Yeasts of biotechnological importance. J. Ind. Microbiol. Biotechnol. 2009;36:163–180. doi: 10.1007/s10295-008-0492-9. PubMed DOI
Zainuddin M.F., Fai C.H.K., Ariff A.B., Rios-SolIS L., Halim M. Current Pretreatment/Cell Disruption and Extraction Methods Used to Improve Intracellular Lipid Recovery from Oleaginous Yeasts. Microorganisms. 2021;9:251. doi: 10.3390/microorganisms9020251. PubMed DOI PMC
Tiukova I.A., Brandenburg J., Blomqvist J., Sampels S., Mikkelsen N., Skaugen M., Arntzen M., Nielsem J., Sandgren M., Kerkhoven E.J. Proteome analysis of xylose metabolism in Rhodotorula toruloides during lipid production. Biotechnol. Biofuel. 2019;12:137. doi: 10.1186/s13068-019-1478-8. PubMed DOI PMC
Marova I., Szotkowski M., Vanek M., Rapta M., Byrtusova D., Mikheichyk N., Haronikova A., Certik M., Shapaval V. Utilization of animal fat waste as carbon source by carotenogenic yeasts—A screening study. EuroBiotech J. 2017;1:310–318. doi: 10.24190/ISSN2564-615X/2017/04.08. DOI
Papaparaskevas D., Christakopoulos P., Kekos D., Macris B.J. Optimizing production of extracellular lipase from Rhodotorula glutinis. Biotechnol. Let. 1992;14:397–402. doi: 10.1007/BF01021254. DOI
Schneider T., Graeff-Hönninger S., French W.T., Hernandez R., Merkt N., Claupein W., Hertrick M., Pham P. Lipid and carotenoid production by oleaginous red yeast Rhodotorula glutinis cultivated on brewery effluents. Energy. 2013;61:34–43. doi: 10.1016/j.energy.2012.12.026. DOI
Cipolatti E.P., Remedi R.D., dos Santos Sá C., Rodrigues A.B., Goncalves R., Veiga Burkert C.A., Furlong E.B., Fernandes De Medeiros Burkert J. Use of agroindustrial byproducts as substrate for production of carotenoids with antioxidant potential by wild yeasts. Biocatal. Agricult. Biotechnol. 2019;20:101208. doi: 10.1016/j.bcab.2019.101208. DOI
Marova I., Haronikova A., Petrik S., Obruca S., Kostovova I. Production of carotenoids, ergosterol and other lipidic compounds by red yeasts cultivated on lignocellulose waste substrates. New Biotechnol. 2014;31:210–211. doi: 10.1016/j.nbt.2014.05.991. DOI
Marova I., Carnecka M., Halienova A., Certik M., Dvorakova T., Haronikova A. Use of several waste substrates for carotenoid-rich yeast biomass production. J. Environ. Manag. 2012;95:338–342. doi: 10.1016/j.jenvman.2011.06.018. PubMed DOI
Szotkowski M., Byrtusova D., Haronikova A., Vysoka M., Rapta M., Shapaval V., Marova I. Study of Metabolic Adaptation of Red Yeasts to Waste Animal Fat Substrate. Microorganisms. 2019;7:578. doi: 10.3390/microorganisms7110578. PubMed DOI PMC
Szotkowski M., Holub J., Šimanský S., Hubačová K., Hladká D., Nemcova A., Marova I. Production of Enriched Sporidiobolus sp. Yeast Biomass Cultivated on Mixed Coffee Hydrolyzate and Fat/Oil Waste Materials. Microorganisms. 2021;9:1848. doi: 10.3390/microorganisms9091848. PubMed DOI PMC
Byrtusova D., Shapaval V., Holub J., Simansky S., Rapta M., Szotkowski M., Kohler A., Marova I. Revealing the Potential of Lipid and β-Glucans Coproduction in Basidiomycetes Yeast. Microorganisms. 2020;8:1034. doi: 10.3390/microorganisms8071034. PubMed DOI PMC
Schilling C., Weiss S. A Roadmap for Industry to Harness Biotechnology for a More Circular Economy. New Biotechnol. 2021;60:9–11. doi: 10.1016/j.nbt.2020.08.005. PubMed DOI
Fan Y., Fang C. Circular economy development in China-current situation, evaluation and policy implications. Environ. Imp. Asses. Rev. 2020;84:106441. doi: 10.1016/j.eiar.2020.106441. DOI
Nanjundaswamy A.P., Vadlani V. Fermentation Process to Produce Natural Carotenoids and Carotenod-Enriched Feed Products. 2013/0224333 A1. U.S. Patent. 2013 August 29;
Kushniryk O., Khudyi O., Khuda L., Kolman R., Marchenko M. Cultivating Moina macrocopa Straus in different media using carotenogenic yeast Rhodotorula. Archiv. Polish Fish. 2015;23:37–42. doi: 10.1515/aopf-2015-0004. DOI
Rekha R., Nimsi K.A., Manjusha K., Sirajudheen T.H. Marine yeast Rhodotorula paludigena VA 242 a pigment enhancing feed additive for the Ornamental Fish Koi Carp. Aquacult. Fish. 2022 doi: 10.1016/j.aaf.2022.05.008. DOI
Mata-Gómez L.C., Montanez J.C., Méndez-Zavala A., Aguilar C.N. Biotechnological production of carotenoids by yeasts: An overview. Microb. Cell Fact. 2014;13:12. doi: 10.1186/1475-2859-13-12. PubMed DOI PMC
World Food and Agriculture—Statistical Yearbook 2021. FAO; Rome, Italy: 2021. DOI
Tesfaye T., Sithole B., Ramjugernath D., Chunilall V. Valorisation of chicken feathers: Characterisation of chemical properties. Waste Manag. 2017;68:626–635. doi: 10.1016/j.wasman.2017.06.050. PubMed DOI
Shi W., Li J., He B., Yan F., Cui Z., Wu K., Lin L., Qian X., Cheng Y. Biodiesel production from waste chicken fat with low free fatty acids by an integrated catalytic process of composite membrane and sodium methoxide. Biores. Technol. 2013;139:316–322. doi: 10.1016/j.biortech.2013.04.040. PubMed DOI
Farmani J., Rostammiri A. Characterization of chicken waste fat for application in food technology. J. Food Measurem. Characteriz. 2015;9:143–150. doi: 10.1007/s11694-014-9219-y. DOI
Tesfaye T., Sithole B., Ramjugernath D. Valorisation of chicken feathers: A review on recycling and recovery route—Current status and future prospects. Clean Technol. Environment. Polic. 2017;19:2363–2378. doi: 10.1007/s10098-017-1443-9. DOI
Stiborova H., Branska B., Vesela T., Lovecka P., Stranska M., Hajslova J., Jiru M., Patakova P., Demnerova K. Transformation of raw feather waste into digestible peptides and amino acids. J. Chem. Technol. Biotechnol. 2016;91:1629–1637. doi: 10.1002/jctb.4912. DOI
Mokrejs P., Svoboda P., Hrncirik J., Janacova D., Vasek V. Processing poultry feathers into keratin hydrolysate through alkaline-enzymatic hydrolysis. Waste Manag. Res. 2011;29:260–267. doi: 10.1177/0734242X10370378. PubMed DOI
Folch J., Lees M., Sloane Stanley G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957;226:497–509. doi: 10.1016/S0021-9258(18)64849-5. PubMed DOI