The Effect of Oil-Rich Food Waste Substrates, Used as an Alternative Carbon Source, on the Cultivation of Microalgae-A Pilot Study
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
37512794
PubMed Central
PMC10383527
DOI
10.3390/microorganisms11071621
PII: microorganisms11071621
Knihovny.cz E-zdroje
- Klíčová slova
- coffee oil, cyanobacteria, lipids, metabolites, microalgae, waste frying oil,
- Publikační typ
- časopisecké články MeSH
Microalgae are mostly phototrophic microorganisms present worldwide, showcasing great adaptability to their environment. They are known for producing essential metabolites such as carotenoids, chlorophylls, sterols, lipids, and many more. This study discusses the possibility of the mixotrophic abilities of microalgae in the presence of food waste oils. The utilization of food waste materials is becoming more popular as a research subject as its production grows every year, increasing the environmental burden. In this work, waste frying oil and coffee oil were tested for the first time as a nutrition source for microalgae cultivation. Waste frying oil is produced in large amounts all over the world and its simple purification is one of its greatest advantages as it only needs to be filtered from leftover food pieces. Coffee oil is extracted from waste spent coffee grounds as a by-product. The waste frying oil and coffee oil were added to the basic algal media as an alternative source of carbon. As a pilot study for further experimentation, the effect of oil in the medium, algal adaptability, and capability to survive were tested within these experiments. The growth and production characteristics of four algae and cyanobacteria strains were tested, of which the strain Desmodesmus armatus achieved exceptional results of chlorophyll (8.171 ± 0.475 mg/g) and ubiquinone (5.708 ± 0.138 mg/g) production. The strain Chlamydomonas reindhartii showed exceptional lipid accumulation in the range of 30-46% in most of the samples.
Zobrazit více v PubMed
Barsanti L., Gualtieri P. Algae. CRC Press; Boca Raton, FL, USA: 2005. p. 320. DOI
Sathasivam R., Radhakrishnan R., Hashem A., Abd_Allah E.F. Microalgae Metabolites: A Rich Source for Food and Medicine. Saudi J. Biol. Sci. 2019;26:709–722. doi: 10.1016/j.sjbs.2017.11.003. PubMed DOI PMC
Characterization of Microalgae for the Purpose of Biofuel Production. Trans. ASABE. 2013;56:1529–1539. doi: 10.13031/trans.56.10090. DOI
Vuppaladadiyam A.K., Prinsen P., Raheem A., Luque R., Zhao M. Microalgae Cultivation and Metabolites Production: A Comprehensive Review. Biofuels Bioprod. Biorefining. 2018;12:304–324. doi: 10.1002/bbb.1864. DOI
Varshney P., Mikulic P., Vonshak A., Beardall J., Wangikar P.P. Extremophilic Micro-Algae and Their Potential Contribution in Biotechnology. Bioresour. Technol. 2015;184:363–372. doi: 10.1016/j.biortech.2014.11.040. PubMed DOI
de Morais M.G., da Silva Vaz B., de Morais E.G., Costa J.A.V. Biologically Active Metabolites Synthesized by Microalgae. BioMed Res. Int. 2015;2015:835761. doi: 10.1155/2015/835761. PubMed DOI PMC
Ścieszka S., Klewicka E. Algae in Food: A General Review. Crit. Rev. Food Sci. Nutr. 2019;59:3538–3547. doi: 10.1080/10408398.2018.1496319. PubMed DOI
Markou G., Nerantzis E. Microalgae for High-Value Compounds and Biofuels Production: A Review with Focus on Cultivation under Stress Conditions. Biotechnol. Adv. 2013;31:1532–1542. doi: 10.1016/j.biotechadv.2013.07.011. PubMed DOI
Sreenikethanam A., Raj S., Rajesh Banu J., Gugulothu P., Bajhaiya A.K. Genetic Engineering of Microalgae for Secondary Metabolite Production: Recent Developments, Challenges, and Future Prospects. Front. Bioeng. Biotechnol. 2022;10:836056. doi: 10.3389/fbioe.2022.836056. PubMed DOI PMC
Sharma P., Sharma N., Keskin C. Industrial and Biotechnological Applications of Algae: A Review. J. Adv. Plant Biol. 2017;1:1–25. doi: 10.14302/issn.2638-4469.japb-17-1534. DOI
Metting F.B. Biodiversity and Application of Microalgae. J. Ind. Microbiol. Biotechnol. 1996;17:477–489. doi: 10.1007/BF01574779. DOI
Demirbas A. Use Of Algae As Biofuel Sources. Energy Convers. Manag. 2010;51:2738–2749. doi: 10.1016/j.enconman.2010.06.010. DOI
Zhang S., Zhang L., Xu G., Li F., Li X. A Review on Biodiesel Production from Microalgae: Influencing Parameters and Recent Advanced Technologies. Front. Microbiol. 2022;13:970028. doi: 10.3389/fmicb.2022.970028. PubMed DOI PMC
Wong Y.Y., Rawindran H., Lim J.W., Tiong Z.W., Liew C.S., Lam M.K., Kiatkittipong W., Abdelfattah E.A., Oh W.-D., Ho Y.C. Attached Microalgae Converting Spent Coffee Ground into Lipid for Biodiesel Production and Sequestering Atmospheric Co2 Simultaneously. Algal Res. 2022;66:102780. doi: 10.1016/j.algal.2022.102780. DOI
Sreekala A.G.V., Ismail M.H.B., Nathan V.K. Biotechnological Interventions in Food Waste Treatment for Obtaining Value-Added Compounds to Combat Pollution. Environ. Sci. Pollut. Res. 2022;29:62755–62784. doi: 10.1007/s11356-022-21794-7. PubMed DOI
Sharma P., Gaur V.K., Kim S.-H., Pandey A. Microbial Strategies for Bio-Transforming Food Waste into Resources. Bioresour. Technol. 2020;299:122580. doi: 10.1016/j.biortech.2019.122580. PubMed DOI
Pleissner D., Lin C.S.K. Valorisation of Food Waste in Biotechnological Processes. Sustain. Chem. Process. 2013;1:21. doi: 10.1186/2043-7129-1-21. DOI
Kovalcik A., Obruca S., Marova I. Valorization of Spent Coffee Grounds: A Review. Food Bioprod. Process. 2018;110:104–119. doi: 10.1016/j.fbp.2018.05.002. DOI
Obruca S., Benesova P., Kucera D., Petrik S., Marova I. Biotechnological Conversion of Spent Coffee Grounds into Polyhydroxyalkanoates and Carotenoids. New Biotechnol. 2015;32:569–574. doi: 10.1016/j.nbt.2015.02.008. PubMed DOI
Rosmahadi N.A., Rawindran H., Lim J.W., Kiatkittipong W., Assabumrungrat S., Najdanovic-Visak V., Wang J., Chidi B.S., Ho C.-D., Abdelfattah E.A., et al. Enhancing Growth Environment for Attached Microalgae to Populate Onto Spent Coffee Grounds in Producing Biodiesel. Renew. Sustain. Energy Rev. 2022;169:112940. doi: 10.1016/j.rser.2022.112940. DOI
McNutt J., He Q. Spent Coffee Grounds: A Review on Current Utilization. J. Ind. Eng. Chem. 2019;71:78–88. doi: 10.1016/j.jiec.2018.11.054. DOI
Kondamudi N., Mohapatra S.K., Misra M. Spent Coffee Grounds as a Versatile Source of Green Energy. J. Agric. Food Chem. 2008;56:11757–11760. doi: 10.1021/jf802487s. PubMed DOI
Charpe T.W., Rathod V.K. Biodiesel Production Using Waste Frying Oil. Waste Manag. 2011;31:85–90. doi: 10.1016/j.wasman.2010.09.003. PubMed DOI
Felizardo P., Neiva Correia M.J., Raposo I., Mendes J.F., Berkemeier R., Bordado J.M. Production of Biodiesel from Waste Frying Oils. Waste Manag. 2006;26:487–494. doi: 10.1016/j.wasman.2005.02.025. PubMed DOI
Goh B.H.H., Chong C.T., Ge Y., Ong H.C., Ng J.-H., Tian B., Ashokkumar V., Lim S., Seljak T., Józsa V. Progress in Utilisation of Waste Cooking Oil for Sustainable Biodiesel and Biojet Fuel Production. Energy Convers. Manag. 2020;223:113296. doi: 10.1016/j.enconman.2020.113296. DOI
Fonseca J.M., Teleken J.G., de Cinque Almeida V., da Silva C. Biodiesel from Waste Frying Oils: Methods of Production and Purification. Energy Convers. Manag. 2019;184:205–218. doi: 10.1016/j.enconman.2019.01.061. DOI
Vastano M., Corrado I., Sannia G., Solaiman D.K.Y., Pezzella C. Conversion Of No/Low Value Waste Frying Oils Into Biodiesel And Polyhydroxyalkanoates. Sci. Rep. 2019;9:13751. doi: 10.1038/s41598-019-50278-x. PubMed DOI PMC
Sanli H., Canakci M., Alptekin E. Characterization Of Waste Frying Oils Obtained From Different Facilities. Linköping Electron. Conf. Proc. 2011;57:479–485. doi: 10.3384/ecp11057479. DOI
Szotkowski M., Holub J., Šimanský S., Hubačová K., Sikorová P., Mariničová V., Němcová A., Márová I. Bioreactor Co-Cultivation Of High Lipid And Carotenoid Producing Yeast Rhodotorula Kratochvilovae And Several Microalgae Under Stress. Microorganisms. 2021;9:1160. doi: 10.3390/microorganisms9061160. PubMed DOI PMC
Szotkowski M., Byrtusova D., Haronikova A., Vysoka M., Rapta M., Shapaval V., Marova I. Study Of Metabolic Adaptation Of Red Yeasts To Waste Animal Fat Substrate. Microorganisms. 2019;7:578. doi: 10.3390/microorganisms7110578. PubMed DOI PMC
Holub J., Szotkowski M., Chujanov O., Špačková D., Sniegoňová P., Márová I. Production Of Enriched Biomass By Carotenogenic Yeasts Cultivated On By-Products Of Poultry Processing—A Screening Study. Microorganisms. 2023;11:321. doi: 10.3390/microorganisms11020321. PubMed DOI PMC
Tomás-Pejó E., Morales-Palomo S., González-Fernández C. Microbial Lipids From Organic Wastes: Outlook And Challenges. Bioresour. Technol. 2021;323:124612. doi: 10.1016/j.biortech.2020.124612. PubMed DOI
Cho H.U., Kim Y.M., Choi Y.-N., Xu X., Shin D.Y., Park J.M. Effects Of Ph Control And Concentration On Microbial Oil Production From Chlorella Vulgaris Cultivated In The Effluent Of A Low-Cost Organic Waste Fermentation System Producing Volatile Fatty Acids. Bioresour. Technol. 2015;184:245–250. doi: 10.1016/j.biortech.2014.09.069. PubMed DOI
Patel A., Mahboubi A., Horváth I.S., Taherzadeh M.J., Rova U., Christakopoulos P., Matsakas L. Volatile Fatty Acids (Vfas) Generated By Anaerobic Digestion Serve As Feedstock For Freshwater And Marine Oleaginous Microorganisms To Produce Biodiesel And Added-Value Compounds. Front. Microbiol. 2021;12:614612. doi: 10.3389/fmicb.2021.614612. PubMed DOI PMC
Paladino O., Neviani M. Sustainable Biodiesel Production By Transesterification Of Waste Cooking Oil And Recycling Of Wastewater Rich In Glycerol As A Feed To Microalgae. Sustainability. 2022;14:273. doi: 10.3390/su14010273. DOI
Skorupskaite V., Makareviciene V., Gumbyte M. Opportunities For Simultaneous Oil Extraction And Transesterification During Biodiesel Fuel Production From Microalgae: A Review. Fuel Process. Technol. 2016;150:78–87. doi: 10.1016/j.fuproc.2016.05.002. DOI
Head I.M., Jones D.M., Röling W.F.M. Marine Microorganisms Make a Meal of Oil. Nat. Rev. Microbiol. 2006;4:173–182. doi: 10.1038/nrmicro1348. PubMed DOI
Chunyan X., Qaria M.A., Qi X., Daochen Z. The Role of Microorganisms in Petroleum Degradation: Current Development and Prospects. Sci. Total Environ. 2023;865:161112. doi: 10.1016/j.scitotenv.2022.161112. PubMed DOI