Anti-Nociceptive Effects of Sphingomyelinase and Methyl-Beta-Cyclodextrin in the Icilin-Induced Mouse Pain Model
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
134725
National Research, Development and Innovation Office
GINOP-2.3.2-15-2016-00050
National Research, Development and Innovation Office
TKP2021-EGA-13
National Research, Development and Innovation Fund of Hungary
TKP2021-EGA-16
National Research, Development and Innovation Fund of Hungary
PTE-ÁOK-KA-2021-09
University of Pecs
NKFIH-138936
National Research, Development and Innovation Office
HUN-REN-PTE
Chronic Pain Research Group
Phar-maLab, RRF-2.3.1-21-2022-00015
The National Research, Development and Innovation Office
LX22NPO5104
National Institute for Research of Metabolic and Cardiovascular Diseases
Next Generation EU
European Union
RVO:61388963
Czech Academy of Sciences
ÚNKP-22-3-I-DE-324
Ministry for Innovation and Technology
PubMed
38731855
PubMed Central
PMC11083984
DOI
10.3390/ijms25094637
PII: ijms25094637
Knihovny.cz E-zdroje
- Klíčová slova
- Transient Receptor Potential, cholesterol, lipid raft, methyl-beta-cyclodextrin, pain, sphingomyelinase,
- MeSH
- analgetika farmakologie terapeutické užití MeSH
- beta-cyklodextriny * farmakologie MeSH
- bolest chemicky indukované farmakoterapie metabolismus MeSH
- CHO buňky MeSH
- cholesterol metabolismus MeSH
- Cricetulus MeSH
- HEK293 buňky MeSH
- kationtové kanály TRPM * metabolismus genetika MeSH
- lidé MeSH
- membránové mikrodomény metabolismus účinky léků MeSH
- modely nemocí na zvířatech MeSH
- myši MeSH
- pregnenolon farmakologie MeSH
- pyrimidinony farmakologie MeSH
- sfingomyelinfosfodiesterasa * metabolismus farmakologie MeSH
- viabilita buněk účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- analgetika MeSH
- beta-cyklodextriny * MeSH
- cholesterol MeSH
- icilin MeSH Prohlížeč
- kationtové kanály TRPM * MeSH
- methyl-beta-cyclodextrin MeSH Prohlížeč
- pregnenolon MeSH
- pregnenolone sulfate MeSH Prohlížeč
- pyrimidinony MeSH
- sfingomyelinfosfodiesterasa * MeSH
- TRPM3 protein, mouse MeSH Prohlížeč
- TRPM8 protein, mouse MeSH Prohlížeč
The thermo- and pain-sensitive Transient Receptor Potential Melastatin 3 and 8 (TRPM3 and TRPM8) ion channels are functionally associated in the lipid rafts of the plasma membrane. We have already described that cholesterol and sphingomyelin depletion, or inhibition of sphingolipid biosynthesis decreased the TRPM8 but not the TRPM3 channel opening on cultured sensory neurons. We aimed to test the effects of lipid raft disruptors on channel activation on TRPM3- and TRPM8-expressing HEK293T cells in vitro, as well as their potential analgesic actions in TRPM3 and TRPM8 channel activation involving acute pain models in mice. CHO cell viability was examined after lipid raft disruptor treatments and their effects on channel activation on channel expressing HEK293T cells by measurement of cytoplasmic Ca2+ concentration were monitored. The effects of treatments were investigated in Pregnenolone-Sulphate-CIM-0216-evoked and icilin-induced acute nocifensive pain models in mice. Cholesterol depletion decreased CHO cell viability. Sphingomyelinase and methyl-beta-cyclodextrin reduced the duration of icilin-evoked nocifensive behavior, while lipid raft disruptors did not inhibit the activity of recombinant TRPM3 and TRPM8. We conclude that depletion of sphingomyelin or cholesterol from rafts can modulate the function of native TRPM8 receptors. Furthermore, sphingolipid cleavage provided superiority over cholesterol depletion, and this method can open novel possibilities in the management of different pain conditions.
Department of Obstetrics and Gynaecology University of Pécs Édesanyák Str 17 H 7624 Pécs Hungary
Department of Pharmacology Faculty of Pharmacy University of Pécs Rókus Str 2 H 7624 Pécs Hungary
National Laboratory for Drug Research and Development Magyar Tudósok Cct 2 H 1117 Budapest Hungary
Zobrazit více v PubMed
Karnovsky M.J., Kleinfeld A.M., Hoover R.L., Klausner R.D. The Concept of Lipid Domains in Membranes. J. Cell Biol. 1982;94:1–6. doi: 10.1083/jcb.94.1.1. PubMed DOI PMC
Simons K., Ikonen E. Functional Rafts in Cell Membranes. Nature. 1997;387:569–572. doi: 10.1038/42408. PubMed DOI
Parton R.G., Richards A.A. Lipid Rafts and Caveolae as Portals for Endocytosis: New Insights and Common Mechanisms: Caveolae/Lipid Raft-Dependent Endocytosis. Traffic. 2003;4:724–738. doi: 10.1034/j.1600-0854.2003.00128.x. PubMed DOI
Kobayashi T., Takahashi M., Nagatsuka Y., Hirabayashi Y. Lipid Rafts: New Tools and a New Component. Biol. Pharm. Bull. 2006;29:1526–1531. doi: 10.1248/bpb.29.1526. PubMed DOI
Kannan K.B., Barlos D., Hauser C.J. Free Cholesterol Alters Lipid Raft Structure and Function Regulating Neutrophil Ca2+ Entry and Respiratory Burst: Correlations with Calcium Channel Raft Trafficking. J. Immunol. 2007;178:5253–5261. doi: 10.4049/jimmunol.178.8.5253. PubMed DOI
Staubach S., Razawi H., Hanisch F.-G. Proteomics of MUC1-Containing Lipid Rafts from Plasma Membranes and Exosomes of Human Breast Carcinoma Cells MCF-7. Proteomics. 2009;9:2820–2835. doi: 10.1002/pmic.200800793. PubMed DOI
Sezgin E., Levental I., Mayor S., Eggeling C. The Mystery of Membrane Organization: Composition, Regulation and Roles of Lipid Rafts. Nat. Rev. Mol. Cell Biol. 2017;18:361–374. doi: 10.1038/nrm.2017.16. PubMed DOI PMC
Hering H., Lin C.-C., Sheng M. Lipid Rafts in the Maintenance of Synapses, Dendritic Spines, and Surface AMPA Receptor Stability. J. Neurosci. 2003;23:3262–3271. doi: 10.1523/JNEUROSCI.23-08-03262.2003. PubMed DOI PMC
Zhu D. Lipid Rafts Serve as a Signaling Platform for Nicotinic Acetylcholine Receptor Clustering. J. Neurosci. 2006;26:4841–4851. doi: 10.1523/JNEUROSCI.2807-05.2006. PubMed DOI PMC
Liu M., Huang W., Wu D., Priestley J.V. TRPV1, but Not P2X3, Requires Cholesterol for Its Function and Membrane Expression in Rat Nociceptors. Eur. J. Neurosci. 2006;24:1–6. doi: 10.1111/j.1460-9568.2006.04889.x. PubMed DOI
Bobkov D., Semenova S. Impact of Lipid Rafts on Transient Receptor Potential Channel Activities. J. Cell. Physiol. 2022;237:2034–2044. doi: 10.1002/jcp.30679. PubMed DOI
Ilangumaran S., Hoessli D.C. Effects of Cholesterol Depletion by Cyclodextrin on the Sphingolipid Microdomains of the Plasma Membrane. Biochem. J. 1998;335:433–440. doi: 10.1042/bj3350433. PubMed DOI PMC
Szánti-Pintér E., Balogh J., Csók Z., Kollár L., Gömöry Á., Skoda-Földes R. Synthesis of Steroid–Ferrocene Conjugates of Steroidal 17-Carboxamides via a Palladium-Catalyzed Aminocarbonylation—Copper-Catalyzed Azide–Alkyne Cycloaddition Reaction Sequence. Steroids. 2011;76:1377–1382. doi: 10.1016/j.steroids.2011.07.006. PubMed DOI
Szánti-Pintér E., Wouters J., Gömöry Á., Sághy É., Szőke É., Helyes Z., Kollár L., Skoda-Földes R. Synthesis of Novel 13α-18-Norandrostane–Ferrocene Conjugates via Homogeneous Catalytic Methods and Their Investigation on TRPV1 Receptor Activation. Steroids. 2015;104:284–293. doi: 10.1016/j.steroids.2015.10.016. PubMed DOI
Miyake Y., Kozutsumi Y., Nakamura S., Fujita T., Kawasaki T. Serine Palmitoyltransferase Is the Primary Target of a Sphingosine-like Immunosuppressant, ISP-1/Myriocin. Biochem. Biophys. Res. Commun. 1995;211:396–403. doi: 10.1006/bbrc.1995.1827. PubMed DOI
Chao L., Chen F., Jensen K.F., Hatton T.A. Two-Dimensional Solvent-Mediated Phase Transformation in Lipid Membranes Induced by Sphingomyelinase. Langmuir. 2011;27:10050–10060. doi: 10.1021/la2015836. PubMed DOI
Nilius B., Owsianik G. The Transient Receptor Potential Family of Ion Channels. Genome Biol. 2011;12:218. doi: 10.1186/gb-2011-12-3-218. PubMed DOI PMC
Vriens J., Nilius B., Voets T. Peripheral Thermosensation in Mammals. Nat. Rev. Neurosci. 2014;15:573–589. doi: 10.1038/nrn3784. PubMed DOI
Voets T., Vriens J., Vennekens R. Targeting TRP Channels—Valuable Alternatives to Combat Pain, Lower Urinary Tract Disorders, and Type 2 Diabetes? Trends Pharmacol. Sci. 2019;40:669–683. doi: 10.1016/j.tips.2019.07.004. PubMed DOI
Huang Y., Fliegert R., Guse A.H., Lü W., Du J. A Structural Overview of the Ion Channels of the TRPM Family. Cell Calcium. 2020;85:102111. doi: 10.1016/j.ceca.2019.102111. PubMed DOI PMC
Wagner T.F.J., Loch S., Lambert S., Straub I., Mannebach S., Mathar I., Düfer M., Lis A., Flockerzi V., Philipp S.E., et al. Transient Receptor Potential M3 Channels Are Ionotropic Steroid Receptors in Pancreatic β Cells. Nat. Cell Biol. 2008;10:1421–1430. doi: 10.1038/ncb1801. PubMed DOI
Vriens J., Owsianik G., Hofmann T., Philipp S.E., Stab J., Chen X., Benoit M., Xue F., Janssens A., Kerselaers S., et al. TRPM3 Is a Nociceptor Channel Involved in the Detection of Noxious Heat. Neuron. 2011;70:482–494. doi: 10.1016/j.neuron.2011.02.051. PubMed DOI
Held K., Voets T., Vriens J. TRPM3 in Temperature Sensing and Beyond. Temperature. 2015;2:201–213. doi: 10.4161/23328940.2014.988524. PubMed DOI PMC
Held K., Kichko T., De Clercq K., Klaassen H., Van Bree R., Vanherck J.-C., Marchand A., Reeh P.W., Chaltin P., Voets T., et al. Activation of TRPM3 by a Potent Synthetic Ligand Reveals a Role in Peptide Release. Proc. Natl. Acad. Sci. USA. 2015;112:E1363–E1372. doi: 10.1073/pnas.1419845112. PubMed DOI PMC
McKemy D.D., Neuhausser W.M., Julius D. Identification of a Cold Receptor Reveals a General Role for TRP Channels in Thermosensation. Nature. 2002;416:52–58. doi: 10.1038/nature719. PubMed DOI
Peier A.M., Moqrich A., Hergarden A.C., Reeve A.J., Andersson D.A., Story G.M., Earley T.J., Dragoni I., McIntyre P., Bevan S., et al. A TRP Channel That Senses Cold Stimuli and Menthol. Cell. 2002;108:705–715. doi: 10.1016/S0092-8674(02)00652-9. PubMed DOI
Bautista D.M., Siemens J., Glazer J.M., Tsuruda P.R., Basbaum A.I., Stucky C.L., Jordt S.-E., Julius D. The Menthol Receptor TRPM8 Is the Principal Detector of Environmental Cold. Nature. 2007;448:204–208. doi: 10.1038/nature05910. PubMed DOI
Morenilla-Palao C., Pertusa M., Meseguer V., Cabedo H., Viana F. Lipid Raft Segregation Modulates TRPM8 Channel Activity. J. Biol. Chem. 2009;284:9215–9224. doi: 10.1074/jbc.M807228200. PubMed DOI PMC
Sághy É., Payrits M., Bíró-Sütő T., Skoda-Földes R., Szánti-Pintér E., Erostyák J., Makkai G., Sétáló G., Kollár L., Kőszegi T., et al. Carboxamido Steroids Inhibit the Opening Properties of Transient Receptor Potential Ion Channels by Lipid Raft Modulation. J. Lipid Res. 2018;59:1851–1863. doi: 10.1194/jlr.M084723. PubMed DOI PMC
Szőke É., Börzsei R., Tóth D.M., Lengl O., Helyes Z., Sándor Z., Szolcsányi J. Effect of Lipid Raft Disruption on TRPV1 Receptor Activation of Trigeminal Sensory Neurons and Transfected Cell Line. Eur. J. Pharmacol. 2010;628:67–74. doi: 10.1016/j.ejphar.2009.11.052. PubMed DOI
Sághy É., Szőke É., Payrits M., Helyes Z., Börzsei R., Erostyák J., Jánosi T.Z., Sétáló G., Jr., Szolcsányi J. Evidence for the Role of Lipid Rafts and Sphingomyelin in Ca2+-Gating of Transient Receptor Potential Channels in Trigeminal Sensory Neurons and Peripheral Nerve Terminals. Pharmacol. Res. 2015;100:101–116. doi: 10.1016/j.phrs.2015.07.028. PubMed DOI
Horváth Á., Biró-Sütő T., Kántás B., Payrits M., Skoda-Földes R., Szánti-Pintér E., Helyes Z., Szőke É. Antinociceptive Effects of Lipid Raft Disruptors, a Novel Carboxamido-Steroid and Methyl β-Cyclodextrin, in Mice by Inhibiting Transient Receptor Potential Vanilloid 1 and Ankyrin 1 Channel Activation. Front. Physiol. 2020;11:559109. doi: 10.3389/fphys.2020.559109. PubMed DOI PMC
Horváth Á., Payrits M., Steib A., Kántás B., Biró-Süt T., Erostyák J., Makkai G., Sághy É., Helyes Z., Szőke É. Analgesic Effects of Lipid Raft Disruption by Sphingomyelinase and Myriocin via Transient Receptor Potential Vanilloid 1 and Transient Receptor Potential Ankyrin 1 Ion Channel Modulation. Front. Pharmacol. 2021;11:593319. doi: 10.3389/fphar.2020.593319. PubMed DOI PMC
Startek J.B., Boonen B., López-Requena A., Talavera A., Alpizar Y.A., Ghosh D., Van Ranst N., Nilius B., Voets T., Talavera K. Mouse TRPA1 Function and Membrane Localization Are Modulated by Direct Interactions with Cholesterol. eLife. 2019;8:e46084. doi: 10.7554/eLife.46084. PubMed DOI PMC
Startek J.B., Talavera K. Lipid Raft Destabilization Impairs Mouse TRPA1 Responses to Cold and Bacterial Lipopolysaccharides. Int. J. Mol. Sci. 2020;21:3826. doi: 10.3390/ijms21113826. PubMed DOI PMC
Ferrari L.F., Levine J.D. Plasma Membrane Mechanisms in a Preclinical Rat Model of Chronic Pain. J. Pain. 2015;16:60–66. doi: 10.1016/j.jpain.2014.10.007. PubMed DOI PMC
Lin C.-L., Chang C.-H., Chang Y.-S., Lu S.-C., Hsieh Y.-L. Treatment with Methyl-β-Cyclodextrin Prevents Mechanical Allodynia in Resiniferatoxin Neuropathy in a Mouse Model. Biol. Open. 2019;8:bio039511. doi: 10.1242/bio.039511. PubMed DOI PMC
Sauer R.-S., Rittner H.L., Roewer N., Sohajda T., Shityakov S., Brack A., Broscheit J.-A. A Novel Approach for the Control of Inflammatory Pain: Prostaglandin E2 Complexation by Randomly Methylated β-Cyclodextrins. Anesth. Analg. 2017;124:675–685. doi: 10.1213/ANE.0000000000001674. PubMed DOI
Zhang K., Julius D., Cheng Y. Structural Snapshots of TRPV1 Reveal Mechanism of Polymodal Functionality. Cell. 2021;184:5138–5150.e12. doi: 10.1016/j.cell.2021.08.012. PubMed DOI PMC
Horváth Á., Erostyák J., Szőke É. Effect of Lipid Raft Disruptors on Cell Membrane Fluidity Studied by Fluorescence Spectroscopy. Int. J. Mol. Sci. 2022;23:13729. doi: 10.3390/ijms232213729. PubMed DOI PMC
Sántha P., Dobos I., Kis G., Jancsó G. Role of Gangliosides in Peripheral Pain Mechanisms. Int. J. Mol. Sci. 2020;21:1005. doi: 10.3390/ijms21031005. PubMed DOI PMC
Drews A., Mohr F., Rizun O., Wagner T.F.J., Dembla S., Rudolph S., Lambert S., Konrad M., Philipp S.E., Behrendt M., et al. Structural Requirements of Steroidal Agonists of Transient Receptor Potential Melastatin 3 (TRPM 3) Cation Channels. Br. J. Pharmacol. 2014;171:1019–1032. doi: 10.1111/bph.12521. PubMed DOI PMC
Grimm C., Kraft R., Schultz G., Harteneck C. Activation of the Melastatin-Related Cation Channel TRPM3 by d-Erythro-Sphingosine. Mol. Pharmacol. 2005;67:798–805. doi: 10.1124/mol.104.006734. PubMed DOI
Majeed Y., Agarwal A., Naylor J., Seymour V., Jiang S., Muraki K., Fishwick C., Beech D. Cis-Isomerism and Other Chemical Requirements of Steroidal Agonists and Partial Agonists Acting at TRPM3 Channels: TRPM3 Steroid Stereo-Selectivity. Br. J. Pharmacol. 2010;161:430–441. doi: 10.1111/j.1476-5381.2010.00892.x. PubMed DOI PMC
Naylor J., Li J., Milligan C.J., Zeng F., Sukumar P., Hou B., Sedo A., Yuldasheva N., Majeed Y., Beri D., et al. Pregnenolone Sulphate- and Cholesterol-Regulated TRPM3 Channels Coupled to Vascular Smooth Muscle Secretion and Contraction. Circ. Res. 2010;106:1507–1515. doi: 10.1161/CIRCRESAHA.110.219329. PubMed DOI PMC
Allsopp R.C., Lalo U., Evans R.J. Lipid Raft Association and Cholesterol Sensitivity of P2X1-4 Receptors for ATP. J. Biol. Chem. 2010;285:32770–32777. doi: 10.1074/jbc.M110.148940. PubMed DOI PMC
Payrits M., Sághy É., Cseko K., Pohóczky K., Bölcskei K., Ernszt D., Barabás K., Szolcsányi J., Ábrahám I.M., Helyes Z., et al. Estradiol Sensitizes the Transient Receptor Potential Vanilloid 1 Receptor in Pain Responses. Endocrinology. 2017;158:3249–3258. doi: 10.1210/en.2017-00101. PubMed DOI
Janssens A., Gees M., Toth B.I., Ghosh D., Mulier M., Vennekens R., Vriens J., Talavera K., Voets T. Definition of Two Agonist Types at the Mammalian Cold-Activated Channel TRPM8. eLife. 2016;5:e17240. doi: 10.7554/eLife.17240. PubMed DOI PMC
Kelemen B., Lisztes E., Vladár A., Hanyicska M., Almássy J., Oláh A., Szöllősi A.G., Pénzes Z., Posta J., Voets T., et al. Volatile Anaesthetics Inhibit the Thermosensitive Nociceptor Ion Channel Transient Receptor Potential Melastatin 3 (TRPM3) Biochem. Pharmacol. 2020;174:113826. doi: 10.1016/j.bcp.2020.113826. PubMed DOI
Knowlton W.M., Bifolck-Fisher A., Bautista D.M., McKemy D.D. TRPM8, but Not TRPA1, Is Required for Neural and Behavioral Responses to Acute Noxious Cold Temperatures and Cold-Mimetics in Vivo. Pain. 2010;150:340–350. doi: 10.1016/j.pain.2010.05.021. PubMed DOI PMC