The enigmatic tropical alpine flora on the African sky islands is young, disturbed, and unsaturated
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35617436
PubMed Central
PMC9295768
DOI
10.1073/pnas.2112737119
Knihovny.cz E-zdroje
- Klíčová slova
- age of flora, extinction, molecular dating, tropical alpine habitats,
- MeSH
- ekosystém MeSH
- genetická variace MeSH
- klimatické změny * MeSH
- lidé MeSH
- ostrovy MeSH
- populace MeSH
- rostliny * anatomie a histologie genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- ostrovy MeSH
- východní Afrika MeSH
Tropical alpine floras are renowned for high endemism, spectacular giant rosette plants testifying to convergent adaptation to harsh climates with nightly frosts, and recruitment dominated by long-distance dispersal from remote areas. In contrast to the larger, more recent (late Miocene onward) and contiguous expanses of tropical alpine habitat in South America, the tropical alpine flora in Africa is extremely fragmented across small patches on distant mountains of variable age (Oligocene onward). How this has affected the colonization and diversification history of the highly endemic but species-poor afroalpine flora is not well known. Here we infer phylogenetic relationships of ∼20% of its species using novel genome skimming data and published matrices and infer a timeframe for species origins in the afroalpine region using fossil-calibrated molecular clocks. Although some of the mountains are old, and although stem node ages may substantially predate colonization, most lineages appear to have colonized the afroalpine during the last 5 or 10 My. The accumulation of species increased exponentially toward the present. Taken together with recent reports of extremely low intrapopulation genetic diversity and recent intermountain population divergence, this points to a young, unsaturated, and dynamic island scenario. Habitat disturbance caused by the Pleistocene climate oscillations likely induced cycles of colonization, speciation, extinction, and recolonization. This study contributes to our understanding of differences in the histories of recruitment on different tropical sky islands and on oceanic islands, providing insight into the general processes shaping their remarkable floras.
Department of Botany Faculty of Science Charles University 128 00 Prague Czech Republic
Department of Natural History University Museum University of Bergen 5020 Bergen Norway
Zobrazit více v PubMed
Hughes C. E., Atchison G. W., The ubiquity of alpine plant radiations: From the Andes to the Hengduan Mountains. New Phytol. 207, 275–282 (2015). PubMed
Sklenář P., Hedberg I., Cleef A. M., Island biogeography of tropical alpine floras. J. Biogeogr. 41, 287–297 (2014).
White F., The history of the Afromontane archipelago and the scientific need for its conservation. Afr. J. Ecol. 19, 33–54 (1981).
Smith J. M. B., Cleef A. M., Composition and origins of the world’s tropicalpine floras. J. Biogeogr. 15, 631–645 (1988).
Gehrke B., Kandziora M., Pirie M. D., The evolution of dwarf shrubs in alpine environments: A case study of Alchemilla in Africa. Ann. Bot. 117, 121–131 (2016). PubMed PMC
Antonelli A., Have giant lobelias evolved several times independently? Life form shifts and historical biogeography of the cosmopolitan and highly diverse subfamily Lobelioideae (Campanulaceae). BMC Biol. 7, 82 (2009). PubMed PMC
Graham A., The Andes: A geological overview from a biological perspective. Ann. Mo. Bot. Gard. 96, 371–385 (2009).
Baldwin S. L., Fitzgerald P. G., Webb L. E., Tectonics of the New Guinea region. Annu. Rev. Earth Planet. Sci. 40, 495–520 (2012).
Gehrke B., Linder H. P., Species richness, endemism and species composition in the tropical afroalpine flora. Alp. Bot. 124, 165–177 (2014).
Axelrod D. I., Raven P. H., “Late Cretaceous and Tertiary vegetation history of Africa” in Biogeography and Ecology of Southern Africa, Werger M. J. A., Ed. (Monographiae Biologicae, Springer Netherlands, 1978), pp. 77–130.
Gehrke B., Staying cool: Preadaptation to temperate climates required for colonising tropical alpine-like environments. PhytoKeys 96, 111–125 (2018). PubMed PMC
Merckx V. S., et al. , Evolution of endemism on a young tropical mountain. Nature 524, 347–350 (2015). PubMed
Flantua S. G. A., O’Dea A., Onstein R. E., Giraldo C., Hooghiemstra H., The flickering connectivity system of the north Andean páramos. J. Biogeogr. 46, 1808–1825 (2019).
Chala D., Zimmermann N. E., Brochmann C., Bakkestuen V., Migration corridors for alpine plants among the ‘sky islands’ of eastern Africa: Do they, or did they exist? Alp. Bot. 127, 133–144 (2017).
Brochmann C., et al. , History and evolution of the afroalpine flora: In the footsteps of Olov Hedberg. Alp. Bot. 132, 65–87 (2022).
Straub S. C. K., et al. , Navigating the tip of the genomic iceberg: Next-generation sequencing for plant systematics. Am. J. Bot. 99, 349–364 (2012). PubMed
Janssens S. B., et al. , A large-scale species level dated angiosperm phylogeny for evolutionary and ecological analyses. Biodivers. Data J. 8, e39677 (2020). PubMed PMC
Kandziora M., Kadereit J. W., Gehrke B., Dual colonization of the Palaearctic from different regions in the Afrotropics by Senecio. J. Biogeogr. 44, 147–157 (2017).
Banasiak Ł., et al. , Dispersal patterns in space and time: A case study of Apiaceae subfamily Apioideae. J. Biogeogr. 40, 1324–1335 (2013).
Bell C. D., Kutschker A., Arroyo M. T. K., Phylogeny and diversification of Valerianaceae (Dipsacales) in the southern Andes. Mol. Phylogenet. Evol. 63, 724–737 (2012). PubMed
Bouchenak-Khelladi Y., Verboom G. A., Savolainen V., Hodkinson T. R., Biogeography of the grasses (Poaceae): A phylogenetic approach to reveal evolutionary history in geographical space and geological time. Bot. J. Linn. Soc. 162, 543–557 (2010).
Couvreur T. L. P., et al. , Molecular phylogenetics, temporal diversification, and principles of evolution in the mustard family (Brassicaceae). Mol. Biol. Evol. 27, 55–71 (2010). PubMed
Dillenberger M. S., Kadereit J. W., Simultaneous speciation in the European high mountain flowering plant genus Facchinia (Minuartia s.l., Caryophyllaceae) revealed by genotyping-by-sequencing. Mol. Phylogenet. Evol. 112, 23–35 (2017). PubMed
Emadzade K., Hörandl E., Northern Hemisphere origin, transoceanic dispersal, and diversification of Ranunculeae DC. (Ranunculaceae) in the Cenozoic. J. Biogeogr. 38, 517–530 (2011).
Messerschmid T. F. E., Klein J. T., Kadereit G., Kadereit J. W., Linnaeus’s folly – Phylogeny, evolution and classification of Sedum (Crassulaceae) and Crassulaceae subfamily Sempervivoideae. Taxon 69, 892–926 (2020).
Pirie M. D., Litsios G., Bellstedt D. U., Salamin N., Kissling J., Back to Gondwanaland: Can ancient vicariance explain (some) Indian Ocean disjunct plant distributions? Biol. Lett. 11, 20150086 (2015). PubMed PMC
Ren G., Conti E., Salamin N., Phylogeny and biogeography of Primula sect. Armerina: Implications for plant evolution under climate change and the uplift of the Qinghai-Tibet Plateau. BMC Evol. Biol. 15, 161 (2015). PubMed PMC
Saarela J. M., et al. , A 250 plastome phylogeny of the grass family (Poaceae): Topological support under different data partitions. PeerJ 6, e4299 (2018). PubMed PMC
Surina B., Pfanzelt S., Einzmann H. J. R., Albach D. C., Bridging the Alps and the Middle East: Evolution, phylogeny and systematics of the genus Wulfenia (Plantaginaceae). Taxon 63, 843–858 (2014).
Kandziora M., AfroalpineDatingData. Open Science Framework. https://osf.io/brmjq. Deposited 29 November 2021.
García-Verdugo C., Caujapé-Castells J., Sanmartín I., Colonization time on island settings: Lessons from the Hawaiian and Canary Island floras. Bot. J. Linn. Soc. 191, 155–163 (2019).
Rabosky D. L., Slater G. J., Alfaro M. E., Clade age and species richness are decoupled across the eukaryotic tree of life. PLoS Biol. 10, e1001381 (2012). PubMed PMC
Gil-Romera G., et al. , “The new Garba Guracha palynological sequence: Revision and data expansion” in Quaternary Vegetation Dynamics: The African Pollen Database, Runge J., Gosling W. D., Lézine A.-M., Scott L., Eds. (CRC Press, 2021).
Talbot M. R., Filippi M. L., Jensen N. B., Tiercelin J.-J., An abrupt change in the African monsoon at the end of the Younger Dryas. Geochem. Geophys. Geosyst. 8, 10.1029/2006GC001465 (2007). DOI
van der Merwe M., et al. , Assemblage accumulation curves: A framework for resolving species accumulation in biological communities using DNA sequences. Methods Ecol. Evol. 10, 971–981 (2019).
Ackerly D. D., Evolution, origin and age of lineages in the Californian and Mediterranean floras. J. Biogeogr. 36, 1221–1233 (2009).
Guerrero P. C., Rosas M., Arroyo M. T. K., Wiens J. J., Evolutionary lag times and recent origin of the biota of an ancient desert (Atacama-Sechura). Proc. Natl. Acad. Sci. U.S.A. 110, 11469–11474 (2013). PubMed PMC
Clapperton C. M., Quaternary glaciations in the southern hemisphere: An overview. Quat. Sci. Rev. 9, 299–304 (1990).
Luebert F., Weigend M., Phylogenetic insights into Andean plant diversification. Front. Ecol. Evol. 2, 10.3389/fevo.2014.00027 (2014). DOI
Sklenář P., Dušková E., Balslev H., Tropical and temperate: Evolutionary history of páramo flora. Bot. Rev. 77, 71–108 (2011).
García‐Verdugo C., et al. , Pleistocene extinctions as drivers of biogeographical patterns on the easternmost Canary Islands. J. Biogeogr. 46, 845–859 (2019).
Kim S.-C., et al. , Timing and tempo of early and successive adaptive radiations in Macaronesia. PLoS One 3, e2139 (2008). PubMed PMC
Cronk Q. C. B., Islands: Stability, diversity, conservation. Biodivers. Conserv. 6, 477–493 (1997).
Clague D. A., Sherrod D. R., Growth and Degradation of Hawaiian Volcanoes (US Geological Survey, 2014).
Valencia J. B., Mesa J., León J. G., Madriñán S., Cortés A. J., “Climate vulnerability assessment of the espeletia complex on Páramo Sky Islands in the Northern Andes” in Frontiers in Ecology and Evolution 2020 Highlights, Elgar M. A., Ed. (Frontiers Media, Lausanne, 2020).
Kandziora M., PhylUp: Phylogenetic alignment building with custom taxon sampling. bioRxiv [Preprint] (2020). 10.1101/2020.12.21.394551 (Accessed 1 May 2021). DOI
Camacho C., et al. , BLAST+: Architecture and applications. BMC Bioinformatics 10, 421 (2009). PubMed PMC
Smith S. A., O’Meara B. C., treePL: Divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics 28, 2689–2690 (2012). PubMed
Bouckaert R., et al. , BEAST 2: A software platform for Bayesian evolutionary analysis. PLOS Comput. Biol. 10, e1003537 (2014). PubMed PMC
McGuire J. A., et al. , Molecular phylogenetics and the diversification of hummingbirds. Curr. Biol. 24, 910–916 (2014). PubMed