Repeatedly Northwards and Upwards: Southern African Grasslands Fuel the Colonization of the African Sky Islands in Helichrysum (Compositae)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SGR2021SGR00315
Agency for Administration of University and Research
2022FI_B 00150
Agency for Administration of University and Research
PID2019-105583GB-C22
Ministerio de Ciencia e Innovación de España
RVO67985939
Czech Academy of Sciences
20-10878S
Czech Science Foundation
2007/1058
Norwegian Programme for Development, Research and Higher Education
274607
The Research Council of Norway
20-10878S
Czech Science Foundation
PubMed
37299192
PubMed Central
PMC10255704
DOI
10.3390/plants12112213
PII: plants12112213
Knihovny.cz E-zdroje
- Klíčová slova
- Afroalpine, Afromontane, Asteraceae, Helichrysum, biogeography, evolution, long-distance dispersal, phylogeny, target-enrichment,
- Publikační typ
- časopisecké články MeSH
The Afromontane and Afroalpine areas constitute some of the main biodiversity hotspots of Africa. They are particularly rich in plant endemics, but the biogeographic origins and evolutionary processes leading to this outstanding diversity are poorly understood. We performed phylogenomic and biogeographic analyses of one of the most species-rich plant genera in these mountains, Helichrysum (Compositae-Gnaphalieae). Most previous studies have focused on Afroalpine elements of Eurasian origin, and the southern African origin of Helichrysum provides an interesting counterexample. We obtained a comprehensive nuclear dataset from 304 species (≈50% of the genus) using target-enrichment with the Compositae1061 probe set. Summary-coalescent and concatenation approaches combined with paralog recovery yielded congruent, well-resolved phylogenies. Ancestral range estimations revealed that Helichrysum originated in arid southern Africa, whereas the southern African grasslands were the source of most lineages that dispersed within and outside Africa. Colonization of the tropical Afromontane and Afroalpine areas occurred repeatedly throughout the Miocene-Pliocene. This timing coincides with mountain uplift and the onset of glacial cycles, which together may have facilitated both speciation and intermountain gene flow, contributing to the evolution of the Afroalpine flora.
Botanic Institute of Barcelona CSIC Ajuntament de Barcelona Pg Migdia s n ES 08038 Barcelona Spain
Department of Biological Sciences Center for Biodiversity University of Memphis Memphis TN 38152 USA
Department of Botany Swedish Museum of Natural History P O Box 50007 SE 104 05 Stockholm Sweden
Herbarium of the Parc Botanique et Zoologique of Tsimbazaza Antananarivo 3G9G V6C Madagascar
Institute of Botany Academy of Sciences of the Czech Republic CZ 25243 Průhonice Czech Republic
Meise Botanic Garden Nieuwelaan 38 BE 1860 Meise Belgium
Natural History Museum University of Oslo P O Box 1172 NO 0318 Oslo Norway
Zobrazit více v PubMed
Heald W.F. Sky Island. Van Nostrand; Princeton, NJ, USA: 1967.
White F. The Afromontane region. In: Wegner M.J.A., editor. Biogeography and Ecology of Southern Africa. Volume 31. Springer; Dordrecht, The Netherlands: 1978. pp. 463–513. DOI
White F. Vegetation of Africa: A Descriptive Memoir to Accompany the UNESCO/AETFAT/UNSO Vegetation Map of Africa. UNESCO; Paris, France: 1983.
Gehrke B., Linder H.P. Species richness, endemism and species composition in the tropical Afroalpine flora. Alp. Bot. 2014;124:165–177. doi: 10.1007/s00035-014-0132-0. DOI
Hedberg O. Evolution and speciation in a tropical high mountain flora. Biol. J. Linn. Soc. 1969;1:135–148. doi: 10.1111/j.1095-8312.1969.tb01816.x. DOI
Rutherford M.C., Westfall R.H. Biomes of southern Africa—An objective categorization. Memo. Bot. Surv. S. Afr. 1986;54:1–98.
Davis S.D., Heywood V.H., Hamilton A.C. A Guide and Strategy for their Conservation. Europe, Africa, South West Asia and the Middle East. Volume 1 IUCN Publications Unit; Cambridge, UK: 1994. Centres of plant diversity.
Burgoyne P.M., Van Wyk A.E., Anderson J.M., Schrire B.D. Phanerozoic evolution of plants on the African Plate. J. Afr. Earth Sci. 2005;43:13–52. doi: 10.1016/j.jafrearsci.2005.07.015. DOI
Carbutt C., Edwards T.J. Reconciling ecological and phytogeographical spatial boundaries to clarify the limits of the montane and alpine regions of sub-Sahelian Africa. S. Afr. J. Bot. 2015;98:64–75. doi: 10.1016/j.sajb.2015.01.014. DOI
Gehrke B., Linder H.P. The scramble for Africa Pan-temperate elements on the African high mountains. Proc. R. Soc. B: Biol. Sci. 2009;276:2657–2665. doi: 10.1098/rspb.2009.0334. PubMed DOI PMC
Kedebe M., Ehrich D., Taberlet P., Nemomissa S., Brochmann C. Phylogeography and conservation genetics of a giant lobelia (Lobelia giberroa) in Ethiopian and Tropical East Africa Mountains. Mol. Ecol. 2007;16:1233–1243. doi: 10.1111/j.1365-294X.2007.03232.x. PubMed DOI
Mairal M., Pokorny L., Aldasoro J.J., Alarcón M., Sanmartín I. Ancient vicariance and climate-driven extinction explain continental-wide disjunctions in Africa: The case of the Rand Flora genus Canarina (Campanulaceae) Mol. Ecol. 2015;24:1335–1345. doi: 10.1111/mec.13114. PubMed DOI
Hemp A. Continuum or zonation? Altitudinal gradients in the forest vegetation of Mt. Kilimanjaro. Plant Ecol. 2006;184:27–42. doi: 10.1007/s11258-005-9049-4. DOI
Kandziora M., Gehrke B., Popp M., Gizaw A., Brochmann C., Pirie M.D. The enigmatic tropical alpine flora on the African sky islands is young, disturbed, and unsaturated. Proc. Natl. Acad. Sci. USA. 2022;119:e2112737119. doi: 10.1073/pnas.2112737119. PubMed DOI PMC
Engler A. Plants of the northern temperate zone in their transition to the high mountains of tropical Africa. Ann. Bot. 1904;18:523–540. doi: 10.1093/oxfordjournals.aob.a088974. DOI
Killick D.J.B. The Afro-Alpine region. In: Wegner M.J.A., editor. Biogeography and Ecology of Southern Africa. Volume 31. Monographiae Biologicae; The Hague, The Netherlands: 1978. pp. 515–542. DOI
White F. Long-distance dispersal and the origins of the Afromontane flora. Sonderbd. Des Nat. Ver. Hambg. 1983;7:87–116.
Galley C., Bytebier B., Bellstedt D.U., Linder H.P. The Cape element in the Afrotemperate flora: From Cape to Cairo? Proc. R. Soc. B Biol. Sci. 2007;274:535–543. doi: 10.1098/rspb.2006.0046. PubMed DOI PMC
Bentley J., Verboom G.A., Bergh N.G. Erosive processes after tectonic uplift stimulate vicariant and adaptive speciation: Evolution in an Afrotemperate-endemic paper daisy genus. BMC Evol. Biol. 2014;14:27. doi: 10.1186/1471-2148-14-27. PubMed DOI PMC
Brochmann C., Gizaw A., Chala D., Kandziora M., Eilu G., Popp M., Pirie M.D., Gehrke B. History and evolution of the afroalpine flora: In the footsteps of Olov Hedberg. Alp. Bot. 2021;132:65–87. doi: 10.1007/s00035-021-00256-9. DOI
Chala D., Zimmermann N.E., Brochmann C., Bakkesstuen V. Migration corridors for alpine plants among the “sky islands” of eastern Africa: Do they, or did they exist? Alp. Bot. 2017;127:133–144. doi: 10.1007/s00035-017-0184-z. DOI
Popp M., Gizaw A., Nemomissa S., Suda J., Brochmann C. Colonization and diversification in the African “sky islands” by Eurasian Lychnis L. (Caryophyllaceae) J. Biogeogr. 2008;35:1016–1029. doi: 10.1111/j.1365-2699.2008.01902.x. DOI
Kandziora M., Kadereit J.W., Gehrke B. Frequent colonization and little in situ speciation in Senecio in the tropical alpine-like islands of eastern Africa. Am. J. Bot. 2016;103:1483–1498. doi: 10.3732/ajb.1600210. PubMed DOI
Galbany-Casals M., Unwin M., Garcia-Jacas N., Smissen R.D., Susanna A., Bayer R.J. Phylogenetic relationships in Helichrysum (Compositae: Gnaphalieae) and related genera: Incongruence between nuclear and plastid phylogenies, biogeographic and morphological patterns, and implications for generic delimitation. Taxon. 2014;63:608–624. doi: 10.12705/633.8. DOI
Gehrke B. Staying cool: Preadaptation to temperate climates required for colonizing tropical alpine-like environments. PhytoKeys. 2018;96:111–126. doi: 10.3897/phytokeys.96.13353. PubMed DOI PMC
Hilliard O.M. Helichrysum Mill. In: Leistner O.A., editor. Flora of Southern Africa. Volume 33. Department of Agriculture; Pretoria, South Africa: 1983. pp. 61–310. Part 7, Fascicle 2.
Anderberg A.A. Taxonomy and phylogeny of the tribe Gnaphalieae (Asteraceae) Opera Bot. 1991;104:1–195.
Galbany-Casals M., Garcia-Jacas N., Sáez L., Benedí C., Susanna A. Phylogeny, Biogeography and character evolution in Mediterranean, Asiatic and Macaronesian Helichrysum (Asteraceae, Gnaphalieae) inferred from nuclear phylogenetic analyses. Int. J. Plant. Sci. 2009;170:365–380. doi: 10.1086/596332. DOI
Carbutt C. The Drakensberg Mountain Centre: A necessary revision of southern Africa’s high-elevation centre of plant endemism. S. Afr. J. Bot. 2019;124:508–529. doi: 10.1016/j.sajb.2019.05.032. DOI
Humbert H. In: Flore de Madagascar et des Comores (Plantes vasculaires) Leroy J.F., editor. Muséum National d’Histoire Naturelle; Paris, France: 1962. 189e famille. Composées, part 2.
Andrés-Sánchez S., Verboom G.A., Galbany-Casals M., Bergh N.G. Evolutionary history of the arid climate-adapted Helichrysum (Asteraceae: Gnaphalieae): Cape origin and association between annual life-history and low chromosome numbers. J. Syst. Evol. 2019;57:468–487. doi: 10.1111/jse.12472. DOI
Cronn R., Knaus B.J., Liston A., Maughan P.J., Parks M., Syring J.V., Undall J. Targeted enrichment strategies for next-generation plant biology. Am. J. Bot. 2012;99:291–311. doi: 10.3732/ajb.1100356. PubMed DOI
Mandel J.R., Dikow R.B., Funk V.A., Masalia R.R., Staton S.E., Kozik A., Michelmore R.W., Rieseberg L.H., Burke J.M. A target enrichment method for gathering phylogenetic information from hundreds of loci: An example from the Compositae. Appl. Plant Sci. 2014;2:1300085. doi: 10.3732/apps.1300085. PubMed DOI PMC
Ufimov R., Gorospe J.M., Fér T., Kandziora M., Salomon L., van Loo M., Schmickl R. Utilizing paralogues for phylogenetic reconstruction has the potential to increase species tree support and reduce gene tree discordance in target enrichment data. Mol. Ecol. Resour. 2022;22:3018–3034. doi: 10.1111/1755-0998.13684. PubMed DOI
Smissen R.D., Bayer R.J., Berg N.G., Breitwieser I., Freire S.E., Galbany-Casals M., Schmidt-Lebuhn A.N., Ward J.M. A revised subtribal classification of Gnaphalieae (Asteraceae) Taxon. 2020;6:778–806. doi: 10.1002/tax.12294. DOI
Nie Z.-L., Funk V.A., Meng Y., Deng T., Sun H., Wen J. Recent assembly of the global herbaceous flora: Evidence from the paper daisies (Asteraceae: Gnaphalieae) New Phytol. 2015;209:1789–1806. doi: 10.1111/nph.13740. PubMed DOI
Thiers B. Index Herbariorum: A Global Directory of Public Herbaria and Associated Staff. The New York Botanical Garden, Bronx. [(accessed on 20 April 2021)]. Available online: http://sweetgum.nybg.org/ih/
Adams C.D. Compositae. In: Hutchinson J., Dalziel J.M., Keay R.W.Y., Hepper F.N., editors. Flora of West Tropical Africa. 2nd ed. Volume 2. Crown Agents; London, UK: 1963. pp. 225–297. with annotations from African Plants Database (Version 3.4.0)
Beentje H.J. Helichrysum. In: Beentje H.J., editor. Flora of tropical East Africa. Balkema; Rotterdam, The Netherlands: 2002. pp. 403–452. part 2.
Bingham M.G., Willemen A., Wursten B.T., Ballings P., Hyde M.A. Flora of Zambia, Based on Flora Zambesiaca. [(accessed on 21 April 2021)]. Available online: http://www.zambiaflora.com.
Carbutt C., Edwards T.J. The flora of the Drakensberg Alpine Centre. Edinburgh J. Bot. 2004;60:581–607. doi: 10.1017/S0960428603000428. DOI
Guillarmod A.J. Flora of Lesotho (Basutoland) Verlag von Cramer; Lehre, Germany: 1971.
Friis I., Vollesen K. Catalogue of Vascular Plants. Volume 1. Kongel Danske Vidensk Selsk; Copenhagen, Denmark: 1998. Flora of the Sudan-Uganda border area east of the Nile. 1st part. DOI
Hyde M.A., Wursten B.T., Ballings P., Coates Palgrave M. Flora of Botswana, Based on Flora Zambesiaca. Kew Royal Botanic Gardens. [(accessed on 22 April 2021)]. Available online: http://www.botswanaflora.com/index.php.
Hyde M.A., Wursten B.T., Ballings P., Coates Palgrave M. Flora of Malawi, Based on Flora Zambesiaca. Kew Royal Botanic Gardens. [(accessed on 22 April 2021)]. Available online: http://www.malawiflora.com.
Hyde M.A., Wursten B.T., Ballings P., Coates Palgrave M. Flora of Mozambique, Based on Flora Zambesiaca. Kew Royal Botanic Gardens. [(accessed on 23 April 2021)]. Available online: http://www.mozambiqueflora.com.
Hyde M.A., Wursten B.T., Ballings P., Coates Palgrave M. Flora of Zimbabwe, Based on Flora Zambesiaca. Kew Royal Botanic Gardens. [(accessed on 23 April 2021)]. Available online: http://www.zimbabweflora.co.zw.
Koekemoer M., Steyn H.M. Helichrysums of Southern Africa, Version 1. South African National Biodiversity Institute. 2010. [(accessed on 15 April 2021)]. Available online: https://keys.lucidcentral.org/keys/v3/helichrysum/key/Helichrysum/Media/Html/home.htm.
Lisowski S. Flore d’Afrique Centrale (Zaire, Rwanda, Burundi) National Botanic Garden of Belgium; Meise, Belgium: 1989. Helichrysum Compositae (deuxième partie: Tribu Inuleae) pp. 68–192.
Tadesse M. Flora of Ethiopia and Eritrea. Addis Abeba University; Addis Ababa, Ethiopia: 2004. Helichrysum Mill., Asteraceae (Compositae) pp. 163–178. part 2.
Threatened Species Programme Red List of South African Plants. South African National Biodiversity Institute (2010–2012) [(accessed on 20 April 2021)]. Available online: http://redlist.sanbi.org/index.php.
Wood J.R.I. A Handbook of the Yemen Flora. Kew Publishing; Kew, UK: 1997.
Baker M.S., Kane N.C., Matvienko M., Kozik A., Michelmore R.W., Knapp S.J., Rieseberg L.H. Multiple paleopolyploidizations during the evolution of the Compositae reveal parallel patterns of duplicate gene retention after millions of years. Mol. Biol. Evol. 2008;25:2445–2455. doi: 10.1093/molbev/msn187. PubMed DOI PMC
Baker M.S., Li Z., Kidder T.I., Reardon C.R., Lai Z., Oliveira L.O., Scascitelli M., Rieserberg L.H. Most Compositae (Asteraceae) are descendant of a paleohexaploid and all share a paleotetraploid ancestor with the Calyceraceae. Am. J. Bot. 2016;103:1203–1211. doi: 10.3732/ajb.1600113. PubMed DOI
Smissen R.D., Galbany-Casals M., Breitwieser I. Ancient allopolyploidy in the everlasting daisies (Asteraceae: Gnaphalieae): Complex relationship among extant clades. Taxon. 2011;60:649–662. doi: 10.1002/tax.603003. DOI
Fér T., Schmickl R.E. HybPhyloMaker: Target Enrichment data analysis from raw reads to species trees. Evol. Bioinform. Online. 2018;14:1176934317742613. doi: 10.1177/1176934317742613. PubMed DOI PMC
Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Bushnell B. BBMap: A Fast, Accurate, Splice-AWARE Aligner. Lawrence Berkeley National Lab (LBNL); Berkeley, CA, USA: 2014.
Kent W.J. BLAT—the BLAST-like alignment tool. Genome Res. 2002;12:656–664. doi: 10.1101/gr.229202. PubMed DOI PMC
Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Lozano-Fernández J. A practical guide to design and assess a phylogenomic study. Genome Biol. Evol. 2022;14:evac129. doi: 10.1093/gbe/evac129. PubMed DOI PMC
Darriba D., Posada D., Kozlov A.M., Stamatakis A., Morel B., Flouri T. ModelTest-NG: A new and scalable tool for the selection of DNA and protein evolutionary models. Mol. Biol. Evol. 2020;37:291–294. doi: 10.1093/molbev/msz189. PubMed DOI PMC
Kozlov A.M., Darriba D., Flouri T., Morel B., Stamatakis A. RAxML-NG: A fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. 2019;35:4453–4455. doi: 10.1093/bioinformatics/btz305. PubMed DOI PMC
Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution. 1985;39:783–791. doi: 10.2307/2408678. PubMed DOI
Lemoine F., Domelevo Entfellner J.B., Wilkinson E., Correia D., Dávila Felipe M., De Oliveira T., Gascuel O. Renewing Felsenstein’s phylogenetic bootstrap in the era of big data. Nature. 2018;556:452–456. doi: 10.1038/s41586-018-0043-0. PubMed DOI PMC
Stamatakis A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC
Stamatakis A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688–2690. doi: 10.1093/bioinformatics/btl446. PubMed DOI
Zhang C., Rabiee M., Sayyari E., Mirarab S. ASTRAL-III: Polytomial time species tree reconstruction from partially resolved gene trees. BMC Bioinform. 2018;19:153. doi: 10.1186/s12859-018-2129-y. PubMed DOI PMC
Sayyari E., Mirarab S. Fast coalescent-based computation of local branch support from quartet frequencies. Mol. Biol. Evol. 2016;33:1654–1668. doi: 10.1093/molbev/msw079. PubMed DOI PMC
Rambaut A. FigTree ver. 1.4.3. Department of Zoology, University of Oxford, Oxford. 2016. [(accessed on 30 November 2021)]. Available online: http://tree.bio.ed.ac.uk/software/figtree/
Sanderson M.J. Estimating absolute rates of molecular evolution and divergence times: A Penalized Likelihood approach. Mol. Biol. Evol. 2002;19:101–109. doi: 10.1093/oxfordjournals.molbev.a003974. PubMed DOI
Smith S.A., O’Meara B.C. treePL: Divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics. 2012;28:2689–2690. doi: 10.1093/bioinformatics/bts492. PubMed DOI
Ho S.Y.M., Phillips M.J. Accounting for Calibration Uncertainty in Phylogenetic Estimation of Evolutionary Divergence Times. Syst. Biol. 2009;58:367–380. doi: 10.1093/sysbio/syp035. PubMed DOI
Heath T.A. Dating Species Divergences with the Fossilized Birth-Death Process. Divergence Time Estimation Using BEAST v2.x. 2020. [(accessed on 8 May 2023)]. Available online: http://phyloworks.org/workshops/DivTime_BEAST2_tutorial_FBD.pdf.
Ramalho R.S., Brum da Silveira A., Fonseca P.E., Madeira J., Cosca M., Cachao M., Fonseca M.M., Prada S.N. The emergence of volcanic oceanic islands on a slow-moving plate: The example of Madeira Island, NE Atlantic. Geochem. Geophys. Geosystems. 2015;16:522–537. doi: 10.1002/2014GC005657. DOI
Van Wyk A.E., Smith G.F. Regions of Floristic Endemism in Southern Africa: A Review with Emphasis on Succulents. Umdaus Press; Hatfield, South Africa: 2001.
Rutherford M.C., Mucina L., Powrie L.W. Biomes and bioregions of Southern Africa. In: Mucina L., Rutherford M.C., editors. The vegetation of South Africa, Lesotho and Swaziland. South African National Biodiversity Institute; Pretoria, South Africa: 2006. pp. 30–51.
Matzke N.J. BioGeoBEARS: Biogeography with Bayesian (and Likelihood) Evolutionary Analysis in R Scripts. R package. 2013. [(accessed on 2 September 2021)]. Available online: https://github.com/nmatzke/BioGeoBEARS.
Ree R.H., Moore B.R., Webb C.O., Donoghue M.J. A likelihood framework for inferring the evolution of geographic range on phylogenetic trees. Evolution. 2005;59:2299–2311. doi: 10.1111/j.0014-3820.2005.tb00940.x. PubMed DOI
Ree R.H., Smith S.A. Maximum likelihood inference of geographic range evolution by dispersal, local extinction and cladogenesis. Syst. Biol. 2008;57:4–14. doi: 10.1080/10635150701883881. PubMed DOI
Ronquist F. Dispersal–vicariance analysis: A new approach to the quantification of historical biogeography. Syst. Biol. 1997;46:195–203. doi: 10.1093/sysbio/46.1.195. DOI
Landis M.J., Matzke N.J., Moore B.R., Huelsenbeck J.P. Bayesian analysis of biogeography when the number of areas is large. Syst. Biol. 2013;62:789–804. doi: 10.1093/sysbio/syt040. PubMed DOI PMC
Matzke N.J. Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades. Syst. Biol. 2014;63:951–970. doi: 10.1093/sysbio/syu056. PubMed DOI
Dupin J., Matzke N.J., Särkinen T., Knapp S.J., Olmstead R.G., Bohs L., Smith S.D. Bayesian estimation of the global biogeographical history of the Solanaceae. J. Biogeogr. 2017;44:887–899. doi: 10.1111/jbi.12898. DOI
Ree R.H., Sanmartín I. Conceptual and statistical problems with the DEC+J model of founder-event speciation and its comparison with DEC via model selection. J. Biogeogr. 2018;45:741–749. doi: 10.1111/jbi.13173. DOI
Matzke N.J. Statistical comparison of DEC and DEC+J is identical to comparison of two ClaSSE submodels, and is therefore valid. J. Biogeogr. 2022;49:1805–1824. doi: 10.1111/jbi.14346. DOI
Seton M., Müller R.D., Zahirovic S., Gaina C., Torsvik T., Shephard G., Talsma A., Gurnis M., Turner M., Maus S., et al. Global continental and ocean basin reconstructions since 200 Ma. Earth Sci. Rev. 2012;113:212–270. doi: 10.1016/j.earscirev.2012.03.002. DOI
Yoder A.D., Nowak M.D. Has vicariance or dispersal been the predominant biogeographic force in Madagascar? Only time will tell. Annu. Rev. Ecol. Evol. Syst. 2006;37:404–431. doi: 10.1146/annurev.ecolsys.37.091305.110239. DOI
Weitemier K., Straub S.C., Cronn R.C., Fischbein M., Schmickl R., McDonnell A., Liston A. Hyb-Seq: Combining target enrichment and genome skimming for plant phylogenomics. App. Plant Sci. 2014;2:apps.1400042. doi: 10.3732/apps.1400042. PubMed DOI PMC
Bagley J.C., Uribe-Convers S., Carlsen M.M., Muchhala N. Utility of targeted sequence capture for phylogenomics in rapid, recent angiosperm radiations: Neotropical Burmeistera bellflowers as a case study. Mol. Phylogenet. Evol. 2020;152:106769. doi: 10.1016/j.ympev.2020.106769. PubMed DOI
Gizaw A., Gorospe J.M., Kandziora M., Chala D., Gustafsoon L., Zinaw A., Salomón L., Eilu G., Brochmann C., Kolář F., et al. Afro-alpine flagships revisited II: Elucidating the evolutionary relationships and species boundaries in the giant senecios (Dendrosenecio, Asteraceae) Alp. Bot. 2021;132:89–105. doi: 10.1007/s00035-021-00268-5. DOI
Lagomarsino L.P., Frankel L., Uribe-Convers S., Antonelli A., Muchhala N. Increased resolution in the face of conflict: Phylogenomics of the Neotropical bellflowers (Campanulaceae: Lobelioideae), a rapid plant radiation. Ann. Bot. 2022;129:723–736. doi: 10.1093/aob/mcac046. PubMed DOI PMC
Kandziora M., Sklenář P., Kolář F., Schmickl R. How to tackle phylogenetic discordance in recent and rapidly radiating groups? Developing a workflow using Loricaria (Asteraceae) as an example. Front. Plant Sci. 2022;12:765719. doi: 10.3389/fpls.2021.765719. PubMed DOI PMC
Whiterfield J.B., Lockhart P.J. Deciphering ancient rapid radiations. Trends Ecol. Evol. 2007;22:258–265. doi: 10.1016/j.tree.2007.01.012. PubMed DOI
Sepulchre P., Ramstein G., Fluteau F., Schuster M., Tercelin J.J., Brunet M. Tectonic uplift and Eastern Africa aridification. Science. 2006;313:1419–1423. doi: 10.1126/science.1129158. PubMed DOI
Maddison W.P. Gene trees in species trees. Syst. Biol. 1997;46:523–536. doi: 10.1093/sysbio/46.3.523. DOI
Linkem C.W., Minin V.N., Leaché A.D. Detecting the anomaly zone in species trees and evidence for a misleading signal in higher-level skink phylogeny (Squamata: Scincidae) Syst. Biol. 2016;65:465–477. doi: 10.1093/sysbio/syw001. PubMed DOI PMC
Westerhold T., Marwan N., Drury A.J., Liebrand D., Agnini C., Anagnostou E., Barnet J., Bohaty S.M., De Vleeschouwer D., Florindo F., et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science. 2020;369:1383–1387. doi: 10.1126/science.aba6853. PubMed DOI
Coetzee J.A., Rogers J. Palynological and lithological evidence for the Miocene palaeoenvironment in the Saldanha region (South Africa) Palaeogeogr. Palaeoclimatol. Palaeoecol. 1982;39:71–85. doi: 10.1016/0031-0182(82)90073-6. DOI
Dupont L.M., Linder H.P., Rommerskirchen F., Schefuß E. Climate driven rampant speciation of the Cape flora. J. Biogeogr. 2011;38:1059–1068. doi: 10.1111/j.1365-2699.2011.02476.x. DOI
Partridge T.C., Maud R.R. Geomorphic evolution of southern Africa since the Mesozoic. S. Afr. Geogr. J. 1987;90:179–208. doi: 10.10520/AJA10120750_958. DOI
Partridge T.C. Of diamonds, dinosaurs and diastrophism: 150 years of landscape evolution in southern Africa. S. Afr. Geogr. J. 1998;101:167–184. doi: 10.10520/EJC-947b4efa3. DOI
Partridge T.C., Maud R.R. Macro-scale geomorphic evolution of southern Africa. Oxf. Monogr. Geol. Geophys. 2000;40:3–18.
Hughes C.E., Atchison G.W. The Ubiquity of alpine plant radiations: From the Andes to the Hengduan Mountains. New Phytol. 2015;207:275–282. doi: 10.1111/nph.13230. PubMed DOI
Mikula O., Nicolas V., Šumbera R., Konečný A., Deneys C., Verheyen E., Bryjová A., Lemmon A.R., Lemmon E.M., Bryja J. Nuclear phylogenomics, but not mitogenomics, resolves the most successful Late Miocene radiation of African mammals (Rodentia: Muridae: Arvicanthini) Mol. Phylogenet. Evol. 2021;157:107069. doi: 10.1016/j.ympev.2021.107069. PubMed DOI
Aduse-Poku K., van Bergen E., Sáfián S., Collins S.C., Etienne R.S., Herrera-Alsina L., Brakefield P.M., Brattström O., Lohman D.J., Wahlberg N. Miocene climate and habitat change drove diversification in Bicyclus, Africa’s largest radiation of Satyrine butterflies. Syst. Biol. 2022;71:558–570. doi: 10.1093/sysbio/syab066. PubMed DOI PMC
Schulze R.E. South African Atlas of Agrohydrology and Climatology. 2001. [(accessed on 29 January 2023)]. Available online: http://fred.csir.co.za/project/tmg/agrohydrology_atlas/atlas_toc.htm.
Masters J.C., Génin F., Zhang Y., Pellen R., Huck T., Mazza P.P.A., Rabineau M., Doucouré M., Aslanian D. Biogeographic mechanisms involved in the colonization of Madagascar by African vertebrates: Rifting, rafting and runways. J. Biogeogr. 2021;48:492–510. doi: 10.1111/jbi.14032. DOI
Linder H.P., Verboom G.A. The Evolution of Regional Species Richness: The History of the Southern African Flora. Annu. Rev. Ecol. Evol. Syst. 2015;46:393–412. doi: 10.1146/annurev-ecolsys-112414-054322. DOI
Chorowicz J. The East African rift system. J. Afr. Earth Sci. 2005;43:379–410. doi: 10.1016/j.jafrearsci.2005.07.019. DOI
Zachos J., Dickens G., Zeebe R. An early Cenozoic perspective on greenhouse warming and carbon cycle dynamics. Nature. 2008;451:279–283. doi: 10.1038/nature06588. PubMed DOI
Kandziora M., Kadereit J.W., Gehrke B. Dual colonization of the Palaearctic from different regions in the Afrotropics by Senecio. J. Biogeogr. 2017;44:147–157. doi: 10.1111/jbi.12837. DOI
Assefa A., Ehrich D., Taberlet P., Nemomissa S., Brochmann C. Pleistocene colonization of afro-alpine “sky islands” by the arctic-alpine Arabis alpina. Heredity. 2007;99:133–142. doi: 10.1038/sj.hdy.6800974. PubMed DOI
Carlsen T., Bleeker W., Hurka H., Elver R., Brochmann C. Biogeography and phylogeny of Cardamine (Brassicaeae) Ann. Missouri Bot. Gard. 2009;96:215–236. doi: 10.3417/2007047. DOI
Gehrke B., Kandziora M., Pirie M.D. The evolution of dwarf shrubs in alpine environments: A case study of Alchemilla in Africa. Ann. Bot. 2016;117:121–131. doi: 10.1093/aob/mcv159. PubMed DOI PMC
Gizaw A., Brochmann C., Nemomissa S., Wondimu T., Masao C.A., Tusiime F.M., Abdi A.A., Oxelman B., Popp M., Dimitrov D. Colonization and diversification in the African ‘sky islands’: Insights from fossil-calibrated molecular dating of Lychnis (Caryophyllaceae) New Phytol. 2016;211:719–734. doi: 10.1111/nph.13937. PubMed DOI
Tusiime F.M., Gizaw A., Wondimu T., Masao C.A., Abdi A.A., Muwanika V., Trávnócek P., Nemonissa S., Popp M., Eilu G., et al. Sweet vernal grasses (Anthoxanthum) colonized African mountains along two fronts in the Late Pliocene, followed by secondary contract, polyploidization and local extinction in the Pleistocene. Mol. Ecol. 2017;26:3513–3532. doi: 10.1111/mec.14136. PubMed DOI
Pirie M.D., Kandziora M., Nürk N.M., Le Maitre N.C., Mugrabi de Kuppler A., Gehrke B., Oliver E.G.H., Bellstedt D.U. Leaps and bounds: Geographical and ecological distance constrained the colonization of the Afromontemperate by Erica. BMC Evol. Biol. 2019;19:222. doi: 10.1186/s12862-019-1545-6. PubMed DOI PMC
Axelrod D.I., Raven P.H. Late Cretaceous and Tertiary vegetation history of Africa. In: Werger M.J.A., editor. Biogeography and Ecology of Southern Africa. Springer; The Hague, The Netherlands: 1978. pp. 77–139. DOI
Harmsen R., Spence J.R., Mahaney W.C. Glacial interglacial cycles and development of the Afroalpine ecosystem on East-African mountains, II. Origins and development of the biotic component. J. Afr. Earth Sci. 1991;12:512–523. doi: 10.1016/0899-5362(91)90143-M. DOI
Nathan R., Schurr F.M., Spiegel O., Steinitz O., Trakhtenbrot A., Tsoar A. Mechanisms of long-distance seed dispersal. Trends Ecol. Evol. 2008;23:638–647. doi: 10.1016/j.tree.2008.08.003. PubMed DOI
Bergh N.G.M., Linder H.P. Cape diversification and repeated out-of-southern-Africa dispersal in paper daisies (Asteraceae- Gnaphalieae) Mol. Phylogenet. Evol. 2009;51:5–18. doi: 10.1016/j.ympev.2008.09.001. PubMed DOI
Gizaw A., Kedebe M., Nemomissa S., Ehrich D., Bekele B., Mirré V., Popp M., Brochmann C. Phylogeography of the heathers Erica arborea and E. trimera in the afro-alpine ‘sky islands’ inferred from AFLPs and plastid DNA sequences. Flora: Morphol. Distrib. Funct. Ecol. Plants. 2013;208:453–463. doi: 10.1016/j.flora.2013.07.007. DOI
Tusiime F.M., Gizaw A., Gussarova G., Nemomissa S., Popp M., Masao C.A., Wondimu T., Abdi A.A., Mirré V., Muwanika V., et al. Afro-alpine flagships revisited: Parallel adaptation, intermountain admixture and shallow genetic structuring in the giant senecios (Dendrosenecio) PLoS ONE. 2020;15:e0228979. doi: 10.1371/journal.pone.0228979. PubMed DOI PMC