Repeatedly Northwards and Upwards: Southern African Grasslands Fuel the Colonization of the African Sky Islands in Helichrysum (Compositae)

. 2023 Jun 03 ; 12 (11) : . [epub] 20230603

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37299192

Grantová podpora
SGR2021SGR00315 Agency for Administration of University and Research
2022FI_B 00150 Agency for Administration of University and Research
PID2019-105583GB-C22 Ministerio de Ciencia e Innovación de España
RVO67985939 Czech Academy of Sciences
20-10878S Czech Science Foundation
2007/1058 Norwegian Programme for Development, Research and Higher Education
274607 The Research Council of Norway
20-10878S Czech Science Foundation

The Afromontane and Afroalpine areas constitute some of the main biodiversity hotspots of Africa. They are particularly rich in plant endemics, but the biogeographic origins and evolutionary processes leading to this outstanding diversity are poorly understood. We performed phylogenomic and biogeographic analyses of one of the most species-rich plant genera in these mountains, Helichrysum (Compositae-Gnaphalieae). Most previous studies have focused on Afroalpine elements of Eurasian origin, and the southern African origin of Helichrysum provides an interesting counterexample. We obtained a comprehensive nuclear dataset from 304 species (≈50% of the genus) using target-enrichment with the Compositae1061 probe set. Summary-coalescent and concatenation approaches combined with paralog recovery yielded congruent, well-resolved phylogenies. Ancestral range estimations revealed that Helichrysum originated in arid southern Africa, whereas the southern African grasslands were the source of most lineages that dispersed within and outside Africa. Colonization of the tropical Afromontane and Afroalpine areas occurred repeatedly throughout the Miocene-Pliocene. This timing coincides with mountain uplift and the onset of glacial cycles, which together may have facilitated both speciation and intermountain gene flow, contributing to the evolution of the Afroalpine flora.

Botanic Institute of Barcelona CSIC Ajuntament de Barcelona Pg Migdia s n ES 08038 Barcelona Spain

Department of Biological Sciences Center for Biodiversity University of Memphis Memphis TN 38152 USA

Department of Botany and Plant Physiology and Plant DNA Biobank DNA National Bank University of Salamanca Edificio 1 D i Espejo St ES 37007 Salamanca Spain

Department of Botany Faculty of Science Charles University Prague Benátská 2 CZ 12801 Prague Czech Republic

Department of Botany Swedish Museum of Natural History P O Box 50007 SE 104 05 Stockholm Sweden

Department of Plant Biology and Biodiversity Management Addis Ababa University Addis Ababa P O Box 3434 Ethiopia

Foundational Biodiversity Science Kirstenbosch Research Centre South African National Biodiversity Institute Private Bag X7 Newlands Cape Town 7735 South Africa

Herbarium of the Parc Botanique et Zoologique of Tsimbazaza Antananarivo 3G9G V6C Madagascar

Institute of Botany Academy of Sciences of the Czech Republic CZ 25243 Průhonice Czech Republic

Meise Botanic Garden Nieuwelaan 38 BE 1860 Meise Belgium

Natural History Museum University of Oslo P O Box 1172 NO 0318 Oslo Norway

School of Animal Plant and Environmental Sciences University of the Witwatersrand Private Bag 3 Johannesburg 2050 South Africa

Systematics and Evolution of Vascular Plants Associated Unit to CSIC by IBB Department of Animal Biology Plant Biology and Ecology Faculty of Biosciences Autonomous University of Barcelona ES 08193 Bellaterra Spain

Zobrazit více v PubMed

Heald W.F. Sky Island. Van Nostrand; Princeton, NJ, USA: 1967.

White F. The Afromontane region. In: Wegner M.J.A., editor. Biogeography and Ecology of Southern Africa. Volume 31. Springer; Dordrecht, The Netherlands: 1978. pp. 463–513. DOI

White F. Vegetation of Africa: A Descriptive Memoir to Accompany the UNESCO/AETFAT/UNSO Vegetation Map of Africa. UNESCO; Paris, France: 1983.

Gehrke B., Linder H.P. Species richness, endemism and species composition in the tropical Afroalpine flora. Alp. Bot. 2014;124:165–177. doi: 10.1007/s00035-014-0132-0. DOI

Hedberg O. Evolution and speciation in a tropical high mountain flora. Biol. J. Linn. Soc. 1969;1:135–148. doi: 10.1111/j.1095-8312.1969.tb01816.x. DOI

Rutherford M.C., Westfall R.H. Biomes of southern Africa—An objective categorization. Memo. Bot. Surv. S. Afr. 1986;54:1–98.

Davis S.D., Heywood V.H., Hamilton A.C. A Guide and Strategy for their Conservation. Europe, Africa, South West Asia and the Middle East. Volume 1 IUCN Publications Unit; Cambridge, UK: 1994. Centres of plant diversity.

Burgoyne P.M., Van Wyk A.E., Anderson J.M., Schrire B.D. Phanerozoic evolution of plants on the African Plate. J. Afr. Earth Sci. 2005;43:13–52. doi: 10.1016/j.jafrearsci.2005.07.015. DOI

Carbutt C., Edwards T.J. Reconciling ecological and phytogeographical spatial boundaries to clarify the limits of the montane and alpine regions of sub-Sahelian Africa. S. Afr. J. Bot. 2015;98:64–75. doi: 10.1016/j.sajb.2015.01.014. DOI

Gehrke B., Linder H.P. The scramble for Africa Pan-temperate elements on the African high mountains. Proc. R. Soc. B: Biol. Sci. 2009;276:2657–2665. doi: 10.1098/rspb.2009.0334. PubMed DOI PMC

Kedebe M., Ehrich D., Taberlet P., Nemomissa S., Brochmann C. Phylogeography and conservation genetics of a giant lobelia (Lobelia giberroa) in Ethiopian and Tropical East Africa Mountains. Mol. Ecol. 2007;16:1233–1243. doi: 10.1111/j.1365-294X.2007.03232.x. PubMed DOI

Mairal M., Pokorny L., Aldasoro J.J., Alarcón M., Sanmartín I. Ancient vicariance and climate-driven extinction explain continental-wide disjunctions in Africa: The case of the Rand Flora genus Canarina (Campanulaceae) Mol. Ecol. 2015;24:1335–1345. doi: 10.1111/mec.13114. PubMed DOI

Hemp A. Continuum or zonation? Altitudinal gradients in the forest vegetation of Mt. Kilimanjaro. Plant Ecol. 2006;184:27–42. doi: 10.1007/s11258-005-9049-4. DOI

Kandziora M., Gehrke B., Popp M., Gizaw A., Brochmann C., Pirie M.D. The enigmatic tropical alpine flora on the African sky islands is young, disturbed, and unsaturated. Proc. Natl. Acad. Sci. USA. 2022;119:e2112737119. doi: 10.1073/pnas.2112737119. PubMed DOI PMC

Engler A. Plants of the northern temperate zone in their transition to the high mountains of tropical Africa. Ann. Bot. 1904;18:523–540. doi: 10.1093/oxfordjournals.aob.a088974. DOI

Killick D.J.B. The Afro-Alpine region. In: Wegner M.J.A., editor. Biogeography and Ecology of Southern Africa. Volume 31. Monographiae Biologicae; The Hague, The Netherlands: 1978. pp. 515–542. DOI

White F. Long-distance dispersal and the origins of the Afromontane flora. Sonderbd. Des Nat. Ver. Hambg. 1983;7:87–116.

Galley C., Bytebier B., Bellstedt D.U., Linder H.P. The Cape element in the Afrotemperate flora: From Cape to Cairo? Proc. R. Soc. B Biol. Sci. 2007;274:535–543. doi: 10.1098/rspb.2006.0046. PubMed DOI PMC

Bentley J., Verboom G.A., Bergh N.G. Erosive processes after tectonic uplift stimulate vicariant and adaptive speciation: Evolution in an Afrotemperate-endemic paper daisy genus. BMC Evol. Biol. 2014;14:27. doi: 10.1186/1471-2148-14-27. PubMed DOI PMC

Brochmann C., Gizaw A., Chala D., Kandziora M., Eilu G., Popp M., Pirie M.D., Gehrke B. History and evolution of the afroalpine flora: In the footsteps of Olov Hedberg. Alp. Bot. 2021;132:65–87. doi: 10.1007/s00035-021-00256-9. DOI

Chala D., Zimmermann N.E., Brochmann C., Bakkesstuen V. Migration corridors for alpine plants among the “sky islands” of eastern Africa: Do they, or did they exist? Alp. Bot. 2017;127:133–144. doi: 10.1007/s00035-017-0184-z. DOI

Popp M., Gizaw A., Nemomissa S., Suda J., Brochmann C. Colonization and diversification in the African “sky islands” by Eurasian Lychnis L. (Caryophyllaceae) J. Biogeogr. 2008;35:1016–1029. doi: 10.1111/j.1365-2699.2008.01902.x. DOI

Kandziora M., Kadereit J.W., Gehrke B. Frequent colonization and little in situ speciation in Senecio in the tropical alpine-like islands of eastern Africa. Am. J. Bot. 2016;103:1483–1498. doi: 10.3732/ajb.1600210. PubMed DOI

Galbany-Casals M., Unwin M., Garcia-Jacas N., Smissen R.D., Susanna A., Bayer R.J. Phylogenetic relationships in Helichrysum (Compositae: Gnaphalieae) and related genera: Incongruence between nuclear and plastid phylogenies, biogeographic and morphological patterns, and implications for generic delimitation. Taxon. 2014;63:608–624. doi: 10.12705/633.8. DOI

Gehrke B. Staying cool: Preadaptation to temperate climates required for colonizing tropical alpine-like environments. PhytoKeys. 2018;96:111–126. doi: 10.3897/phytokeys.96.13353. PubMed DOI PMC

Hilliard O.M. Helichrysum Mill. In: Leistner O.A., editor. Flora of Southern Africa. Volume 33. Department of Agriculture; Pretoria, South Africa: 1983. pp. 61–310. Part 7, Fascicle 2.

Anderberg A.A. Taxonomy and phylogeny of the tribe Gnaphalieae (Asteraceae) Opera Bot. 1991;104:1–195.

Galbany-Casals M., Garcia-Jacas N., Sáez L., Benedí C., Susanna A. Phylogeny, Biogeography and character evolution in Mediterranean, Asiatic and Macaronesian Helichrysum (Asteraceae, Gnaphalieae) inferred from nuclear phylogenetic analyses. Int. J. Plant. Sci. 2009;170:365–380. doi: 10.1086/596332. DOI

Carbutt C. The Drakensberg Mountain Centre: A necessary revision of southern Africa’s high-elevation centre of plant endemism. S. Afr. J. Bot. 2019;124:508–529. doi: 10.1016/j.sajb.2019.05.032. DOI

Humbert H. In: Flore de Madagascar et des Comores (Plantes vasculaires) Leroy J.F., editor. Muséum National d’Histoire Naturelle; Paris, France: 1962. 189e famille. Composées, part 2.

Andrés-Sánchez S., Verboom G.A., Galbany-Casals M., Bergh N.G. Evolutionary history of the arid climate-adapted Helichrysum (Asteraceae: Gnaphalieae): Cape origin and association between annual life-history and low chromosome numbers. J. Syst. Evol. 2019;57:468–487. doi: 10.1111/jse.12472. DOI

Cronn R., Knaus B.J., Liston A., Maughan P.J., Parks M., Syring J.V., Undall J. Targeted enrichment strategies for next-generation plant biology. Am. J. Bot. 2012;99:291–311. doi: 10.3732/ajb.1100356. PubMed DOI

Mandel J.R., Dikow R.B., Funk V.A., Masalia R.R., Staton S.E., Kozik A., Michelmore R.W., Rieseberg L.H., Burke J.M. A target enrichment method for gathering phylogenetic information from hundreds of loci: An example from the Compositae. Appl. Plant Sci. 2014;2:1300085. doi: 10.3732/apps.1300085. PubMed DOI PMC

Ufimov R., Gorospe J.M., Fér T., Kandziora M., Salomon L., van Loo M., Schmickl R. Utilizing paralogues for phylogenetic reconstruction has the potential to increase species tree support and reduce gene tree discordance in target enrichment data. Mol. Ecol. Resour. 2022;22:3018–3034. doi: 10.1111/1755-0998.13684. PubMed DOI

Smissen R.D., Bayer R.J., Berg N.G., Breitwieser I., Freire S.E., Galbany-Casals M., Schmidt-Lebuhn A.N., Ward J.M. A revised subtribal classification of Gnaphalieae (Asteraceae) Taxon. 2020;6:778–806. doi: 10.1002/tax.12294. DOI

Nie Z.-L., Funk V.A., Meng Y., Deng T., Sun H., Wen J. Recent assembly of the global herbaceous flora: Evidence from the paper daisies (Asteraceae: Gnaphalieae) New Phytol. 2015;209:1789–1806. doi: 10.1111/nph.13740. PubMed DOI

Thiers B. Index Herbariorum: A Global Directory of Public Herbaria and Associated Staff. The New York Botanical Garden, Bronx. [(accessed on 20 April 2021)]. Available online: http://sweetgum.nybg.org/ih/

Adams C.D. Compositae. In: Hutchinson J., Dalziel J.M., Keay R.W.Y., Hepper F.N., editors. Flora of West Tropical Africa. 2nd ed. Volume 2. Crown Agents; London, UK: 1963. pp. 225–297. with annotations from African Plants Database (Version 3.4.0)

Beentje H.J. Helichrysum. In: Beentje H.J., editor. Flora of tropical East Africa. Balkema; Rotterdam, The Netherlands: 2002. pp. 403–452. part 2.

Bingham M.G., Willemen A., Wursten B.T., Ballings P., Hyde M.A. Flora of Zambia, Based on Flora Zambesiaca. [(accessed on 21 April 2021)]. Available online: http://www.zambiaflora.com.

Carbutt C., Edwards T.J. The flora of the Drakensberg Alpine Centre. Edinburgh J. Bot. 2004;60:581–607. doi: 10.1017/S0960428603000428. DOI

Guillarmod A.J. Flora of Lesotho (Basutoland) Verlag von Cramer; Lehre, Germany: 1971.

Friis I., Vollesen K. Catalogue of Vascular Plants. Volume 1. Kongel Danske Vidensk Selsk; Copenhagen, Denmark: 1998. Flora of the Sudan-Uganda border area east of the Nile. 1st part. DOI

Hyde M.A., Wursten B.T., Ballings P., Coates Palgrave M. Flora of Botswana, Based on Flora Zambesiaca. Kew Royal Botanic Gardens. [(accessed on 22 April 2021)]. Available online: http://www.botswanaflora.com/index.php.

Hyde M.A., Wursten B.T., Ballings P., Coates Palgrave M. Flora of Malawi, Based on Flora Zambesiaca. Kew Royal Botanic Gardens. [(accessed on 22 April 2021)]. Available online: http://www.malawiflora.com.

Hyde M.A., Wursten B.T., Ballings P., Coates Palgrave M. Flora of Mozambique, Based on Flora Zambesiaca. Kew Royal Botanic Gardens. [(accessed on 23 April 2021)]. Available online: http://www.mozambiqueflora.com.

Hyde M.A., Wursten B.T., Ballings P., Coates Palgrave M. Flora of Zimbabwe, Based on Flora Zambesiaca. Kew Royal Botanic Gardens. [(accessed on 23 April 2021)]. Available online: http://www.zimbabweflora.co.zw.

Koekemoer M., Steyn H.M. Helichrysums of Southern Africa, Version 1. South African National Biodiversity Institute. 2010. [(accessed on 15 April 2021)]. Available online: https://keys.lucidcentral.org/keys/v3/helichrysum/key/Helichrysum/Media/Html/home.htm.

Lisowski S. Flore d’Afrique Centrale (Zaire, Rwanda, Burundi) National Botanic Garden of Belgium; Meise, Belgium: 1989. Helichrysum Compositae (deuxième partie: Tribu Inuleae) pp. 68–192.

Tadesse M. Flora of Ethiopia and Eritrea. Addis Abeba University; Addis Ababa, Ethiopia: 2004. Helichrysum Mill., Asteraceae (Compositae) pp. 163–178. part 2.

Threatened Species Programme Red List of South African Plants. South African National Biodiversity Institute (2010–2012) [(accessed on 20 April 2021)]. Available online: http://redlist.sanbi.org/index.php.

Wood J.R.I. A Handbook of the Yemen Flora. Kew Publishing; Kew, UK: 1997.

Baker M.S., Kane N.C., Matvienko M., Kozik A., Michelmore R.W., Knapp S.J., Rieseberg L.H. Multiple paleopolyploidizations during the evolution of the Compositae reveal parallel patterns of duplicate gene retention after millions of years. Mol. Biol. Evol. 2008;25:2445–2455. doi: 10.1093/molbev/msn187. PubMed DOI PMC

Baker M.S., Li Z., Kidder T.I., Reardon C.R., Lai Z., Oliveira L.O., Scascitelli M., Rieserberg L.H. Most Compositae (Asteraceae) are descendant of a paleohexaploid and all share a paleotetraploid ancestor with the Calyceraceae. Am. J. Bot. 2016;103:1203–1211. doi: 10.3732/ajb.1600113. PubMed DOI

Smissen R.D., Galbany-Casals M., Breitwieser I. Ancient allopolyploidy in the everlasting daisies (Asteraceae: Gnaphalieae): Complex relationship among extant clades. Taxon. 2011;60:649–662. doi: 10.1002/tax.603003. DOI

Fér T., Schmickl R.E. HybPhyloMaker: Target Enrichment data analysis from raw reads to species trees. Evol. Bioinform. Online. 2018;14:1176934317742613. doi: 10.1177/1176934317742613. PubMed DOI PMC

Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Bushnell B. BBMap: A Fast, Accurate, Splice-AWARE Aligner. Lawrence Berkeley National Lab (LBNL); Berkeley, CA, USA: 2014.

Kent W.J. BLAT—the BLAST-like alignment tool. Genome Res. 2002;12:656–664. doi: 10.1101/gr.229202. PubMed DOI PMC

Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC

Lozano-Fernández J. A practical guide to design and assess a phylogenomic study. Genome Biol. Evol. 2022;14:evac129. doi: 10.1093/gbe/evac129. PubMed DOI PMC

Darriba D., Posada D., Kozlov A.M., Stamatakis A., Morel B., Flouri T. ModelTest-NG: A new and scalable tool for the selection of DNA and protein evolutionary models. Mol. Biol. Evol. 2020;37:291–294. doi: 10.1093/molbev/msz189. PubMed DOI PMC

Kozlov A.M., Darriba D., Flouri T., Morel B., Stamatakis A. RAxML-NG: A fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. 2019;35:4453–4455. doi: 10.1093/bioinformatics/btz305. PubMed DOI PMC

Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution. 1985;39:783–791. doi: 10.2307/2408678. PubMed DOI

Lemoine F., Domelevo Entfellner J.B., Wilkinson E., Correia D., Dávila Felipe M., De Oliveira T., Gascuel O. Renewing Felsenstein’s phylogenetic bootstrap in the era of big data. Nature. 2018;556:452–456. doi: 10.1038/s41586-018-0043-0. PubMed DOI PMC

Stamatakis A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC

Stamatakis A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688–2690. doi: 10.1093/bioinformatics/btl446. PubMed DOI

Zhang C., Rabiee M., Sayyari E., Mirarab S. ASTRAL-III: Polytomial time species tree reconstruction from partially resolved gene trees. BMC Bioinform. 2018;19:153. doi: 10.1186/s12859-018-2129-y. PubMed DOI PMC

Sayyari E., Mirarab S. Fast coalescent-based computation of local branch support from quartet frequencies. Mol. Biol. Evol. 2016;33:1654–1668. doi: 10.1093/molbev/msw079. PubMed DOI PMC

Rambaut A. FigTree ver. 1.4.3. Department of Zoology, University of Oxford, Oxford. 2016. [(accessed on 30 November 2021)]. Available online: http://tree.bio.ed.ac.uk/software/figtree/

Sanderson M.J. Estimating absolute rates of molecular evolution and divergence times: A Penalized Likelihood approach. Mol. Biol. Evol. 2002;19:101–109. doi: 10.1093/oxfordjournals.molbev.a003974. PubMed DOI

Smith S.A., O’Meara B.C. treePL: Divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics. 2012;28:2689–2690. doi: 10.1093/bioinformatics/bts492. PubMed DOI

Ho S.Y.M., Phillips M.J. Accounting for Calibration Uncertainty in Phylogenetic Estimation of Evolutionary Divergence Times. Syst. Biol. 2009;58:367–380. doi: 10.1093/sysbio/syp035. PubMed DOI

Heath T.A. Dating Species Divergences with the Fossilized Birth-Death Process. Divergence Time Estimation Using BEAST v2.x. 2020. [(accessed on 8 May 2023)]. Available online: http://phyloworks.org/workshops/DivTime_BEAST2_tutorial_FBD.pdf.

Ramalho R.S., Brum da Silveira A., Fonseca P.E., Madeira J., Cosca M., Cachao M., Fonseca M.M., Prada S.N. The emergence of volcanic oceanic islands on a slow-moving plate: The example of Madeira Island, NE Atlantic. Geochem. Geophys. Geosystems. 2015;16:522–537. doi: 10.1002/2014GC005657. DOI

Van Wyk A.E., Smith G.F. Regions of Floristic Endemism in Southern Africa: A Review with Emphasis on Succulents. Umdaus Press; Hatfield, South Africa: 2001.

Rutherford M.C., Mucina L., Powrie L.W. Biomes and bioregions of Southern Africa. In: Mucina L., Rutherford M.C., editors. The vegetation of South Africa, Lesotho and Swaziland. South African National Biodiversity Institute; Pretoria, South Africa: 2006. pp. 30–51.

Matzke N.J. BioGeoBEARS: Biogeography with Bayesian (and Likelihood) Evolutionary Analysis in R Scripts. R package. 2013. [(accessed on 2 September 2021)]. Available online: https://github.com/nmatzke/BioGeoBEARS.

Ree R.H., Moore B.R., Webb C.O., Donoghue M.J. A likelihood framework for inferring the evolution of geographic range on phylogenetic trees. Evolution. 2005;59:2299–2311. doi: 10.1111/j.0014-3820.2005.tb00940.x. PubMed DOI

Ree R.H., Smith S.A. Maximum likelihood inference of geographic range evolution by dispersal, local extinction and cladogenesis. Syst. Biol. 2008;57:4–14. doi: 10.1080/10635150701883881. PubMed DOI

Ronquist F. Dispersal–vicariance analysis: A new approach to the quantification of historical biogeography. Syst. Biol. 1997;46:195–203. doi: 10.1093/sysbio/46.1.195. DOI

Landis M.J., Matzke N.J., Moore B.R., Huelsenbeck J.P. Bayesian analysis of biogeography when the number of areas is large. Syst. Biol. 2013;62:789–804. doi: 10.1093/sysbio/syt040. PubMed DOI PMC

Matzke N.J. Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades. Syst. Biol. 2014;63:951–970. doi: 10.1093/sysbio/syu056. PubMed DOI

Dupin J., Matzke N.J., Särkinen T., Knapp S.J., Olmstead R.G., Bohs L., Smith S.D. Bayesian estimation of the global biogeographical history of the Solanaceae. J. Biogeogr. 2017;44:887–899. doi: 10.1111/jbi.12898. DOI

Ree R.H., Sanmartín I. Conceptual and statistical problems with the DEC+J model of founder-event speciation and its comparison with DEC via model selection. J. Biogeogr. 2018;45:741–749. doi: 10.1111/jbi.13173. DOI

Matzke N.J. Statistical comparison of DEC and DEC+J is identical to comparison of two ClaSSE submodels, and is therefore valid. J. Biogeogr. 2022;49:1805–1824. doi: 10.1111/jbi.14346. DOI

Seton M., Müller R.D., Zahirovic S., Gaina C., Torsvik T., Shephard G., Talsma A., Gurnis M., Turner M., Maus S., et al. Global continental and ocean basin reconstructions since 200 Ma. Earth Sci. Rev. 2012;113:212–270. doi: 10.1016/j.earscirev.2012.03.002. DOI

Yoder A.D., Nowak M.D. Has vicariance or dispersal been the predominant biogeographic force in Madagascar? Only time will tell. Annu. Rev. Ecol. Evol. Syst. 2006;37:404–431. doi: 10.1146/annurev.ecolsys.37.091305.110239. DOI

Weitemier K., Straub S.C., Cronn R.C., Fischbein M., Schmickl R., McDonnell A., Liston A. Hyb-Seq: Combining target enrichment and genome skimming for plant phylogenomics. App. Plant Sci. 2014;2:apps.1400042. doi: 10.3732/apps.1400042. PubMed DOI PMC

Bagley J.C., Uribe-Convers S., Carlsen M.M., Muchhala N. Utility of targeted sequence capture for phylogenomics in rapid, recent angiosperm radiations: Neotropical Burmeistera bellflowers as a case study. Mol. Phylogenet. Evol. 2020;152:106769. doi: 10.1016/j.ympev.2020.106769. PubMed DOI

Gizaw A., Gorospe J.M., Kandziora M., Chala D., Gustafsoon L., Zinaw A., Salomón L., Eilu G., Brochmann C., Kolář F., et al. Afro-alpine flagships revisited II: Elucidating the evolutionary relationships and species boundaries in the giant senecios (Dendrosenecio, Asteraceae) Alp. Bot. 2021;132:89–105. doi: 10.1007/s00035-021-00268-5. DOI

Lagomarsino L.P., Frankel L., Uribe-Convers S., Antonelli A., Muchhala N. Increased resolution in the face of conflict: Phylogenomics of the Neotropical bellflowers (Campanulaceae: Lobelioideae), a rapid plant radiation. Ann. Bot. 2022;129:723–736. doi: 10.1093/aob/mcac046. PubMed DOI PMC

Kandziora M., Sklenář P., Kolář F., Schmickl R. How to tackle phylogenetic discordance in recent and rapidly radiating groups? Developing a workflow using Loricaria (Asteraceae) as an example. Front. Plant Sci. 2022;12:765719. doi: 10.3389/fpls.2021.765719. PubMed DOI PMC

Whiterfield J.B., Lockhart P.J. Deciphering ancient rapid radiations. Trends Ecol. Evol. 2007;22:258–265. doi: 10.1016/j.tree.2007.01.012. PubMed DOI

Sepulchre P., Ramstein G., Fluteau F., Schuster M., Tercelin J.J., Brunet M. Tectonic uplift and Eastern Africa aridification. Science. 2006;313:1419–1423. doi: 10.1126/science.1129158. PubMed DOI

Maddison W.P. Gene trees in species trees. Syst. Biol. 1997;46:523–536. doi: 10.1093/sysbio/46.3.523. DOI

Linkem C.W., Minin V.N., Leaché A.D. Detecting the anomaly zone in species trees and evidence for a misleading signal in higher-level skink phylogeny (Squamata: Scincidae) Syst. Biol. 2016;65:465–477. doi: 10.1093/sysbio/syw001. PubMed DOI PMC

Westerhold T., Marwan N., Drury A.J., Liebrand D., Agnini C., Anagnostou E., Barnet J., Bohaty S.M., De Vleeschouwer D., Florindo F., et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science. 2020;369:1383–1387. doi: 10.1126/science.aba6853. PubMed DOI

Coetzee J.A., Rogers J. Palynological and lithological evidence for the Miocene palaeoenvironment in the Saldanha region (South Africa) Palaeogeogr. Palaeoclimatol. Palaeoecol. 1982;39:71–85. doi: 10.1016/0031-0182(82)90073-6. DOI

Dupont L.M., Linder H.P., Rommerskirchen F., Schefuß E. Climate driven rampant speciation of the Cape flora. J. Biogeogr. 2011;38:1059–1068. doi: 10.1111/j.1365-2699.2011.02476.x. DOI

Partridge T.C., Maud R.R. Geomorphic evolution of southern Africa since the Mesozoic. S. Afr. Geogr. J. 1987;90:179–208. doi: 10.10520/AJA10120750_958. DOI

Partridge T.C. Of diamonds, dinosaurs and diastrophism: 150 years of landscape evolution in southern Africa. S. Afr. Geogr. J. 1998;101:167–184. doi: 10.10520/EJC-947b4efa3. DOI

Partridge T.C., Maud R.R. Macro-scale geomorphic evolution of southern Africa. Oxf. Monogr. Geol. Geophys. 2000;40:3–18.

Hughes C.E., Atchison G.W. The Ubiquity of alpine plant radiations: From the Andes to the Hengduan Mountains. New Phytol. 2015;207:275–282. doi: 10.1111/nph.13230. PubMed DOI

Mikula O., Nicolas V., Šumbera R., Konečný A., Deneys C., Verheyen E., Bryjová A., Lemmon A.R., Lemmon E.M., Bryja J. Nuclear phylogenomics, but not mitogenomics, resolves the most successful Late Miocene radiation of African mammals (Rodentia: Muridae: Arvicanthini) Mol. Phylogenet. Evol. 2021;157:107069. doi: 10.1016/j.ympev.2021.107069. PubMed DOI

Aduse-Poku K., van Bergen E., Sáfián S., Collins S.C., Etienne R.S., Herrera-Alsina L., Brakefield P.M., Brattström O., Lohman D.J., Wahlberg N. Miocene climate and habitat change drove diversification in Bicyclus, Africa’s largest radiation of Satyrine butterflies. Syst. Biol. 2022;71:558–570. doi: 10.1093/sysbio/syab066. PubMed DOI PMC

Schulze R.E. South African Atlas of Agrohydrology and Climatology. 2001. [(accessed on 29 January 2023)]. Available online: http://fred.csir.co.za/project/tmg/agrohydrology_atlas/atlas_toc.htm.

Masters J.C., Génin F., Zhang Y., Pellen R., Huck T., Mazza P.P.A., Rabineau M., Doucouré M., Aslanian D. Biogeographic mechanisms involved in the colonization of Madagascar by African vertebrates: Rifting, rafting and runways. J. Biogeogr. 2021;48:492–510. doi: 10.1111/jbi.14032. DOI

Linder H.P., Verboom G.A. The Evolution of Regional Species Richness: The History of the Southern African Flora. Annu. Rev. Ecol. Evol. Syst. 2015;46:393–412. doi: 10.1146/annurev-ecolsys-112414-054322. DOI

Chorowicz J. The East African rift system. J. Afr. Earth Sci. 2005;43:379–410. doi: 10.1016/j.jafrearsci.2005.07.019. DOI

Zachos J., Dickens G., Zeebe R. An early Cenozoic perspective on greenhouse warming and carbon cycle dynamics. Nature. 2008;451:279–283. doi: 10.1038/nature06588. PubMed DOI

Kandziora M., Kadereit J.W., Gehrke B. Dual colonization of the Palaearctic from different regions in the Afrotropics by Senecio. J. Biogeogr. 2017;44:147–157. doi: 10.1111/jbi.12837. DOI

Assefa A., Ehrich D., Taberlet P., Nemomissa S., Brochmann C. Pleistocene colonization of afro-alpine “sky islands” by the arctic-alpine Arabis alpina. Heredity. 2007;99:133–142. doi: 10.1038/sj.hdy.6800974. PubMed DOI

Carlsen T., Bleeker W., Hurka H., Elver R., Brochmann C. Biogeography and phylogeny of Cardamine (Brassicaeae) Ann. Missouri Bot. Gard. 2009;96:215–236. doi: 10.3417/2007047. DOI

Gehrke B., Kandziora M., Pirie M.D. The evolution of dwarf shrubs in alpine environments: A case study of Alchemilla in Africa. Ann. Bot. 2016;117:121–131. doi: 10.1093/aob/mcv159. PubMed DOI PMC

Gizaw A., Brochmann C., Nemomissa S., Wondimu T., Masao C.A., Tusiime F.M., Abdi A.A., Oxelman B., Popp M., Dimitrov D. Colonization and diversification in the African ‘sky islands’: Insights from fossil-calibrated molecular dating of Lychnis (Caryophyllaceae) New Phytol. 2016;211:719–734. doi: 10.1111/nph.13937. PubMed DOI

Tusiime F.M., Gizaw A., Wondimu T., Masao C.A., Abdi A.A., Muwanika V., Trávnócek P., Nemonissa S., Popp M., Eilu G., et al. Sweet vernal grasses (Anthoxanthum) colonized African mountains along two fronts in the Late Pliocene, followed by secondary contract, polyploidization and local extinction in the Pleistocene. Mol. Ecol. 2017;26:3513–3532. doi: 10.1111/mec.14136. PubMed DOI

Pirie M.D., Kandziora M., Nürk N.M., Le Maitre N.C., Mugrabi de Kuppler A., Gehrke B., Oliver E.G.H., Bellstedt D.U. Leaps and bounds: Geographical and ecological distance constrained the colonization of the Afromontemperate by Erica. BMC Evol. Biol. 2019;19:222. doi: 10.1186/s12862-019-1545-6. PubMed DOI PMC

Axelrod D.I., Raven P.H. Late Cretaceous and Tertiary vegetation history of Africa. In: Werger M.J.A., editor. Biogeography and Ecology of Southern Africa. Springer; The Hague, The Netherlands: 1978. pp. 77–139. DOI

Harmsen R., Spence J.R., Mahaney W.C. Glacial interglacial cycles and development of the Afroalpine ecosystem on East-African mountains, II. Origins and development of the biotic component. J. Afr. Earth Sci. 1991;12:512–523. doi: 10.1016/0899-5362(91)90143-M. DOI

Nathan R., Schurr F.M., Spiegel O., Steinitz O., Trakhtenbrot A., Tsoar A. Mechanisms of long-distance seed dispersal. Trends Ecol. Evol. 2008;23:638–647. doi: 10.1016/j.tree.2008.08.003. PubMed DOI

Bergh N.G.M., Linder H.P. Cape diversification and repeated out-of-southern-Africa dispersal in paper daisies (Asteraceae- Gnaphalieae) Mol. Phylogenet. Evol. 2009;51:5–18. doi: 10.1016/j.ympev.2008.09.001. PubMed DOI

Gizaw A., Kedebe M., Nemomissa S., Ehrich D., Bekele B., Mirré V., Popp M., Brochmann C. Phylogeography of the heathers Erica arborea and E. trimera in the afro-alpine ‘sky islands’ inferred from AFLPs and plastid DNA sequences. Flora: Morphol. Distrib. Funct. Ecol. Plants. 2013;208:453–463. doi: 10.1016/j.flora.2013.07.007. DOI

Tusiime F.M., Gizaw A., Gussarova G., Nemomissa S., Popp M., Masao C.A., Wondimu T., Abdi A.A., Mirré V., Muwanika V., et al. Afro-alpine flagships revisited: Parallel adaptation, intermountain admixture and shallow genetic structuring in the giant senecios (Dendrosenecio) PLoS ONE. 2020;15:e0228979. doi: 10.1371/journal.pone.0228979. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...