Utilizing paralogues for phylogenetic reconstruction has the potential to increase species tree support and reduce gene tree discordance in target enrichment data
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
16-15134Y
Grantová Agentura České Republiky
20-10878S
Grantová Agentura České Republiky
Charles University
А19-119031290052-1
Russian Academy of Sciences
Czech Academy of Sciences
P 31512
Austrian Science Fund
Czech Science Foundation
Smithsonian Institution
PubMed
35796729
DOI
10.1111/1755-0998.13684
Knihovny.cz E-zdroje
- Klíčová slova
- angiosperms, bioinfomatics/phyloinfomatics, paralogy, species tree,
- MeSH
- fylogeneze MeSH
- genom * MeSH
- Publikační typ
- časopisecké články MeSH
The analysis of target enrichment data in phylogenetics lacks optimization toward using paralogues for phylogenetic reconstruction. We developed a novel approach of detecting paralogues and utilizing them for phylogenetic tree inference, by retrieving both ortho- and paralogous copies and creating orthologous alignments, from which the gene trees are built. We implemented this approach in ParalogWizard and demonstrate its performance in plant groups that underwent a whole genome duplication relatively recently: the subtribe Malinae (family Rosaceae), using Angiosperms353 as well as Malinae481 probes, the genus Oritrophium (family Asteraceae), using Compositae1061 probes, and the genus Amomum (family Zingiberaceae), using Zingiberaceae1180 probes. Discriminating between orthologues and paralogues reduced gene tree discordance and increased the species tree support in the case of the Malinae, but not for Oritrophium and Amomum. This may relate to the difference in the proportion of paralogous loci between the data sets, which was highest for the Malinae. Overall, retrieving paralogues for phylogenetic reconstruction following ParalogWizard has the potential to increase the species tree support and reduce gene tree discordance in target enrichment data, particularly if the proportion of paralogous loci is high.
Department of Botany Faculty of Science Charles University Prague Czech Republic
Institute of Botany The Czech Academy of Sciences Průhonice Czech Republic
Komarov Botanical Institute Russian Academy of Sciences St Petersburg Russian Federation
Zobrazit více v PubMed
Badouin, H., Gouzy, J., Grassa, C. J., Murat, F., Staton, S. E., Cottret, L., Lelandais-Brière, C., Owens, G. L., Carrère, S., Mayjonade, B., Legrand, L., Gill, N., Kane, N. C., Bowers, J. E., Hubner, S., Bellec, A., Bérard, A., Bergès, H., Blanchet, N., … Langlade, N. B. (2017). The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution. Nature, 546(7656), 148-152. https://doi.org/10.1038/nature22380
Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin, V. M., Nikolenko, S. I., Pham, S., Prjibelski, A. D., Pyshkin, A. V., Sirotkin, A. V., Vyahhi, N., Tesler, G., Alekseyev, M. A., & Pevzner, P. A. (2012). SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology, 19(5), 455-477. https://doi.org/10.1089/cmb.2012.0021
Barker, M. S., Kane, N. C., Matvienko, M., Kozik, A., Michelmore, R. W., Knapp, S. J., & Rieseberg, L. H. (2008). Multiple paleopolyploidizations during the evolution of the Compositae reveal parallel patterns of duplicate gene retention after millions of years. Molecular Biology and Evolution, 25(11), 2445-2455. https://doi.org/10.1093/molbev/msn187
Barker, M. S., Li, Z., Kidder, T. I., Reardon, C. R., Lai, Z., Oliveira, L. O., Scascitelli, M., & Rieseberg, L. H. (2016). Most Compositae (Asteraceae) are descendants of a paleohexaploid and all share a paleotetraploid ancestor with the Calyceraceae. American Journal of Botany, 103(7), 1203-1211. https://doi.org/10.3732/ajb.1600113
Beltran, I. C., & Kam, K. Y. (1984). Cytotaxonomic studies in the Zingiberaceae. Notes - Royal Botanic Garden Edinburgh, 41, 541-559.
Bouckaert, R. R. (2010). DensiTree: Making sense of sets of phylogenetic trees. Bioinformatics, 26(10), 1372-1373. https://doi.org/10.1093/bioinformatics/btq110
Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., & Madden, T. L. (2009). BLAST+: Architecture and applications. BMC Bioinformatics, 10, 421. https://doi.org/10.1186/1471-2105-10-421
Carlsen, M. M., Fér, T., Schmickl, R., Leong-Škorničková, J., Newman, M., & Kress, W. J. (2018). Resolving the rapid plant radiation of early diverging lineages in the tropical Zingiberales: Pushing the limits of genomic data. Molecular Phylogenetics and Evolution, 128, 55-68. https://doi.org/10.1016/j.ympev.2018.07.020
Chamala, S., García, N., Godden, G. T., Krishnakumar, V., Jordon-Thaden, I. E., de Smet, R., Barbazuk, W. B., Soltis, D. E., & Soltis, P. S. (2015). MarkerMiner 1.0: A new application for phylogenetic marker development using angiosperm transcriptomes. Applications in Plant Sciences, 3(4), 1400115. https://doi.org/10.3732/apps.1400115
Cronn, R., Knaus, B. J., Liston, A., Maughan, P. J., Parks, M., Syring, J. V., & Udall, J. (2012). Targeted enrichment strategies for next-generation plant biology. American Journal of Botany, 99(2), 291-311. https://doi.org/10.3732/ajb.1100356
Cuatrecasas, J. (1997). Synopsis of the neotropical genus Oritrophium (Asteraceae: Astereae). BioLlania Edición Especial, 6, 287-303.
Daccord, N., Celton, J. -M., Linsmith, G., Becker, C., Choisne, N., Schijlen, E., van de Geest, H., Bianco, L., Micheletti, D., Velasco, R., di Pierro, E. A., Gouzy, J., Rees, D. J. G., Guérif, P., Muranty, H., Durel, C. E., Laurens, F., Lespinasse, Y., Gaillard, S., & Bucher, E. (2017). High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nature Genetics, 49(7), 1099-1106. https://doi.org/10.1038/ng.3886
de Boer, H., Newman, M., Poulsen, A. D., Droop, A. J., Fér, T., Hiên, L. T. T., Hlavatá, K., Lamxay, V., Richardson, J. E., Steffen, K., & Leong-Škorničková, J. (2018). Convergent morphology in Alpinieae (Zingiberaceae): Recircumscribing amomum as a monophyletic genus. Taxon, 67(1), 6-36. https://doi.org/10.12705/671.2
Degnan, J. H., & Rosenberg, N. A. (2009). Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends in Ecology & Evolution, 24(6), 332-340. https://doi.org/10.1016/j.tree.2009.01.009
Evans, R. C., & Campbell, C. S. (2002). The origin of the apple subfamily (Maloideae; Rosaceae) is clarified by DNA sequence data from duplicated GBSSI genes. American Journal of Botany, 89(9), 1478-1484. https://doi.org/10.3732/ajb.89
Fér, T., & Schmickl, R. E. (2018). HybPhyloMaker: Target enrichment data analysis from raw reads to species trees. Evolutionary Bioinformatics, 14, 117693431774261. https://doi.org/10.1177/1176934317742613
Fitch, W. M. (1970). Distinguishing homologous from analogous proteins. Systematic Biology, 19(2), 99-113. https://doi.org/10.2307/2412448
Fitch, W. M. (2000). Homology: A personal view on some of the problems. Trends in Genetics, 16(5), 227-231. https://doi.org/10.1016/s0168-9525(00)02005-9
Frost, L., Lagomarsino, L. (2022). More-curated data outperforms more data: Treatment of cryptic and known paralogs improves phylogenomic analysis and resolves a northern Andean Origin of Freziera (Pentaphylacaceae) https://www.biorxiv.org/content/10.1101/2021.07.01.450750v1
Gardiner, A., Barker, D., Butlin, R. K., Jordan, W. C., & Ritchie, M. G. (2008). Evolution of a complex locus: Exon gain, loss and divergence at the Gr39a locus in drosophila. PLoS One, 3(1), e1513. https://doi.org/10.1371/journal.pone.0001513
Gardner, E. M., Johnson, M. G., Pereira, J. T., Puad, A. S. A., Arifiani, D., Sahromi, X., Wickett, N. J., Zerega, N. J. C., & Zerega, N. J. C. (2021). Paralogs and off-target sequences improve phylogenetic resolution in a densely sampled study of the breadfruit genus (Artocarpus, Moraceae). Systematic Biology, 70(3), 558-575. https://doi.org/10.1093/sysbio/syaa073
Givnish, T. J., Zuluaga, A., Spalink, D., Soto Gomez, M., Lam, V. K. Y., Saarela, J. M., Sass, C., Iles, W. J. D., de Sousa, D. J. L., Leebens-Mack, J., Chris Pires, J., Zomlefer, W. B., Gandolfo, M. A., Davis, J. I., Stevenson, D. W., de Pamphilis, C., Specht, C. D., Graham, S. W., Barrett, C. F., & Ané, C. (2018). Monocot plastid phylogenomics, timeline, net rates of species diversification, the power of multi-gene analyses, and a functional model for the origin of monocots. American Journal of Botany, 105(11), 1888-1910. https://doi.org/10.1002/ajb2.1178
Gizaw, A., Gorospe, J. M., Kandziora, M., Chala, D., Gustafsson, L., Zinaw, A., Salomon, L., Eilu, G., Brochmann, C., Kolář, F., & Schmickl, R. (2022). Afro-alpine flagships revisited II: elucidating the evolutionary relationships and species boundaries in the giant senecios (Dendrosenecio, Asteraceae). Alpine Botany, 132, 89-105. https://doi.org/10.1007/s00035-021-00268-5
Hellmuth, M., Wieseke, N., Lechner, M., Lenhof, H. -P., Middendorf, M., & Stadler, P. F. (2015). Phylogenomics with paralogs. Proceedings of the National Academy of Scienceshttps://www.zotero.org/google-docs/?Y4ODmA, 112(7), 2058-2063. https://doi.org/10.1073/pnas.1412770112
Huang, C.-H., Zhang, C., Liu, M., Hu, Y., Gao, T., Qi, J., & Ma, H. (2016). Multiple polyploidization events across Asteraceae with two nested events in the early history revealed by nuclear phylogenomics. Molecular Biology and Evolution, 33(11), 2820-2835. https://doi.org/10.1093/molbev/msw157
Jiao, Y., Wickett, N. J., Ayyampalayam, S., Chanderbali, A. S., Landherr, L., Ralph, P. E., Tomsho, L. P., Hu, Y., Liang, H., Soltis, P. S., Soltis, D. E., Clifton, S. W., Schlarbaum, S. E., Schuster, S. C., Ma, H., Leebens-Mack, J., & de Pamphilis, C. (2011). Ancestral polyploidy in seed plants and angiosperms. Nature, 473(7345), 97-100. https://doi.org/10.1038/nature09916
Johnson, M. G., Gardner, E. M., Liu, Y., Medina, R., Goffinet, B., Shaw, A. J., Zerega, N. J., & Wickett, N. J. (2016). HybPiper: Extracting coding sequence and introns for phylogenetics from high-throughput sequencing reads using target enrichment. Applications in Plant Sciences, 4(7), 1600016. https://doi.org/10.3732/apps.1600016
Johnson, M. G., Pokorny, L., Dodsworth, S., Botigué, L. R., Cowan, R. S., Devault, A., Eiserhardt, W. L., Epitawalage, N., Forest, F., Kim, J. T., Leebens-Mack, J. H., Leitch, I. J., Maurin, O., Soltis, D. E., Soltis, P. S., Wong, G. K., Baker, W. J., & Wickett, N. J. (2019). A universal probe set for targeted sequencing of 353 nuclear genes from any flowering plant designed using k-medoids clustering. Systematic Biology, 68(4), 594-606. https://doi.org/10.1093/sysbio/syy086
Jones, K. E., Fér, T., Schmickl, R. E., Dikow, R. B., Funk, V. A., Herrando-Moraira, S., Johnston P.R., Kilian N., Siniscalchi C.M., Susanna A., Slovák M., Thapa R., Watson L.E., Mandel J.R. (2019). An empirical assessment of a single family-wide hybrid capture locus set at multiple evolutionary timescales in Asteraceae. Applications in Plant Sciences, 7(10), e11295. https://doi.org/10.1002/aps3.11295
Junier, T., & Zdobnov, E. M. (2010). The Newick utilities: High-throughput phylogenetic tree processing in the UNIX shell. Bioinformatics, 26(13), 1669-1670. https://doi.org/10.1093/bioinformatics/btq243
Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30(4), 772-780. https://doi.org/10.1093/molbev/mst010
Kent, W. J. (2002). BLAT: The BLAST-like alignment tool. Genome Research, 12(4), 656-664. https://doi.org/10.1101/gr.229202
Larridon, I., Villaverde, T., Zuntini, A. R., Pokorny, L., Brewer, G. E., Epitawalage, N., Fairlie, I., Hahn, M., Kim, J., Maguilla, E., Maurin, O., Xanthos, M., Hipp, A. L., Forest, F., & Baker, W. J. (2020). Tackling rapid radiations with targeted sequencing. Frontiers in Plant Science, 10, 1655. https://doi.org/10.3389/fpls.2019.01655
Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv: 1303.3997 [q-bio.GN].
Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics, 25(14), 1754-1760. https://doi.org/10.1093/bioinformatics/btp324
Li, H., & Durbin, R. (2010). Fast and accurate long-read alignment with burrows-wheeler transform. Bioinformatics, 26(5), 589-595. https://doi.org/10.1093/bioinformatics/btp698
Makarova, K. S., Wolf, Y. I., Mekhedov, S. L., Mirkin, B. G., & Koonin, E. V. (2005). Ancestral paralogs and pseudoparalogs and their role in the emergence of the eukaryotic cell. Nucleic Acids Research, 33(14), 4626-4638. https://doi.org/10.1093/nar/gki775
Mandel, J. R., Dikow, R. B., Funk, V. A., Masalia, R. R., Staton, S. E., Kozik, A., Michelmore RW, Rieseberg LH, Burke, J. M. (2014). A target enrichment method for gathering phylogenetic information from hundreds of loci: An example from the Compositae. Applications in Plant Sciences, 2(2), 1300085. https://doi.org/10.3732/apps.1300085
Mandel, J. R., Dikow, R. B., Siniscalchi, C. M., Thapa, R., Watson, L. E., & Funk, V. A. (2019). A fully resolved backbone phylogeny reveals numerous dispersals and explosive diversifications throughout the history of Asteraceae. Proceedings of the National Academy of Sciences, 116(28), 14083-14088. https://doi.org/10.1073/pnas.1903871116
McLay, T. G. B., Birch, J. L., Gunn, B. F., Ning, W., Tate, J. A., Nauheimer, L., Joyce, E. M., Simpson, L., Schmidt-Lebuhn, A. N., Baker, W. J., Forest, F., & Jackson, C. J. (2021). New targets acquired: Improving locus recovery from the Angiosperms353 probe set. Applications in Plant Sciences, 9(7), e11420. https://doi.org/10.1002/aps3.11420
Moore, A. J., Vos, J. M. D., Hancock, L. P., Goolsby, E., & Edwards, E. J. (2018). Targeted enrichment of large gene families for phylogenetic inference: Phylogeny and molecular evolution of photosynthesis genes in the Portullugo clade (Caryophyllales). Systematic Biology, 67(3), 367-383. https://doi.org/10.1093/sysbio/syx078
Morales-Briones, D. F., Gehrke, B., Huang, C.-H., Liston, A., Ma, H., Marx, H. E., Tank, D. C., & Yang, Y. (2021). Analysis of paralogs in target enrichment data pinpoints multiple ancient polyploidy events in Alchemilla s.l. (Rosaceae). Systematic Biology, 71, 190-207. https://doi.org/10.1093/sysbio/syab032
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine learning in python. Journal of Machine Learning Research, 12(85), 2825-2830.
Phipps, J. B., Robertson, K. R., Smith, P. G., & Rohrer, J. R. (1990). A checklist of the subfamily Maloideae (Rosaceae). Canadian Journal of Botany, 68(10), 2209-2269. https://doi.org/10.1139/b90-288
Reyes-Chin-Wo, S., Wang, Z., Yang, X., Kozik, A., Arikit, S., Song, C., Xia L., Froenicke L., Lavelle D.O., Truco M.J., Xia R., Zhu S., Xu C., Xu H., Xu X., Cox K., Korf I., Meyers B.C., Michelmore R.W. (2017). Genome assembly with in vitro proximity ligation data and whole-genome triplication in lettuce. Nature Communications, 8, 14953. https://doi.org/10.1038/ncomms14953
Robertson, K. R., Phipps, J. B., Rohrer, J. R., & Smith, P. G. (1991). A snopsis of genera in Maloideae (Rosaceae). Systematic Botany, 16(2), 376. https://doi.org/10.2307/2419287
Sayyari, E., Whitfield, J. B., & Mirarab, S. (2017). Fragmentary gene sequences negatively impact gene tree and species tree reconstruction. Molecular Biology and Evolution, 34(12), 3279-3291. https://doi.org/10.1093/molbev/msx261
Schmickl, R., Liston, A., Zeisek, V., Oberlander, K., Weitemier, K., Straub, S. C. K., Cronn, R. C., Dreyer, L. L., & Suda, J. (2016). Phylogenetic marker development for target enrichment from transcriptome and genome skim data: The pipeline and its application in southern African oxalis (Oxalidaceae). Molecular Ecology Resources, 16(5), 1124-1135. https://doi.org/10.1111/1755-0998.12487
Siu-Ting, K., Torres-Sánchez, M., San Mauro, D., Wilcockson, D., Wilkinson, M., Pisani, D., O'Connell, M. J., & Creevey, C. J. (2019). Inadvertent paralog inclusion drives artifactual topologies and timetree estimates in phylogenomics. Molecular Biology and Evolution, 36(6), 1344-1356. https://doi.org/10.1093/molbev/msz067
Smith, M. L., & Hahn, M. W. (2021). New approaches for inferring phylogenies in the presence of paralogs. Trends in Genetics, 37(2), 174-187. https://doi.org/10.1016/j.tig.2020.08.012
Smith, S. A., Moore, M. J., Brown, J. W., & Yang, Y. (2015). Analysis of phylogenomic datasets reveals conflict, concordance, and gene duplications with examples from animals and plants. BMC Evolutionary Biology, 15(1), 150. https://doi.org/10.1186/s12862-015-0423-0
Smith, S. A., & O'Meara, B. C. (2012). treePL: Divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics, 28(20), 2689-2690. https://doi.org/10.1093/bioinformatics/bts492
Sonnhammer, E. L. L., & Koonin, E. V. (2002). Orthology, paralogy and proposed classification for paralog subtypes. Trends in Genetics, 18(12), 619-620. https://doi.org/10.1016/S0168-9525(02)02793-2
Stamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312-1313. https://doi.org/10.1093/bioinformatics/btu033
Struck, T. H. (2013). The impact of paralogy on phylogenomic studies - A case study on annelid relationships. PLoS One, 8(5), e62892. https://doi.org/10.1371/journal.pone.0062892
Stubbs, R. L., Folk, R. A., Xiang, C. -L., Chen, S., Soltis, D. E., & Cellinese, N. (2020). A phylogenomic perspective on evolution and discordance in the alpine-arctic plant clade Micranthes (Saxifragaceae). Frontiers in Plant Science, 10, 1773. https://doi.org/10.3389/fpls.2019.01773
Ufimov, R., Zeisek, V., Píšová, S., Baker, W. J., Fér, T., van Loo, M., Dobeš, C., & Schmickl, R. (2021). Relative performance of customized and universal probe sets in target enrichment: A case study in subtribe Malinae (Rosaceae). Applications in Plant Sciences, 9(7), e11442. https://doi.org/10.1002/aps3.11442
Vargas, O. M., Ortiz, E. M., & Simpson, B. B. (2017). Conflicting phylogenomic signals reveal a pattern of reticulate evolution in a recent high-Andean diversification (Asteraceae: Astereae: Diplostephium). New Phytologist, 214(4), 1736-1750. https://doi.org/10.1111/nph.14530
Vatanparast, M., Powell, A., Doyle, J. J., & Egan, A. N. (2018). Targeting legume loci: A comparison of three methods for target enrichment bait design in Leguminosae phylogenomics. Applications in Plant Sciences, 6(3), e1036. https://doi.org/10.1002/aps3.1036
Velasco, R., Zharkikh, A., Affourtit, J., Dhingra, A., Cestaro, A., Kalyanaraman, A., Fontana, P., Bhatnagar, S. K., Troggio, M., Pruss, D., Salvi, S., Pindo, M., Baldi, P., Castelletti, S., Cavaiuolo, M., Coppola, G., Costa, F., Cova, V., Dal Ri, A., … Viola, R. (2010). The genome of the domesticated apple (malus × domestica Borkh.). Nature Genetics, 42(10), 833-839. https://doi.org/10.1038/ng.654
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., … van Mulbregt, P. (2020). SciPy 1.0: Fundamental algorithms for scientific computing in python. Nature Methods, 17(3), 261-272. https://doi.org/10.1038/s41592-019-0686-2
Weitemier, K., Straub, S. C. K., Cronn, R. C., Fishbein, M., Schmickl, R., McDonnell, A., & Liston, A. (2014). Hyb-seq: Combining target enrichment and genome skimming for plant phylogenomics. Applications in Plant Sciences, 2(9), 1400042. https://doi.org/10.3732/apps.1400042
Wu, J., Wang, Z., Shi, Z., Zhang, S., Ming, R., Zhu, S., Khan, M. A., Tao, S., Korban, S. S., Wang, H., Chen, N. J., Nishio, T., Xu, X., Cong, L., Qi, K., Huang, X., Wang, Y., Zhao, X., Wu, J., … Zhang, S. (2013). The genome of the pear (Pyrus bretschneideri Rehd.). Genome Research, 23(2), 396-408. https://doi.org/10.1101/gr.144311.112
Xiang, Y., Huang, C.-H., Hu, Y., Wen, J., Li, S., Yi, T., Chen, H., Xiang, J., & Ma, H. (2017). Evolution of Rosaceae fruit types based on nuclear phylogeny in the context of geological times and genome duplication. Molecular Biology and Evolution, 34(2), 262-281. https://doi.org/10.1093/molbev/msw242
Xu, G., Guo, C., Shan, H., & Kong, H. (2012). Divergence of duplicate genes in exon-intron structure. Proceedings of the National Academy of Sciences, 109(4), 1187-1192. https://doi.org/10.1073/pnas.1109047109
Yan, Z., Smith, M. L., Du, P., Hahn, M. W., & Nakhleh, L. (2022). Species tree inference methods intended to deal with incomplete lineage sorting are robust to the presence of paralogs. Systematic Biology, 71(2), 367-381. https://doi.org/10.1093/sysbio/syab056
Yang, Y., & Smith, S. A. (2014). Orthology inference in nonmodel organisms using transcriptomes and low-coverage genomes: Improving accuracy and matrix occupancy for phylogenomics. Molecular Biology and Evolution, 31(11), 3081-3092. https://doi.org/10.1093/molbev/msu245
Zhang, C., Rabiee, M., Sayyari, E., & Mirarab, S. (2018). ASTRAL-III: Polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics, 19(6), 153. https://doi.org/10.1186/s12859-018-2129-y
Zhang, C., Scornavacca, C., Molloy, E. K., & Mirarab, S. (2020). ASTRAL-pro: Quartet-based species-tree inference despite paralogy. Molecular Biology and Evolution, 37(11), 3292-3307. https://doi.org/10.1093/molbev/msaa139
Zhang, L., Hu, J., Han, X., Li, J., Gao, Y., Richards, C. M., Zhang, C., Tian, Y., Liu, G., Gul, H., Wang, D., Tian, Y., Yang, C., Meng, M., Yuan, G., Kang, G., Wu, Y., Wang, K., Zhang, H., … Cong, P. (2019). A high-quality apple genome assembly reveals the association of a retrotransposon and red fruit colour. Nature Communications, 10(1), 1494. https://doi.org/10.1038/s41467-019-09518-x
Zhang, S.-D., Jin, J.-J., Chen, S.-Y., Chase, M. W., Soltis, D. E., Li, H.-T., Yang, J. B., Li, D. Z., & Yi, T.-S. (2017). Diversification of Rosaceae since the late cretaceous based on plastid phylogenomics. New Phytologist, 214(3), 1355-1367. https://doi.org/10.1111/nph.14461
Zhou, W., Soghigian, J., & Xiang, Q.-Y. (2022). A new pipeline for removing paralogs in target enrichment data. Systematic Biology, 7(2), 410-425. https://doi.org/10.1093/sysbio/syab044