Utilizing paralogues for phylogenetic reconstruction has the potential to increase species tree support and reduce gene tree discordance in target enrichment data

. 2022 Nov ; 22 (8) : 3018-3034. [epub] 20220729

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35796729

Grantová podpora
16-15134Y Grantová Agentura České Republiky
20-10878S Grantová Agentura České Republiky
Charles University
А19-119031290052-1 Russian Academy of Sciences
Czech Academy of Sciences
P 31512 Austrian Science Fund
Czech Science Foundation
Smithsonian Institution

The analysis of target enrichment data in phylogenetics lacks optimization toward using paralogues for phylogenetic reconstruction. We developed a novel approach of detecting paralogues and utilizing them for phylogenetic tree inference, by retrieving both ortho- and paralogous copies and creating orthologous alignments, from which the gene trees are built. We implemented this approach in ParalogWizard and demonstrate its performance in plant groups that underwent a whole genome duplication relatively recently: the subtribe Malinae (family Rosaceae), using Angiosperms353 as well as Malinae481 probes, the genus Oritrophium (family Asteraceae), using Compositae1061 probes, and the genus Amomum (family Zingiberaceae), using Zingiberaceae1180 probes. Discriminating between orthologues and paralogues reduced gene tree discordance and increased the species tree support in the case of the Malinae, but not for Oritrophium and Amomum. This may relate to the difference in the proportion of paralogous loci between the data sets, which was highest for the Malinae. Overall, retrieving paralogues for phylogenetic reconstruction following ParalogWizard has the potential to increase the species tree support and reduce gene tree discordance in target enrichment data, particularly if the proportion of paralogous loci is high.

Zobrazit více v PubMed

Badouin, H., Gouzy, J., Grassa, C. J., Murat, F., Staton, S. E., Cottret, L., Lelandais-Brière, C., Owens, G. L., Carrère, S., Mayjonade, B., Legrand, L., Gill, N., Kane, N. C., Bowers, J. E., Hubner, S., Bellec, A., Bérard, A., Bergès, H., Blanchet, N., … Langlade, N. B. (2017). The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution. Nature, 546(7656), 148-152. https://doi.org/10.1038/nature22380

Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin, V. M., Nikolenko, S. I., Pham, S., Prjibelski, A. D., Pyshkin, A. V., Sirotkin, A. V., Vyahhi, N., Tesler, G., Alekseyev, M. A., & Pevzner, P. A. (2012). SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology, 19(5), 455-477. https://doi.org/10.1089/cmb.2012.0021

Barker, M. S., Kane, N. C., Matvienko, M., Kozik, A., Michelmore, R. W., Knapp, S. J., & Rieseberg, L. H. (2008). Multiple paleopolyploidizations during the evolution of the Compositae reveal parallel patterns of duplicate gene retention after millions of years. Molecular Biology and Evolution, 25(11), 2445-2455. https://doi.org/10.1093/molbev/msn187

Barker, M. S., Li, Z., Kidder, T. I., Reardon, C. R., Lai, Z., Oliveira, L. O., Scascitelli, M., & Rieseberg, L. H. (2016). Most Compositae (Asteraceae) are descendants of a paleohexaploid and all share a paleotetraploid ancestor with the Calyceraceae. American Journal of Botany, 103(7), 1203-1211. https://doi.org/10.3732/ajb.1600113

Beltran, I. C., & Kam, K. Y. (1984). Cytotaxonomic studies in the Zingiberaceae. Notes - Royal Botanic Garden Edinburgh, 41, 541-559.

Bouckaert, R. R. (2010). DensiTree: Making sense of sets of phylogenetic trees. Bioinformatics, 26(10), 1372-1373. https://doi.org/10.1093/bioinformatics/btq110

Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., & Madden, T. L. (2009). BLAST+: Architecture and applications. BMC Bioinformatics, 10, 421. https://doi.org/10.1186/1471-2105-10-421

Carlsen, M. M., Fér, T., Schmickl, R., Leong-Škorničková, J., Newman, M., & Kress, W. J. (2018). Resolving the rapid plant radiation of early diverging lineages in the tropical Zingiberales: Pushing the limits of genomic data. Molecular Phylogenetics and Evolution, 128, 55-68. https://doi.org/10.1016/j.ympev.2018.07.020

Chamala, S., García, N., Godden, G. T., Krishnakumar, V., Jordon-Thaden, I. E., de Smet, R., Barbazuk, W. B., Soltis, D. E., & Soltis, P. S. (2015). MarkerMiner 1.0: A new application for phylogenetic marker development using angiosperm transcriptomes. Applications in Plant Sciences, 3(4), 1400115. https://doi.org/10.3732/apps.1400115

Cronn, R., Knaus, B. J., Liston, A., Maughan, P. J., Parks, M., Syring, J. V., & Udall, J. (2012). Targeted enrichment strategies for next-generation plant biology. American Journal of Botany, 99(2), 291-311. https://doi.org/10.3732/ajb.1100356

Cuatrecasas, J. (1997). Synopsis of the neotropical genus Oritrophium (Asteraceae: Astereae). BioLlania Edición Especial, 6, 287-303.

Daccord, N., Celton, J. -M., Linsmith, G., Becker, C., Choisne, N., Schijlen, E., van de Geest, H., Bianco, L., Micheletti, D., Velasco, R., di Pierro, E. A., Gouzy, J., Rees, D. J. G., Guérif, P., Muranty, H., Durel, C. E., Laurens, F., Lespinasse, Y., Gaillard, S., & Bucher, E. (2017). High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nature Genetics, 49(7), 1099-1106. https://doi.org/10.1038/ng.3886

de Boer, H., Newman, M., Poulsen, A. D., Droop, A. J., Fér, T., Hiên, L. T. T., Hlavatá, K., Lamxay, V., Richardson, J. E., Steffen, K., & Leong-Škorničková, J. (2018). Convergent morphology in Alpinieae (Zingiberaceae): Recircumscribing amomum as a monophyletic genus. Taxon, 67(1), 6-36. https://doi.org/10.12705/671.2

Degnan, J. H., & Rosenberg, N. A. (2009). Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends in Ecology & Evolution, 24(6), 332-340. https://doi.org/10.1016/j.tree.2009.01.009

Evans, R. C., & Campbell, C. S. (2002). The origin of the apple subfamily (Maloideae; Rosaceae) is clarified by DNA sequence data from duplicated GBSSI genes. American Journal of Botany, 89(9), 1478-1484. https://doi.org/10.3732/ajb.89

Fér, T., & Schmickl, R. E. (2018). HybPhyloMaker: Target enrichment data analysis from raw reads to species trees. Evolutionary Bioinformatics, 14, 117693431774261. https://doi.org/10.1177/1176934317742613

Fitch, W. M. (1970). Distinguishing homologous from analogous proteins. Systematic Biology, 19(2), 99-113. https://doi.org/10.2307/2412448

Fitch, W. M. (2000). Homology: A personal view on some of the problems. Trends in Genetics, 16(5), 227-231. https://doi.org/10.1016/s0168-9525(00)02005-9

Frost, L., Lagomarsino, L. (2022). More-curated data outperforms more data: Treatment of cryptic and known paralogs improves phylogenomic analysis and resolves a northern Andean Origin of Freziera (Pentaphylacaceae) https://www.biorxiv.org/content/10.1101/2021.07.01.450750v1

Gardiner, A., Barker, D., Butlin, R. K., Jordan, W. C., & Ritchie, M. G. (2008). Evolution of a complex locus: Exon gain, loss and divergence at the Gr39a locus in drosophila. PLoS One, 3(1), e1513. https://doi.org/10.1371/journal.pone.0001513

Gardner, E. M., Johnson, M. G., Pereira, J. T., Puad, A. S. A., Arifiani, D., Sahromi, X., Wickett, N. J., Zerega, N. J. C., & Zerega, N. J. C. (2021). Paralogs and off-target sequences improve phylogenetic resolution in a densely sampled study of the breadfruit genus (Artocarpus, Moraceae). Systematic Biology, 70(3), 558-575. https://doi.org/10.1093/sysbio/syaa073

Givnish, T. J., Zuluaga, A., Spalink, D., Soto Gomez, M., Lam, V. K. Y., Saarela, J. M., Sass, C., Iles, W. J. D., de Sousa, D. J. L., Leebens-Mack, J., Chris Pires, J., Zomlefer, W. B., Gandolfo, M. A., Davis, J. I., Stevenson, D. W., de Pamphilis, C., Specht, C. D., Graham, S. W., Barrett, C. F., & Ané, C. (2018). Monocot plastid phylogenomics, timeline, net rates of species diversification, the power of multi-gene analyses, and a functional model for the origin of monocots. American Journal of Botany, 105(11), 1888-1910. https://doi.org/10.1002/ajb2.1178

Gizaw, A., Gorospe, J. M., Kandziora, M., Chala, D., Gustafsson, L., Zinaw, A., Salomon, L., Eilu, G., Brochmann, C., Kolář, F., & Schmickl, R. (2022). Afro-alpine flagships revisited II: elucidating the evolutionary relationships and species boundaries in the giant senecios (Dendrosenecio, Asteraceae). Alpine Botany, 132, 89-105. https://doi.org/10.1007/s00035-021-00268-5

Hellmuth, M., Wieseke, N., Lechner, M., Lenhof, H. -P., Middendorf, M., & Stadler, P. F. (2015). Phylogenomics with paralogs. Proceedings of the National Academy of Scienceshttps://www.zotero.org/google-docs/?Y4ODmA, 112(7), 2058-2063. https://doi.org/10.1073/pnas.1412770112

Huang, C.-H., Zhang, C., Liu, M., Hu, Y., Gao, T., Qi, J., & Ma, H. (2016). Multiple polyploidization events across Asteraceae with two nested events in the early history revealed by nuclear phylogenomics. Molecular Biology and Evolution, 33(11), 2820-2835. https://doi.org/10.1093/molbev/msw157

Jiao, Y., Wickett, N. J., Ayyampalayam, S., Chanderbali, A. S., Landherr, L., Ralph, P. E., Tomsho, L. P., Hu, Y., Liang, H., Soltis, P. S., Soltis, D. E., Clifton, S. W., Schlarbaum, S. E., Schuster, S. C., Ma, H., Leebens-Mack, J., & de Pamphilis, C. (2011). Ancestral polyploidy in seed plants and angiosperms. Nature, 473(7345), 97-100. https://doi.org/10.1038/nature09916

Johnson, M. G., Gardner, E. M., Liu, Y., Medina, R., Goffinet, B., Shaw, A. J., Zerega, N. J., & Wickett, N. J. (2016). HybPiper: Extracting coding sequence and introns for phylogenetics from high-throughput sequencing reads using target enrichment. Applications in Plant Sciences, 4(7), 1600016. https://doi.org/10.3732/apps.1600016

Johnson, M. G., Pokorny, L., Dodsworth, S., Botigué, L. R., Cowan, R. S., Devault, A., Eiserhardt, W. L., Epitawalage, N., Forest, F., Kim, J. T., Leebens-Mack, J. H., Leitch, I. J., Maurin, O., Soltis, D. E., Soltis, P. S., Wong, G. K., Baker, W. J., & Wickett, N. J. (2019). A universal probe set for targeted sequencing of 353 nuclear genes from any flowering plant designed using k-medoids clustering. Systematic Biology, 68(4), 594-606. https://doi.org/10.1093/sysbio/syy086

Jones, K. E., Fér, T., Schmickl, R. E., Dikow, R. B., Funk, V. A., Herrando-Moraira, S., Johnston P.R., Kilian N., Siniscalchi C.M., Susanna A., Slovák M., Thapa R., Watson L.E., Mandel J.R. (2019). An empirical assessment of a single family-wide hybrid capture locus set at multiple evolutionary timescales in Asteraceae. Applications in Plant Sciences, 7(10), e11295. https://doi.org/10.1002/aps3.11295

Junier, T., & Zdobnov, E. M. (2010). The Newick utilities: High-throughput phylogenetic tree processing in the UNIX shell. Bioinformatics, 26(13), 1669-1670. https://doi.org/10.1093/bioinformatics/btq243

Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30(4), 772-780. https://doi.org/10.1093/molbev/mst010

Kent, W. J. (2002). BLAT: The BLAST-like alignment tool. Genome Research, 12(4), 656-664. https://doi.org/10.1101/gr.229202

Larridon, I., Villaverde, T., Zuntini, A. R., Pokorny, L., Brewer, G. E., Epitawalage, N., Fairlie, I., Hahn, M., Kim, J., Maguilla, E., Maurin, O., Xanthos, M., Hipp, A. L., Forest, F., & Baker, W. J. (2020). Tackling rapid radiations with targeted sequencing. Frontiers in Plant Science, 10, 1655. https://doi.org/10.3389/fpls.2019.01655

Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv: 1303.3997 [q-bio.GN].

Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics, 25(14), 1754-1760. https://doi.org/10.1093/bioinformatics/btp324

Li, H., & Durbin, R. (2010). Fast and accurate long-read alignment with burrows-wheeler transform. Bioinformatics, 26(5), 589-595. https://doi.org/10.1093/bioinformatics/btp698

Makarova, K. S., Wolf, Y. I., Mekhedov, S. L., Mirkin, B. G., & Koonin, E. V. (2005). Ancestral paralogs and pseudoparalogs and their role in the emergence of the eukaryotic cell. Nucleic Acids Research, 33(14), 4626-4638. https://doi.org/10.1093/nar/gki775

Mandel, J. R., Dikow, R. B., Funk, V. A., Masalia, R. R., Staton, S. E., Kozik, A., Michelmore RW, Rieseberg LH, Burke, J. M. (2014). A target enrichment method for gathering phylogenetic information from hundreds of loci: An example from the Compositae. Applications in Plant Sciences, 2(2), 1300085. https://doi.org/10.3732/apps.1300085

Mandel, J. R., Dikow, R. B., Siniscalchi, C. M., Thapa, R., Watson, L. E., & Funk, V. A. (2019). A fully resolved backbone phylogeny reveals numerous dispersals and explosive diversifications throughout the history of Asteraceae. Proceedings of the National Academy of Sciences, 116(28), 14083-14088. https://doi.org/10.1073/pnas.1903871116

McLay, T. G. B., Birch, J. L., Gunn, B. F., Ning, W., Tate, J. A., Nauheimer, L., Joyce, E. M., Simpson, L., Schmidt-Lebuhn, A. N., Baker, W. J., Forest, F., & Jackson, C. J. (2021). New targets acquired: Improving locus recovery from the Angiosperms353 probe set. Applications in Plant Sciences, 9(7), e11420. https://doi.org/10.1002/aps3.11420

Moore, A. J., Vos, J. M. D., Hancock, L. P., Goolsby, E., & Edwards, E. J. (2018). Targeted enrichment of large gene families for phylogenetic inference: Phylogeny and molecular evolution of photosynthesis genes in the Portullugo clade (Caryophyllales). Systematic Biology, 67(3), 367-383. https://doi.org/10.1093/sysbio/syx078

Morales-Briones, D. F., Gehrke, B., Huang, C.-H., Liston, A., Ma, H., Marx, H. E., Tank, D. C., & Yang, Y. (2021). Analysis of paralogs in target enrichment data pinpoints multiple ancient polyploidy events in Alchemilla s.l. (Rosaceae). Systematic Biology, 71, 190-207. https://doi.org/10.1093/sysbio/syab032

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine learning in python. Journal of Machine Learning Research, 12(85), 2825-2830.

Phipps, J. B., Robertson, K. R., Smith, P. G., & Rohrer, J. R. (1990). A checklist of the subfamily Maloideae (Rosaceae). Canadian Journal of Botany, 68(10), 2209-2269. https://doi.org/10.1139/b90-288

Reyes-Chin-Wo, S., Wang, Z., Yang, X., Kozik, A., Arikit, S., Song, C., Xia L., Froenicke L., Lavelle D.O., Truco M.J., Xia R., Zhu S., Xu C., Xu H., Xu X., Cox K., Korf I., Meyers B.C., Michelmore R.W. (2017). Genome assembly with in vitro proximity ligation data and whole-genome triplication in lettuce. Nature Communications, 8, 14953. https://doi.org/10.1038/ncomms14953

Robertson, K. R., Phipps, J. B., Rohrer, J. R., & Smith, P. G. (1991). A snopsis of genera in Maloideae (Rosaceae). Systematic Botany, 16(2), 376. https://doi.org/10.2307/2419287

Sayyari, E., Whitfield, J. B., & Mirarab, S. (2017). Fragmentary gene sequences negatively impact gene tree and species tree reconstruction. Molecular Biology and Evolution, 34(12), 3279-3291. https://doi.org/10.1093/molbev/msx261

Schmickl, R., Liston, A., Zeisek, V., Oberlander, K., Weitemier, K., Straub, S. C. K., Cronn, R. C., Dreyer, L. L., & Suda, J. (2016). Phylogenetic marker development for target enrichment from transcriptome and genome skim data: The pipeline and its application in southern African oxalis (Oxalidaceae). Molecular Ecology Resources, 16(5), 1124-1135. https://doi.org/10.1111/1755-0998.12487

Siu-Ting, K., Torres-Sánchez, M., San Mauro, D., Wilcockson, D., Wilkinson, M., Pisani, D., O'Connell, M. J., & Creevey, C. J. (2019). Inadvertent paralog inclusion drives artifactual topologies and timetree estimates in phylogenomics. Molecular Biology and Evolution, 36(6), 1344-1356. https://doi.org/10.1093/molbev/msz067

Smith, M. L., & Hahn, M. W. (2021). New approaches for inferring phylogenies in the presence of paralogs. Trends in Genetics, 37(2), 174-187. https://doi.org/10.1016/j.tig.2020.08.012

Smith, S. A., Moore, M. J., Brown, J. W., & Yang, Y. (2015). Analysis of phylogenomic datasets reveals conflict, concordance, and gene duplications with examples from animals and plants. BMC Evolutionary Biology, 15(1), 150. https://doi.org/10.1186/s12862-015-0423-0

Smith, S. A., & O'Meara, B. C. (2012). treePL: Divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics, 28(20), 2689-2690. https://doi.org/10.1093/bioinformatics/bts492

Sonnhammer, E. L. L., & Koonin, E. V. (2002). Orthology, paralogy and proposed classification for paralog subtypes. Trends in Genetics, 18(12), 619-620. https://doi.org/10.1016/S0168-9525(02)02793-2

Stamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312-1313. https://doi.org/10.1093/bioinformatics/btu033

Struck, T. H. (2013). The impact of paralogy on phylogenomic studies - A case study on annelid relationships. PLoS One, 8(5), e62892. https://doi.org/10.1371/journal.pone.0062892

Stubbs, R. L., Folk, R. A., Xiang, C. -L., Chen, S., Soltis, D. E., & Cellinese, N. (2020). A phylogenomic perspective on evolution and discordance in the alpine-arctic plant clade Micranthes (Saxifragaceae). Frontiers in Plant Science, 10, 1773. https://doi.org/10.3389/fpls.2019.01773

Ufimov, R., Zeisek, V., Píšová, S., Baker, W. J., Fér, T., van Loo, M., Dobeš, C., & Schmickl, R. (2021). Relative performance of customized and universal probe sets in target enrichment: A case study in subtribe Malinae (Rosaceae). Applications in Plant Sciences, 9(7), e11442. https://doi.org/10.1002/aps3.11442

Vargas, O. M., Ortiz, E. M., & Simpson, B. B. (2017). Conflicting phylogenomic signals reveal a pattern of reticulate evolution in a recent high-Andean diversification (Asteraceae: Astereae: Diplostephium). New Phytologist, 214(4), 1736-1750. https://doi.org/10.1111/nph.14530

Vatanparast, M., Powell, A., Doyle, J. J., & Egan, A. N. (2018). Targeting legume loci: A comparison of three methods for target enrichment bait design in Leguminosae phylogenomics. Applications in Plant Sciences, 6(3), e1036. https://doi.org/10.1002/aps3.1036

Velasco, R., Zharkikh, A., Affourtit, J., Dhingra, A., Cestaro, A., Kalyanaraman, A., Fontana, P., Bhatnagar, S. K., Troggio, M., Pruss, D., Salvi, S., Pindo, M., Baldi, P., Castelletti, S., Cavaiuolo, M., Coppola, G., Costa, F., Cova, V., Dal Ri, A., … Viola, R. (2010). The genome of the domesticated apple (malus × domestica Borkh.). Nature Genetics, 42(10), 833-839. https://doi.org/10.1038/ng.654

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., … van Mulbregt, P. (2020). SciPy 1.0: Fundamental algorithms for scientific computing in python. Nature Methods, 17(3), 261-272. https://doi.org/10.1038/s41592-019-0686-2

Weitemier, K., Straub, S. C. K., Cronn, R. C., Fishbein, M., Schmickl, R., McDonnell, A., & Liston, A. (2014). Hyb-seq: Combining target enrichment and genome skimming for plant phylogenomics. Applications in Plant Sciences, 2(9), 1400042. https://doi.org/10.3732/apps.1400042

Wu, J., Wang, Z., Shi, Z., Zhang, S., Ming, R., Zhu, S., Khan, M. A., Tao, S., Korban, S. S., Wang, H., Chen, N. J., Nishio, T., Xu, X., Cong, L., Qi, K., Huang, X., Wang, Y., Zhao, X., Wu, J., … Zhang, S. (2013). The genome of the pear (Pyrus bretschneideri Rehd.). Genome Research, 23(2), 396-408. https://doi.org/10.1101/gr.144311.112

Xiang, Y., Huang, C.-H., Hu, Y., Wen, J., Li, S., Yi, T., Chen, H., Xiang, J., & Ma, H. (2017). Evolution of Rosaceae fruit types based on nuclear phylogeny in the context of geological times and genome duplication. Molecular Biology and Evolution, 34(2), 262-281. https://doi.org/10.1093/molbev/msw242

Xu, G., Guo, C., Shan, H., & Kong, H. (2012). Divergence of duplicate genes in exon-intron structure. Proceedings of the National Academy of Sciences, 109(4), 1187-1192. https://doi.org/10.1073/pnas.1109047109

Yan, Z., Smith, M. L., Du, P., Hahn, M. W., & Nakhleh, L. (2022). Species tree inference methods intended to deal with incomplete lineage sorting are robust to the presence of paralogs. Systematic Biology, 71(2), 367-381. https://doi.org/10.1093/sysbio/syab056

Yang, Y., & Smith, S. A. (2014). Orthology inference in nonmodel organisms using transcriptomes and low-coverage genomes: Improving accuracy and matrix occupancy for phylogenomics. Molecular Biology and Evolution, 31(11), 3081-3092. https://doi.org/10.1093/molbev/msu245

Zhang, C., Rabiee, M., Sayyari, E., & Mirarab, S. (2018). ASTRAL-III: Polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics, 19(6), 153. https://doi.org/10.1186/s12859-018-2129-y

Zhang, C., Scornavacca, C., Molloy, E. K., & Mirarab, S. (2020). ASTRAL-pro: Quartet-based species-tree inference despite paralogy. Molecular Biology and Evolution, 37(11), 3292-3307. https://doi.org/10.1093/molbev/msaa139

Zhang, L., Hu, J., Han, X., Li, J., Gao, Y., Richards, C. M., Zhang, C., Tian, Y., Liu, G., Gul, H., Wang, D., Tian, Y., Yang, C., Meng, M., Yuan, G., Kang, G., Wu, Y., Wang, K., Zhang, H., … Cong, P. (2019). A high-quality apple genome assembly reveals the association of a retrotransposon and red fruit colour. Nature Communications, 10(1), 1494. https://doi.org/10.1038/s41467-019-09518-x

Zhang, S.-D., Jin, J.-J., Chen, S.-Y., Chase, M. W., Soltis, D. E., Li, H.-T., Yang, J. B., Li, D. Z., & Yi, T.-S. (2017). Diversification of Rosaceae since the late cretaceous based on plastid phylogenomics. New Phytologist, 214(3), 1355-1367. https://doi.org/10.1111/nph.14461

Zhou, W., Soghigian, J., & Xiang, Q.-Y. (2022). A new pipeline for removing paralogs in target enrichment data. Systematic Biology, 7(2), 410-425. https://doi.org/10.1093/sysbio/syab044

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...