New fossil insect order Permopsocida elucidates major radiation and evolution of suction feeding in hemimetabolous insects (Hexapoda: Acercaria)

. 2016 Mar 10 ; 6 () : 23004. [epub] 20160310

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26961785

With nearly 100,000 species, the Acercaria (lice, plant lices, thrips, bugs) including number of economically important species is one of the most successful insect lineages. However, its phylogeny and evolution of mouthparts among other issues remain debatable. Here new methods of preparation permitted the comprehensive anatomical description of insect inclusions from mid-Cretaceous Burmese amber in astonishing detail. These "missing links" fossils, attributed to a new order Permopsocida, provide crucial evidence for reconstructing the phylogenetic relationships in the Acercaria, supporting its monophyly, and questioning the position of Psocodea as sister group of holometabolans in the most recent phylogenomic study. Permopsocida resolves as sister group of Thripida + Hemiptera and represents an evolutionary link documenting the transition from chewing to piercing mouthparts in relation to suction feeding. Identification of gut contents as angiosperm pollen documents an ecological role of Permopsocida as early pollen feeders with relatively unspecialized mouthparts. This group existed for 185 million years, but has never been diverse and was superseded by new pollenivorous pollinators during the Cretaceous co-evolution of insects and flowers. The key innovation of suction feeding with piercing mouthparts is identified as main event that triggered the huge post-Carboniferous radiation of hemipterans, and facilitated the spreading of pathogenic vectors.

Zobrazit více v PubMed

Grimaldi D. A. & Engel M. S. Evolution of the Insects. Cambridge: Cambridge Univ. Press (2005).

Misof B. et al. Phylogenomics resolves the timing and pattern of insect evolution. Science 346, 763–767, doi: 10.1126/science.1257570 (2014). PubMed DOI

Li H. et al. Higher-level phylogeny of paraneopteran insects inferred from mitochondrial genome sequences. Sci. Rep. 5, 8527, doi: 10.1038/srep08527 (2015). PubMed DOI PMC

Emeljanov A. F. Evolutionary scenario of rostrum formation in the Rhynchota. Entomol. Rev. 82, 1197–1206 (2002).

Friedemann K., Spangenberg R., Yoshizawa K. & Beutel R. G. Evolution of attachment structures in the highly diverse Acercaria (Hexapoda). Cladistics 30, 170–201, doi: 10.1111/cla.12030 (2013). PubMed DOI

Rasnitsyn A. P. Cohors Cimiciformes Laicharting, 1781. In: Rasnitsyn A. P., Quicke D. L. J. editors. History of Insects. Dordrecht: Kluwer Academic Publishers: pp. 104–57 (2002).

Tillyard R. J. Kansas Permian insects. 8. Copeognatha. Am. J. Sci. 11, 314–349 (1926).

Shcherbakov D. Y. A new genus of the Paleozoic order Hypoperlida. Russian Entomol. J. 3, 33–36 (1994).

Emeljanov A. F. The evolutionary role and fate of the primary ovipositor in insects. Entomol. Rev. 94, 367–396 (2014).

Nel A. et al. Traits and evolution of wing venation pattern in paraneopteran insects. J. Morphol. 273, 480–506, doi: 10.1002/jmor.11036. (2012). PubMed DOI

Grimaldi D. A., Engel M.C. & Nascimbene P. C. Fossiliferous Cretaceous amber from Myanmar (Burma): its rediscovery, biotic diversity, and paleontological significance. Am. Mus. Novit. 3361, 1–71, doi: 10.1206/0003-0082(2002)361<0001:FCAFMB>2.0.CO;2 (2002). DOI

Ross A., Mellish C., York P. & Crighton B. Burmese amber. In: Penney D. editor. Biodiversity of fossils in amber from the major world deposits. Rochdale: Siri Scientific Press: pp 208–235 (2010).

Shi G. et al. Age constraint on Burmese amber based on U-Pb dating of zircons. Cretaceous Res. 37, 155–163, doi: 10.1016/j.cretres.2012.03.014 (2012). DOI

Poinar G. O. Jr., Lambert J. B. & Wu Y. Araucarian source of fossiliferous Burmese amber: spectroscopic and anatomical evidence. J. Bot. Res. Inst. Texas 1, 449–455. (2007).

Emeljanov A. F. [On the problem of classification and phylogeny of the family Delphacidae (Homoptera, Cicadina) taking into consideration larval characters]. Entomol. Obozr. 74, 780–794. (in Russian with English summary; English translation published in Entomol. Rev. 75, 134–150) (1995) (1995).

Dmitriev D. A. Homologies of the head of Membracoidea based on nymphal morphology with notes on other groups of Auchenorrhyncha (Hemiptera). Eur. J. Entomol. 107, 597–613 (2010).

Beutel R. G. & Weide D. Cephalic anatomy of Zorotypus hubbardi (Hexapoda: Zoraptera): new evidence for a relationship with Acercaria. Zoomorphol. 124, 121–136, doi: 10.1007/s00435-005-0117-z (2005). DOI

Seeger W. Funktionsmorphologie an Spezialbildungen der Fühlergeissel von Psocoptera und anderen Paraneoptera (Insecta); Psocodea als monophyletische Gruppe. Z. Morphol. Tiere. 81, 137–159 (1975).

Goloboff P. A., Farris J. A. & Nixon K. C. TNT, a free program for phylogenetic analysis. Cladistics 24: 774–786, doi: 10.1111/j.1096-0031.2008.00217.x (2008). DOI

Mickoleit E. Untersuchungen zur Kopfmorphologie der Thysanopteren. Zool. Jb. Anat. 81, 101–150 (1963).

Reyne A. Untersuchungen über die Mundteile der Thysanopteren. Zool. Jb. Anat. 49, 391–500 (1927).

Heming B. S. Structure and function of the mouthparts in larvae of Haplothrips verbasci (Osborn) (Thysanoptera, Tubulifera, Phlaeothripidae). J. Morphol. 156, 1–38 (1978).

Bhatti J. S. New perspectives in the structure and taxonomy of Tubulifera. Zoology 5, 147–176 (1998).

Bourgoin T. Valeur morphologique de la lame maxillaire chez les Hemiptera; remarques phylogénétiques. Ann. Soc. Entomol. Fr. (NS) 22, 413–422 (1986).

Spangenberg R. et al. The cephalic morphology of the Gondwanan key taxon Hackeriella (Coleorrhyncha, Hemiptera). Arthropod Struct. Dev. 42, 315–337. PMID: 23583344 (2013). PubMed

Spangenberg R. The evolution of head structures in Acercaria (Insecta). PhD Thesis, Friedrich-Schiller-Universität Jena, 413 pp. (2014).

Parsons M. C. The morphology and possible origin of the Hemipteran loral lobes. Can. J. Zool. 52, 189–202 (1974).

Evans J. W. The maxillary plate of Homoptera Auchenorrhyncha. J. Entomol. (A). 48, 43–47 (1973).

Nel P. et al. Redefining the Thripida (Insecta: Paraneoptera). J. Syst. Palaeontol. 12, 865–878, doi: 10.1080/14772019.2013.841781 (2014). DOI

Singh S. Morphology of the head of Homoptera. Res. Bull. Panjab Univ. (NS) 22, 261–316 (1971).

Krassilov V. A., Rasnitsyn A. P. & Afonin S. A. Pollen eaters and pollen morphology: co-evolution through the Permian and Mesozoic. Afr. Invertebr. 48, 3–11 (2007).

Labandeira C. C. A paleobiologic perspective on plant-insect interactions. Curr. Opin. Plant Biol. 16, 414–421, doi: 10.1016/j.pbi.2013.06.00 (2013). PubMed DOI

Nel P. et al. From Carboniferous to Recent: wing venation enlightens evolution of thysanopteran lineage. J. Syst. Palaeontol. 10, 385–399, doi: 10.1080/14772019.2011.598578 (2012). DOI

Nel A. et al. The earliest-known holometabolous insects. Nature 503, 257–261, doi: 10.1038/nature12629 (2013). PubMed DOI

Azar D., Hajar L., Indary C. & Nel A. Paramesopsocidae, a new Mesozoic psocid family (Insecta: Psocodea “Psocoptera”: Psocomorpha). Ann. Soc. Entomol. Fr. (NS) 44, 459–470, doi: 10.1080/00379271.2008.10697581 (2008). DOI

Grimaldi D. The co-radiations of pollinating insects and angiosperms in the Cretaceous. Ann. Missouri. Bot. Gard. 86, 373–406, doi: 10.2307/2666181 (1999). DOI

Rehan S. M., Leys R. & Schwarz M. P. First evidence for a massive extinction event affecting bees close to the K-T boundary. PLOS ONE 8 (10), e76683, doi: 10.1371/journal.pone.0076683 (2013). PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...