Bayesian modelling of the fossil record enlightens the evolutionary history of Hemiptera

. 2025 Sep ; 292 (2054) : 20251133. [epub] 20250910

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40925570

Grantová podpora
Agence Nationale de la Recherche

Hemiptera, the fifth most diverse insect order, are characterized by their high diversity in deep time, with 145 known extinct families. However, the precise timing of the origin of Hemiptera lineages has remained uncertain. Traditional approaches, molecular clock analyses and fossil calibrations, have overlooked much of this extinct diversity by failing to incorporate key fossil data. Furthermore, no estimates have been proposed for the timing of the extinction of Hemiptera's fossil lineages. In this study, we use the recently developed Bayesian Brownian Bridge model, which estimates the timing of lineage origin and extinction through fossil-based Bayesian modelling, to provide a temporal framework for the rise and fall of 310 major hemipteran lineages. Our results support an early Pennsylvanian origin of Hemiptera, and indicate that the major hemipteran lineages originated between the late Carboniferous and Late Permian (Pennsylvanian-Lopingian). Additionally, our analyses reveal a radiation of Hemiptera during the Permian (Guadalupian), followed by multiple extinctions of ancient hemipteran lineages from the Permo-Triassic boundary to the mid-Triassic. A second major radiation occurred during the Cretaceous, coinciding with numerous extinctions of relic and newly emerging Cretaceous lineages, highlighting a faunal turnover. Our study provides a holistic fossil-based picture of the evolutionary history of Hemiptera.

Zobrazit více v PubMed

Bartlett CR, Deitz LL, Dmitriev DA, Sanborn AF, Soulier‐Perkins A, Wallace MS. 2018. The diversity of the true hoppers (Hemiptera: Auchenorrhyncha). In Insect biodiversity: science and society (eds Foottit R, Adler P), pp. 501–590, vol. II, 1st edn. Blackwell Publishing. ( 10.1002/9781118945582) DOI

Streito JC, Germain JF. 2020. Chapitre 23: Ordre des Hemiptera (Hémiptères). In Les insectes du monde: biodiversité, classification, clés de détermination des familles (ed. Aberlenc HP), p. 966. Museo Editions, Editions Quae.

Backus EA. 1988. Sensory systems and behaviours which mediate hemipteran plant-feeding: a taxonomic overview. J. Insect Physiol. 34, 151–165. ( 10.1016/0022-1910(88)90045-5) DOI

Forero D. 2008. The systematics of the Hemiptera. Rev. Colomb. De Entomol. 34, 1–21. ( 10.25100/socolen.v34i1.9244) DOI

Szwedo J. 2018. The unity, diversity and conformity of bugs (Hemiptera) through time. Earth Environ. Sci. Trans. R. Soc. Edinb. 107, 109–128. ( 10.1017/s175569101700038x) DOI

Boderau M, Nel A, Jouault C. 2025a. Diversification and extinction of Hemiptera in deep time. Commun. Biol. 8, 352. ( 10.1038/s42003-025-07773-x) PubMed DOI PMC

Henry TJ. 2017. Biodiversity of Heteroptera. In Insect biodiversity science and society (eds Foottit AG, Adler PH), pp. 279–336, vol. 1, 2nd edn. Chichester: Wiley.

Jouault C, Nel A, Perrichot V, Legendre F, Condamine FL. 2022. Multiple drivers and lineage-specific insect extinctions during the Permo–Triassic. Nat. Commun. 13, 7512. ( 10.1038/s41467-022-35284-4) PubMed DOI PMC

Peris D, Condamine FL. 2024. The angiosperm radiation played a dual role in the diversification of insects and insect pollinators. Nat. Commun. 15, 552. ( 10.1038/s41467-024-44784-4) PubMed DOI PMC

Shcherbakov DE. 1996. Origin and evolution of the Auchenorrhyncha as shown by the fossil record (ed. Schaefer CW). In Studies in the hemipteran phylogeny. Proceedings of the Thomas Say Publications in Entomology. Entomological Society of America, pp. 31–45. Lanham, MD: Entomological Society of America.

Laurentiaux D. 1952. Découverte d’un Hémiptère dans le Namurien de Monceau-Fontaine (Belgique). Comptes Rendus De L’Académie Des Sci. De Paris 234, 2384–2386.

Laurentiaux D. 1952. Découverte d’un homoptère prosboloïde dans le Namurien belge. Publications de l’Association pour l’Etude de la Paléontologie de Bruxelles 14, 1–16.

Nel A, et al. 2013. The earliest known holometabolous insects. Nature 503, 257–261. ( 10.1038/nature12629) PubMed DOI

Misof B, et al. 2014. Phylogenomics resolves the timing and pattern of insect evolution. Science 346, 763–767. ( 10.1126/science.1257570) PubMed DOI

Johnson KP, et al. 2018. Phylogenomics and the evolution of hemipteroid insects. Proc. Natl Acad. Sci. USA 115, 12775–12780. ( 10.1073/pnas.1815820115) PubMed DOI PMC

Li H, Leavengood JM, Chapman EG, Burckhardt D, Song F, Jiang P, Liu J, Zhou X, Cai W. 2017. Mitochondrial phylogenomics of Hemiptera reveals adaptive innovations driving the diversification of true bugs. Proc. R. Soc. B 284, 20171223. ( 10.1098/rspb.2017.1223) PubMed DOI PMC

Zuckerkandl E, Pauling LB. 1962. Molecular disease, evolution, and genic heterogeneity. In Horizons in biochemistry (eds Kasha M, Pullman B), pp. 189–225. New York, USA: Academic Press.

Lepage T, Bryant D, Philippe H, Lartillot N. 2007. A general comparison of relaxed molecular clock models. Mol. Biol. Evol. 24, 2669–2680. ( 10.1093/molbev/msm193) PubMed DOI

Lartillot N, Phillips MJ, Ronquist F. 2016. A mixed relaxed clock model. Phil. Trans. R. Soc. B 371, 20150132. ( 10.1098/rstb.2015.0132) PubMed DOI PMC

Anderson FE, Swofford DL. 2004. Should we be worried about long-branch attraction in real data sets? Investigations using metazoan 18S rDNA. Mol. Phylogenetics Evol. 33, 440–451. ( 10.1016/j.ympev.2004.06.015) PubMed DOI

Brinkmann H, van der Giezen M, Zhou Y, de Raucourt GP, Philippe H. 2005. An empirical assessment of long-branch attraction artefacts in deep eukaryotic phylogenomics. Syst. Biol. 54, 743–757. ( 10.1080/10635150500234609) PubMed DOI

Philippe H, Zhou Y, Brinkmann H, Rodrigue N, Delsuc F. 2005. Heterotachy and long-branch attraction in phylogenetics. BMC Evol. Biol. 5, 50. ( 10.1186/1471-2148-5-50) PubMed DOI PMC

Spasojevic T, Broad GR, Sääksjärvi IE, Schwarz M, Ito M, Korenko S, Klopfstein S. 2021. Mind the outgroup and bare branches in total-evidence dating: a case study of pimpliform darwin wasps (Hymenoptera, Ichneumonidae). Syst. Biol. 70, 322–339. ( 10.1093/sysbio/syaa079) PubMed DOI PMC

Rasnitsyn AP. 2010. Molecular phylogenetics, morphological cladistics, and fossil record. Entomol. Rev. 90, 263–298. ( 10.1134/s0013873810030012) DOI

Huang DY, et al. 2016. New fossil insect order Permopsocida elucidates major radiation and evolution of suction feeding in hemimetabolous insects (Hexapoda: Acercaria). Sci. Rep. 6, 23004. ( 10.1038/srep23004) PubMed DOI PMC

Jouault C, Maréchal A, Condamine FL, Wang B, Nel A, Legendre F, Perrichot V. 2022. Including fossils in phylogeny: a glimpse into the evolution of the superfamily Evanioidea (Hymenoptera: Apocrita) under tip-dating and the fossilized birth–death process. Zool. J. Linn. Soc. 194, 1396–1423. ( 10.1093/zoolinnean/zlab034) DOI

Pyron RA. 2011. Divergence time estimation using fossils as terminal taxa and the origins of Lissamphibia. Syst. Biol. 60, 466–481. ( 10.1093/sysbio/syr047) PubMed DOI

Ronquist F, Klopfstein S, Vilhelmsen L, Schulmeister S, Murray DL, Rasnitsyn AP. 2012. A total-evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera. Syst. Biol. 61, 973–999. ( 10.1093/sysbio/sys058) PubMed DOI PMC

Heath TA, Huelsenbeck JP, Stadler T. 2014. The fossilized birth–death process for coherent calibration of divergence-time estimates. Proc. Natl Acad. Sci. USA 111, E2957–66. ( 10.1073/pnas.1319091111) PubMed DOI PMC

Klopfstein S. 2021. The age of insects and the revival of the minimum age tree. Austral Entomol. 60, 138–146. ( 10.1111/aen.12478) DOI

Vea IM, Grimaldi DA. 2016. Putting scales into evolutionary time: the divergence of major scale insect lineages (Hemiptera) predates the radiation of modern angiosperm hosts. Sci. Rep. 6, 23487. ( 10.1038/srep23487) PubMed DOI PMC

Silvestro D, Bacon CD, Ding W, Zhang Q, Donoghue PCJ, Antonelli A, Xing Y. 2021. Fossil data support a pre-Cretaceous origin of flowering plants. Nat. Ecol. Evol. 5, 449–457. ( 10.1038/s41559-020-01387-8) PubMed DOI

Carlisle E, Janis CM, Pisani D, Donoghue PCJ, Silvestro D. 2023. A timescale for placental mammal diversification based on Bayesian modeling of the fossil record. Curr. Biol. 33, 3073–3082.( 10.1016/j.cub.2023.06.016) PubMed DOI PMC

Jouault C, Oyama N, Álvarez-Parra S, Huang D, Perrichot V, Condamine F, Legendre F. 2025. The radiation of Hymenoptera illuminated by Bayesian inferences from the fossil record. Curr. Biol. 35, 1–11. ( 10.1016/j.cub.2025.03.002) PubMed DOI

Wolfe JM, Daley AC, Legg DA, Edgecombe GD. 2016. Fossil calibrations for the arthropod Tree of Life. Earth Sci. Rev. 160, 43–110. ( 10.1016/j.earscirev.2016.06.008) DOI

Holland SM. 2016. The non-uniformity of fossil preservation. Phil. Trans. R. Soc. B 371, 20150130. ( 10.1098/rstb.2015.0130) PubMed DOI PMC

Marshall CR. 2019. Using the fossil record to evaluate timetree timescales. Front. Genet. 10, 1049. ( 10.3389/fgene.2019.01049) PubMed DOI PMC

Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904. ( 10.1093/sysbio/syy032) PubMed DOI PMC

Ksepka DT, Ware JL, Lamm KS. 2014. Flying rocks and flying clocks: disparity in fossil and molecular dates for birds. Proc. R. Soc. B 281, 20140677. ( 10.1098/rspb.2014.0677) PubMed DOI PMC

Burckhardt D, Nel A, Raisch M, Poschmann MJ. 2023. A new putative moss bug (Insecta: Hemiptera) from the lower Permian of the Saar-Nahe Basin, SW Germany, and the age of Coleorrhyncha. Hist. Biol. 35, 832–837. ( 10.1080/08912963.2022.2067759) DOI

You YJ, Jiang T, Guan XE, Bieszczad B, Szwedo J. 2025. A second progonocimicid (Hemiptera: Coleorrhyncha) from the Middle Cretaceous Kachin amber of Myanmar. Palaeoworld 34, 200904. ( 10.1016/j.palwor.2024.200904) DOI

O’Reilly JE, dos Reis M, Donoghue PCJ. 2015. Dating tips for divergence-time estimation. Trends Genet. 31, 637–650. ( 10.1016/j.tig.2015.08.001) PubMed DOI

Parham JF, et al. 2012. Best practices for justifying fossil calibrations. Syst. Biol. 61, 346–359. ( 10.1093/sysbio/syr107) PubMed DOI PMC

dos Reis M, Donoghue PCJ, Yang Z. 2016. Bayesian molecular clock dating of species divergences in the genomics era. Nat. Rev. Genet. 17, 71–80. ( 10.1038/nrg.2015.8) PubMed DOI

Spangenberg R, Wipfler B, Friedemann K, Pohl H, Weirauch C, Hartung V, Beutel RG. 2013. The cephalic morphology of the Gondwanan key taxon Hackeriella (Coleorrhyncha, Hemiptera). Arthropod Struct. Dev. 42, 315–337. ( 10.1016/j.asd.2013.03.007) PubMed DOI

Friedemann K, Spangenberg R, Yoshizawa K, Beutel RG. 2014. Evolution of attachment structures in the highly diverse Acercaria (Hexapoda). Cladistics 30, 170–201. ( 10.1111/cla.12030) PubMed DOI

Campbell BC, Steffen‐campbell JD, Sorensen JT, Gill RJ. 1995. Paraphyly of Homoptera and Auchenorrhyncha inferred from 18S rDNA nucleotide sequences. Syst. Entomol. 20, 175–194. ( 10.1111/j.1365-3113.1995.tb00090.x) DOI

Sorensen J, Campbell B, Gill R, Steffen-Campbell J. 1995. Non-monophyly of Auchenorrhyncha (‘Homoptera’), based upon 18S rDNA phylogeny: eco-evolutionary and cladistic implications within pre-Heteropterodea Hemiptera (s. l.) and a proposal for new monophyletic suborders. Pan Pac. Entomol. 71, 31–60.

Xie Q, Tian Y, Zheng L, Bu W. 2008. 18S rRNA hyper-elongation and the phylogeny of Euhemiptera (Insecta: Hemiptera). Mol. Phylogenet. Evol. 47, 463–471. ( 10.1016/j.ympev.2008.01.024) PubMed DOI

Wheeler WC, Bang R, Schuh RT. Cladistic relationships among higher groups of Heteroptera: congruence between morphological and molecular data sets. Insect Syst. Evol. 24, 121–137. ( 10.1163/187631293X00235) DOI

Ouvrard D, Campbell BC, Bourgoin T, Chan KL. 2000. 18S rRNA secondary structure and phylogenetic position of Peloridiidae (Insecta, hemiptera). Mol. Phylogenet. Evol. 16, 403–417. ( 10.1006/mpev.2000.0797) PubMed DOI

Song N, Zhang H. 2023. A comprehensive analysis of higher‐level phylogenetic relationships of Hemiptera based on transcriptome data. J. Syst. Evol. 61, 572–586. ( 10.1111/jse.12855) DOI

Yoshizawa K, Ogawa N, Dietrich CH. 2017. Wing base structure supports Coleorrhyncha+Auchenorrhyncha (Insecta: Hemiptera). J. Zool. Syst. Evol. Res. 55, 199–207. ( 10.1111/jzs.12173) DOI

Ye Z, Damgaard J, Burckhardt D, Gibbs G, Yuan J, Yang H, Bu W. 2019. Phylogeny and historical biogeography of Gondwanan moss‐bugs (Insecta: Hemiptera: Coleorrhyncha: Peloridiidae). Cladistics 35, 135–149. ( 10.1111/cla.12237) PubMed DOI

Martynov AV. 1935. Permian fossil Insects from the Arkhangelsk district. Part 5. Homoptera. Tr. Paleontol. Instituta Akad. Nauk SSSR 4, 1–35.

Deng J, et al. 2025. Phylogenomic insights into the relationship and the evolutionary history of planthoppers (Insecta: Hemiptera: Fulgoromorpha). Syst. Entomol. 50, 495–518. ( 10.1111/syen.12666) DOI

Shcherbakov DE. 2010. The earliest true bugs and aphids from the Middle Triassic of France (Hemiptera). Russ. Entomol. J. 19, 179–182. ( 10.15298/rusentj.19.3.04) DOI

Montagna M, Tong KJ, Magoga G, Strada L, Tintori A, Ho SYW, Lo N. 2019. Recalibration of the insect evolutionary time scale using Monte San Giorgio fossils suggests survival of key lineages through the end-permian extinction. Proc. R. Soc. B 286, 20191854. ( 10.1098/rspb.2019.1854) PubMed DOI PMC

Criscione J, Grimaldi D. 2017. The oldest predaceous water bugs (Insecta, Heteroptera, Belostomatidae), with implications for paleolimnology of the Triassic Cow Branch Formation. J. Paleontol. 91, 1166–1177. ( 10.1017/jpa.2017.48) DOI

Montagna M, Strada L, Dioli P, Tintori A. 2018. The Middle Triassic lagerstätten of Monte San Giorgio reveals the oldest lace bugs (Hemiptera: Tingidae): Archetingis ladinica gen n. sp n. Riv. Ital. Di Paleontol. E Stratigr. 124, 35–44. ( 10.13130/2039-4942/9623) DOI

Armisén D, et al. 2022. Transcriptome-based phylogeny of the semi-aquatic bugs (Hemiptera: Heteroptera: Gerromorpha) reveals patterns of lineage expansion in a series of new adaptive zones. Mol. Biol. Evol. 39. ( 10.1093/molbev/msac229) PubMed DOI PMC

Nel A, Nel P, Krieg-Jacquier R, Pouillon JM, Garrouste R. 2014. Exceptionally preserved insect fossils in the Late Jurassic lagoon of Orbagnoux (Rhône Valley, France). PeerJ 2, e510 1–16. . ( 10.7717/peerj.510) PubMed DOI PMC

Schachat SR, Labandeira CC. 2021. Are insects heading toward their first mass extinction? Distinguishing turnover from crises in their fossil record. Ann. Entomol. Soc. Am. 114, 99–118. ( 10.1093/aesa/saaa042) DOI

Ye Z, Damgaard J, Yang H, Hebsgaard MB, Weir T, Bu W. 2020. Phylogeny and diversification of the true water bugs (Insecta: Hemiptera: Heteroptera: Nepomorpha). Cladistics 36, 72–87. ( 10.1111/cla.12383) PubMed DOI

Drohojowska J, Szwedo J, Żyła D, Huang DY, Müller P. 2020. Fossils reshape the Sternorrhyncha evolutionary tree (Insecta, Hemiptera). Sci. Rep. 10, 11390. ( 10.1038/s41598-020-68220-x) PubMed DOI PMC

Ye F, et al. 2022. Diversification of the phytophagous lineages of true bugs (Insecta: Hemiptera: Heteroptera) shortly after that of the flowering plants. Cladistics 38, 403–428. ( 10.1111/cla.12501) PubMed DOI

Shcherbakov DE. 2000. Permian faunas of Homoptera (Hemiptera) in relation to phytogeography and the Permo-Triassic crisis. Paleontol. J. 34, S251–S267.

Sroka P, Godunko RJ, Prokop J. 2023. Fluctuation in the diversity of mayflies (Insecta, Ephemerida) as documented in the fossil record. Sci. Rep. 13, 16052. ( 10.1038/s41598-023-42571-7) PubMed DOI PMC

Jouault C, Condamine FL, Legendre F, Perrichot V. 2024. The angiosperm terrestrial revolution buffered ants against extinction. Proc. Natl Acad. Sci. USA 121, e2317795121. ( 10.1073/pnas.2317795121) PubMed DOI PMC

Wang B, Szwedo J, Zhang H. 2009. Jurassic Progonocimicidae (Hemiptera) from China and phylogenetic evolution of Coleorrhyncha. Sci. China Ser. D 52, 1953–1961. ( 10.1007/s11430-009-0160-6) DOI

Moulds MS. 2005. An appraisal of the higher classification of cicadas (Hemiptera: Cicadoidea) with special reference to the Australian fauna. Rec. Aust. Mus. 57, 375–446. ( 10.3853/j.0067-1975.57.2005.1447) DOI

Marshall DC, et al. 2018. A molecular phylogeny of the cicadas (Hemiptera: Cicadidae) with a review of tribe and subfamily classification. Zootaxa 4424, 1–64. ( 10.11646/zootaxa.4424.1.1) PubMed DOI

Boderau M, Jouault C, Nel A. 2025. Diversification and extinction of Hemiptera in deep time. Figshare. ( 10.6084/m9.figshare.c.7530903) PubMed DOI PMC

Boderau M, Fu Y, Jiang H, Guan S, Peng A, Nel A, Jouault C. 2025b. Supplementary Material from: Bayesian modelling of the fossil record enlightens the evolutionary history of Hemiptera. Figshare. ( 10.6084/m9.figshare.c.7970306) PubMed DOI

Boderau M, Fu Y, Jiang H, Guan S, Peng A, Nel A, Jouault C. 2025. Supplementary material from: Bayesian modelling of the fossil record enlightens the evolutionary history of Hemiptera. Figshare. ( 10.6084/m9.figshare.c.7988982) PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Bayesian modelling of the fossil record enlightens the evolutionary history of Hemiptera

. 2025 Sep ; 292 (2054) : 20251133. [epub] 20250910

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...