Bayesian modelling of the fossil record enlightens the evolutionary history of Hemiptera
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Agence Nationale de la Recherche
PubMed
40925570
PubMed Central
PMC12419899
DOI
10.1098/rspb.2025.1133
Knihovny.cz E-zdroje
- Klíčová slova
- Insecta, evolution, extinction, macroevolution, palaeoenvironment, true bugs,
- MeSH
- Bayesova věta MeSH
- biologická evoluce * MeSH
- extinkce biologická MeSH
- fylogeneze MeSH
- Hemiptera * genetika MeSH
- zkameněliny * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Hemiptera, the fifth most diverse insect order, are characterized by their high diversity in deep time, with 145 known extinct families. However, the precise timing of the origin of Hemiptera lineages has remained uncertain. Traditional approaches, molecular clock analyses and fossil calibrations, have overlooked much of this extinct diversity by failing to incorporate key fossil data. Furthermore, no estimates have been proposed for the timing of the extinction of Hemiptera's fossil lineages. In this study, we use the recently developed Bayesian Brownian Bridge model, which estimates the timing of lineage origin and extinction through fossil-based Bayesian modelling, to provide a temporal framework for the rise and fall of 310 major hemipteran lineages. Our results support an early Pennsylvanian origin of Hemiptera, and indicate that the major hemipteran lineages originated between the late Carboniferous and Late Permian (Pennsylvanian-Lopingian). Additionally, our analyses reveal a radiation of Hemiptera during the Permian (Guadalupian), followed by multiple extinctions of ancient hemipteran lineages from the Permo-Triassic boundary to the mid-Triassic. A second major radiation occurred during the Cretaceous, coinciding with numerous extinctions of relic and newly emerging Cretaceous lineages, highlighting a faunal turnover. Our study provides a holistic fossil-based picture of the evolutionary history of Hemiptera.
Department Paleontology Bonn Institute of Organismic Biology University of Bonn Bonn 53115 Germany
Institute of Geology and Paleontology Charles University Prague 12843 Czech Republic
Laboratoire Traitement du Signal et de l'Image Université de Rennes INSERM Rennes F 35000 France
Oxford University Museum of Natural History University of Oxford Parks Road Oxford OX1 3PW UK
Zobrazit více v PubMed
Bartlett CR, Deitz LL, Dmitriev DA, Sanborn AF, Soulier‐Perkins A, Wallace MS. 2018. The diversity of the true hoppers (Hemiptera: Auchenorrhyncha). In Insect biodiversity: science and society (eds Foottit R, Adler P), pp. 501–590, vol. II, 1st edn. Blackwell Publishing. ( 10.1002/9781118945582) DOI
Streito JC, Germain JF. 2020. Chapitre 23: Ordre des Hemiptera (Hémiptères). In Les insectes du monde: biodiversité, classification, clés de détermination des familles (ed. Aberlenc HP), p. 966. Museo Editions, Editions Quae.
Backus EA. 1988. Sensory systems and behaviours which mediate hemipteran plant-feeding: a taxonomic overview. J. Insect Physiol. 34, 151–165. ( 10.1016/0022-1910(88)90045-5) DOI
Forero D. 2008. The systematics of the Hemiptera. Rev. Colomb. De Entomol. 34, 1–21. ( 10.25100/socolen.v34i1.9244) DOI
Szwedo J. 2018. The unity, diversity and conformity of bugs (Hemiptera) through time. Earth Environ. Sci. Trans. R. Soc. Edinb. 107, 109–128. ( 10.1017/s175569101700038x) DOI
Boderau M, Nel A, Jouault C. 2025a. Diversification and extinction of Hemiptera in deep time. Commun. Biol. 8, 352. ( 10.1038/s42003-025-07773-x) PubMed DOI PMC
Henry TJ. 2017. Biodiversity of Heteroptera. In Insect biodiversity science and society (eds Foottit AG, Adler PH), pp. 279–336, vol. 1, 2nd edn. Chichester: Wiley.
Jouault C, Nel A, Perrichot V, Legendre F, Condamine FL. 2022. Multiple drivers and lineage-specific insect extinctions during the Permo–Triassic. Nat. Commun. 13, 7512. ( 10.1038/s41467-022-35284-4) PubMed DOI PMC
Peris D, Condamine FL. 2024. The angiosperm radiation played a dual role in the diversification of insects and insect pollinators. Nat. Commun. 15, 552. ( 10.1038/s41467-024-44784-4) PubMed DOI PMC
Shcherbakov DE. 1996. Origin and evolution of the Auchenorrhyncha as shown by the fossil record (ed. Schaefer CW). In Studies in the hemipteran phylogeny. Proceedings of the Thomas Say Publications in Entomology. Entomological Society of America, pp. 31–45. Lanham, MD: Entomological Society of America.
Laurentiaux D. 1952. Découverte d’un Hémiptère dans le Namurien de Monceau-Fontaine (Belgique). Comptes Rendus De L’Académie Des Sci. De Paris 234, 2384–2386.
Laurentiaux D. 1952. Découverte d’un homoptère prosboloïde dans le Namurien belge. Publications de l’Association pour l’Etude de la Paléontologie de Bruxelles 14, 1–16.
Nel A, et al. 2013. The earliest known holometabolous insects. Nature 503, 257–261. ( 10.1038/nature12629) PubMed DOI
Misof B, et al. 2014. Phylogenomics resolves the timing and pattern of insect evolution. Science 346, 763–767. ( 10.1126/science.1257570) PubMed DOI
Johnson KP, et al. 2018. Phylogenomics and the evolution of hemipteroid insects. Proc. Natl Acad. Sci. USA 115, 12775–12780. ( 10.1073/pnas.1815820115) PubMed DOI PMC
Li H, Leavengood JM, Chapman EG, Burckhardt D, Song F, Jiang P, Liu J, Zhou X, Cai W. 2017. Mitochondrial phylogenomics of Hemiptera reveals adaptive innovations driving the diversification of true bugs. Proc. R. Soc. B 284, 20171223. ( 10.1098/rspb.2017.1223) PubMed DOI PMC
Zuckerkandl E, Pauling LB. 1962. Molecular disease, evolution, and genic heterogeneity. In Horizons in biochemistry (eds Kasha M, Pullman B), pp. 189–225. New York, USA: Academic Press.
Lepage T, Bryant D, Philippe H, Lartillot N. 2007. A general comparison of relaxed molecular clock models. Mol. Biol. Evol. 24, 2669–2680. ( 10.1093/molbev/msm193) PubMed DOI
Lartillot N, Phillips MJ, Ronquist F. 2016. A mixed relaxed clock model. Phil. Trans. R. Soc. B 371, 20150132. ( 10.1098/rstb.2015.0132) PubMed DOI PMC
Anderson FE, Swofford DL. 2004. Should we be worried about long-branch attraction in real data sets? Investigations using metazoan 18S rDNA. Mol. Phylogenetics Evol. 33, 440–451. ( 10.1016/j.ympev.2004.06.015) PubMed DOI
Brinkmann H, van der Giezen M, Zhou Y, de Raucourt GP, Philippe H. 2005. An empirical assessment of long-branch attraction artefacts in deep eukaryotic phylogenomics. Syst. Biol. 54, 743–757. ( 10.1080/10635150500234609) PubMed DOI
Philippe H, Zhou Y, Brinkmann H, Rodrigue N, Delsuc F. 2005. Heterotachy and long-branch attraction in phylogenetics. BMC Evol. Biol. 5, 50. ( 10.1186/1471-2148-5-50) PubMed DOI PMC
Spasojevic T, Broad GR, Sääksjärvi IE, Schwarz M, Ito M, Korenko S, Klopfstein S. 2021. Mind the outgroup and bare branches in total-evidence dating: a case study of pimpliform darwin wasps (Hymenoptera, Ichneumonidae). Syst. Biol. 70, 322–339. ( 10.1093/sysbio/syaa079) PubMed DOI PMC
Rasnitsyn AP. 2010. Molecular phylogenetics, morphological cladistics, and fossil record. Entomol. Rev. 90, 263–298. ( 10.1134/s0013873810030012) DOI
Huang DY, et al. 2016. New fossil insect order Permopsocida elucidates major radiation and evolution of suction feeding in hemimetabolous insects (Hexapoda: Acercaria). Sci. Rep. 6, 23004. ( 10.1038/srep23004) PubMed DOI PMC
Jouault C, Maréchal A, Condamine FL, Wang B, Nel A, Legendre F, Perrichot V. 2022. Including fossils in phylogeny: a glimpse into the evolution of the superfamily Evanioidea (Hymenoptera: Apocrita) under tip-dating and the fossilized birth–death process. Zool. J. Linn. Soc. 194, 1396–1423. ( 10.1093/zoolinnean/zlab034) DOI
Pyron RA. 2011. Divergence time estimation using fossils as terminal taxa and the origins of Lissamphibia. Syst. Biol. 60, 466–481. ( 10.1093/sysbio/syr047) PubMed DOI
Ronquist F, Klopfstein S, Vilhelmsen L, Schulmeister S, Murray DL, Rasnitsyn AP. 2012. A total-evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera. Syst. Biol. 61, 973–999. ( 10.1093/sysbio/sys058) PubMed DOI PMC
Heath TA, Huelsenbeck JP, Stadler T. 2014. The fossilized birth–death process for coherent calibration of divergence-time estimates. Proc. Natl Acad. Sci. USA 111, E2957–66. ( 10.1073/pnas.1319091111) PubMed DOI PMC
Klopfstein S. 2021. The age of insects and the revival of the minimum age tree. Austral Entomol. 60, 138–146. ( 10.1111/aen.12478) DOI
Vea IM, Grimaldi DA. 2016. Putting scales into evolutionary time: the divergence of major scale insect lineages (Hemiptera) predates the radiation of modern angiosperm hosts. Sci. Rep. 6, 23487. ( 10.1038/srep23487) PubMed DOI PMC
Silvestro D, Bacon CD, Ding W, Zhang Q, Donoghue PCJ, Antonelli A, Xing Y. 2021. Fossil data support a pre-Cretaceous origin of flowering plants. Nat. Ecol. Evol. 5, 449–457. ( 10.1038/s41559-020-01387-8) PubMed DOI
Carlisle E, Janis CM, Pisani D, Donoghue PCJ, Silvestro D. 2023. A timescale for placental mammal diversification based on Bayesian modeling of the fossil record. Curr. Biol. 33, 3073–3082.( 10.1016/j.cub.2023.06.016) PubMed DOI PMC
Jouault C, Oyama N, Álvarez-Parra S, Huang D, Perrichot V, Condamine F, Legendre F. 2025. The radiation of Hymenoptera illuminated by Bayesian inferences from the fossil record. Curr. Biol. 35, 1–11. ( 10.1016/j.cub.2025.03.002) PubMed DOI
Wolfe JM, Daley AC, Legg DA, Edgecombe GD. 2016. Fossil calibrations for the arthropod Tree of Life. Earth Sci. Rev. 160, 43–110. ( 10.1016/j.earscirev.2016.06.008) DOI
Holland SM. 2016. The non-uniformity of fossil preservation. Phil. Trans. R. Soc. B 371, 20150130. ( 10.1098/rstb.2015.0130) PubMed DOI PMC
Marshall CR. 2019. Using the fossil record to evaluate timetree timescales. Front. Genet. 10, 1049. ( 10.3389/fgene.2019.01049) PubMed DOI PMC
Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904. ( 10.1093/sysbio/syy032) PubMed DOI PMC
Ksepka DT, Ware JL, Lamm KS. 2014. Flying rocks and flying clocks: disparity in fossil and molecular dates for birds. Proc. R. Soc. B 281, 20140677. ( 10.1098/rspb.2014.0677) PubMed DOI PMC
Burckhardt D, Nel A, Raisch M, Poschmann MJ. 2023. A new putative moss bug (Insecta: Hemiptera) from the lower Permian of the Saar-Nahe Basin, SW Germany, and the age of Coleorrhyncha. Hist. Biol. 35, 832–837. ( 10.1080/08912963.2022.2067759) DOI
You YJ, Jiang T, Guan XE, Bieszczad B, Szwedo J. 2025. A second progonocimicid (Hemiptera: Coleorrhyncha) from the Middle Cretaceous Kachin amber of Myanmar. Palaeoworld 34, 200904. ( 10.1016/j.palwor.2024.200904) DOI
O’Reilly JE, dos Reis M, Donoghue PCJ. 2015. Dating tips for divergence-time estimation. Trends Genet. 31, 637–650. ( 10.1016/j.tig.2015.08.001) PubMed DOI
Parham JF, et al. 2012. Best practices for justifying fossil calibrations. Syst. Biol. 61, 346–359. ( 10.1093/sysbio/syr107) PubMed DOI PMC
dos Reis M, Donoghue PCJ, Yang Z. 2016. Bayesian molecular clock dating of species divergences in the genomics era. Nat. Rev. Genet. 17, 71–80. ( 10.1038/nrg.2015.8) PubMed DOI
Spangenberg R, Wipfler B, Friedemann K, Pohl H, Weirauch C, Hartung V, Beutel RG. 2013. The cephalic morphology of the Gondwanan key taxon Hackeriella (Coleorrhyncha, Hemiptera). Arthropod Struct. Dev. 42, 315–337. ( 10.1016/j.asd.2013.03.007) PubMed DOI
Friedemann K, Spangenberg R, Yoshizawa K, Beutel RG. 2014. Evolution of attachment structures in the highly diverse Acercaria (Hexapoda). Cladistics 30, 170–201. ( 10.1111/cla.12030) PubMed DOI
Campbell BC, Steffen‐campbell JD, Sorensen JT, Gill RJ. 1995. Paraphyly of Homoptera and Auchenorrhyncha inferred from 18S rDNA nucleotide sequences. Syst. Entomol. 20, 175–194. ( 10.1111/j.1365-3113.1995.tb00090.x) DOI
Sorensen J, Campbell B, Gill R, Steffen-Campbell J. 1995. Non-monophyly of Auchenorrhyncha (‘Homoptera’), based upon 18S rDNA phylogeny: eco-evolutionary and cladistic implications within pre-Heteropterodea Hemiptera (s. l.) and a proposal for new monophyletic suborders. Pan Pac. Entomol. 71, 31–60.
Xie Q, Tian Y, Zheng L, Bu W. 2008. 18S rRNA hyper-elongation and the phylogeny of Euhemiptera (Insecta: Hemiptera). Mol. Phylogenet. Evol. 47, 463–471. ( 10.1016/j.ympev.2008.01.024) PubMed DOI
Wheeler WC, Bang R, Schuh RT. Cladistic relationships among higher groups of Heteroptera: congruence between morphological and molecular data sets. Insect Syst. Evol. 24, 121–137. ( 10.1163/187631293X00235) DOI
Ouvrard D, Campbell BC, Bourgoin T, Chan KL. 2000. 18S rRNA secondary structure and phylogenetic position of Peloridiidae (Insecta, hemiptera). Mol. Phylogenet. Evol. 16, 403–417. ( 10.1006/mpev.2000.0797) PubMed DOI
Song N, Zhang H. 2023. A comprehensive analysis of higher‐level phylogenetic relationships of Hemiptera based on transcriptome data. J. Syst. Evol. 61, 572–586. ( 10.1111/jse.12855) DOI
Yoshizawa K, Ogawa N, Dietrich CH. 2017. Wing base structure supports Coleorrhyncha+Auchenorrhyncha (Insecta: Hemiptera). J. Zool. Syst. Evol. Res. 55, 199–207. ( 10.1111/jzs.12173) DOI
Ye Z, Damgaard J, Burckhardt D, Gibbs G, Yuan J, Yang H, Bu W. 2019. Phylogeny and historical biogeography of Gondwanan moss‐bugs (Insecta: Hemiptera: Coleorrhyncha: Peloridiidae). Cladistics 35, 135–149. ( 10.1111/cla.12237) PubMed DOI
Martynov AV. 1935. Permian fossil Insects from the Arkhangelsk district. Part 5. Homoptera. Tr. Paleontol. Instituta Akad. Nauk SSSR 4, 1–35.
Deng J, et al. 2025. Phylogenomic insights into the relationship and the evolutionary history of planthoppers (Insecta: Hemiptera: Fulgoromorpha). Syst. Entomol. 50, 495–518. ( 10.1111/syen.12666) DOI
Shcherbakov DE. 2010. The earliest true bugs and aphids from the Middle Triassic of France (Hemiptera). Russ. Entomol. J. 19, 179–182. ( 10.15298/rusentj.19.3.04) DOI
Montagna M, Tong KJ, Magoga G, Strada L, Tintori A, Ho SYW, Lo N. 2019. Recalibration of the insect evolutionary time scale using Monte San Giorgio fossils suggests survival of key lineages through the end-permian extinction. Proc. R. Soc. B 286, 20191854. ( 10.1098/rspb.2019.1854) PubMed DOI PMC
Criscione J, Grimaldi D. 2017. The oldest predaceous water bugs (Insecta, Heteroptera, Belostomatidae), with implications for paleolimnology of the Triassic Cow Branch Formation. J. Paleontol. 91, 1166–1177. ( 10.1017/jpa.2017.48) DOI
Montagna M, Strada L, Dioli P, Tintori A. 2018. The Middle Triassic lagerstätten of Monte San Giorgio reveals the oldest lace bugs (Hemiptera: Tingidae): Archetingis ladinica gen n. sp n. Riv. Ital. Di Paleontol. E Stratigr. 124, 35–44. ( 10.13130/2039-4942/9623) DOI
Armisén D, et al. 2022. Transcriptome-based phylogeny of the semi-aquatic bugs (Hemiptera: Heteroptera: Gerromorpha) reveals patterns of lineage expansion in a series of new adaptive zones. Mol. Biol. Evol. 39. ( 10.1093/molbev/msac229) PubMed DOI PMC
Nel A, Nel P, Krieg-Jacquier R, Pouillon JM, Garrouste R. 2014. Exceptionally preserved insect fossils in the Late Jurassic lagoon of Orbagnoux (Rhône Valley, France). PeerJ 2, e510 1–16. . ( 10.7717/peerj.510) PubMed DOI PMC
Schachat SR, Labandeira CC. 2021. Are insects heading toward their first mass extinction? Distinguishing turnover from crises in their fossil record. Ann. Entomol. Soc. Am. 114, 99–118. ( 10.1093/aesa/saaa042) DOI
Ye Z, Damgaard J, Yang H, Hebsgaard MB, Weir T, Bu W. 2020. Phylogeny and diversification of the true water bugs (Insecta: Hemiptera: Heteroptera: Nepomorpha). Cladistics 36, 72–87. ( 10.1111/cla.12383) PubMed DOI
Drohojowska J, Szwedo J, Żyła D, Huang DY, Müller P. 2020. Fossils reshape the Sternorrhyncha evolutionary tree (Insecta, Hemiptera). Sci. Rep. 10, 11390. ( 10.1038/s41598-020-68220-x) PubMed DOI PMC
Ye F, et al. 2022. Diversification of the phytophagous lineages of true bugs (Insecta: Hemiptera: Heteroptera) shortly after that of the flowering plants. Cladistics 38, 403–428. ( 10.1111/cla.12501) PubMed DOI
Shcherbakov DE. 2000. Permian faunas of Homoptera (Hemiptera) in relation to phytogeography and the Permo-Triassic crisis. Paleontol. J. 34, S251–S267.
Sroka P, Godunko RJ, Prokop J. 2023. Fluctuation in the diversity of mayflies (Insecta, Ephemerida) as documented in the fossil record. Sci. Rep. 13, 16052. ( 10.1038/s41598-023-42571-7) PubMed DOI PMC
Jouault C, Condamine FL, Legendre F, Perrichot V. 2024. The angiosperm terrestrial revolution buffered ants against extinction. Proc. Natl Acad. Sci. USA 121, e2317795121. ( 10.1073/pnas.2317795121) PubMed DOI PMC
Wang B, Szwedo J, Zhang H. 2009. Jurassic Progonocimicidae (Hemiptera) from China and phylogenetic evolution of Coleorrhyncha. Sci. China Ser. D 52, 1953–1961. ( 10.1007/s11430-009-0160-6) DOI
Moulds MS. 2005. An appraisal of the higher classification of cicadas (Hemiptera: Cicadoidea) with special reference to the Australian fauna. Rec. Aust. Mus. 57, 375–446. ( 10.3853/j.0067-1975.57.2005.1447) DOI
Marshall DC, et al. 2018. A molecular phylogeny of the cicadas (Hemiptera: Cicadidae) with a review of tribe and subfamily classification. Zootaxa 4424, 1–64. ( 10.11646/zootaxa.4424.1.1) PubMed DOI
Boderau M, Jouault C, Nel A. 2025. Diversification and extinction of Hemiptera in deep time. Figshare. ( 10.6084/m9.figshare.c.7530903) PubMed DOI PMC
Boderau M, Fu Y, Jiang H, Guan S, Peng A, Nel A, Jouault C. 2025b. Supplementary Material from: Bayesian modelling of the fossil record enlightens the evolutionary history of Hemiptera. Figshare. ( 10.6084/m9.figshare.c.7970306) PubMed DOI
Boderau M, Fu Y, Jiang H, Guan S, Peng A, Nel A, Jouault C. 2025. Supplementary material from: Bayesian modelling of the fossil record enlightens the evolutionary history of Hemiptera. Figshare. ( 10.6084/m9.figshare.c.7988982) PubMed DOI
Bayesian modelling of the fossil record enlightens the evolutionary history of Hemiptera