Diversification of the phytophagous lineages of true bugs (Insecta: Hemiptera: Heteroptera) shortly after that of the flowering plants
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35349192
DOI
10.1111/cla.12501
Knihovny.cz E-zdroje
- MeSH
- biologická evoluce MeSH
- fylogeneze MeSH
- Heteroptera * genetika MeSH
- Magnoliopsida * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
More than 95% of phytophagous true bug (Hemiptera: Heteroptera) species belong to four superfamilies: Miroidea (Cimicomorpha), Pentatomoidea, Coreoidea, and Lygaeoidea (all Pentatomomorpha). These iconic groups of highly diverse, overwhelmingly phytophagous insects include several economically prominent agricultural and silvicultural pest species, though their evolutionary history has not yet been well resolved. In particular, superfamily- and family-level phylogenetic relationships of these four lineages have remained controversial, and the divergence times of some crucial nodes for phytophagous true bugs have hitherto been little known, which hampers a better understanding of the evolutionary processes and patterns of phytophagous insects. In the present study, we used 150 species and concatenated nuclear and mitochondrial protein-coding genes and rRNA genes to infer the phylogenetic relationships within the Terheteroptera (Cimicomorpha + Pentatomomorpha) and estimated their divergence times. Our results support the monophyly of Cimicomorpha, Pentatomomorpha, Miroidea, Pentatomoidea, Pyrrhocoroidea, Coreoidea, and Lygaeoidea. The phylogenetic relationships across phytophagous lineages are largely congruent at deep nodes across the analyses based on different datasets and tree-reconstructing methods with just a few exceptions. Estimated divergence times and ancestral state reconstructions for feeding habit indicate that phytophagous true bugs explosively radiated in the Early Cretaceous-shortly after the angiosperm radiation-with the subsequent diversification of the most speciose clades (Mirinae, Pentatomidae, Coreinae, and Rhyparochromidae) in the Late Cretaceous.
Department of Animal Ecology 2 University of Bayreuth Bayreuth Germany
Department of Ecology and Evolution School of Life Sciences Sun Yat sen University Guangzhou China
Department of Entomology National Museum Praha Czech Republic
Netherlands Centre of Biodiversity Naturalis Leiden Netherlands
State Key Laboratory of Biocontrol Sun Yat sen University Guangzhou China
Three Gorges Entomological Museum Chongqing China
Tiangong University Tianjin China
Tianjin Key Laboratory of Animal and Plant Resistance Tianjin Normal University Tianjin China
Zobrazit více v PubMed
Abascal, F., Zardoya, R. & Telford, M.J. (2010) TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Research, 38, W7-W13.
Ahmad, I. & Schaefer, C.W. (1987) Food plants and feeding biology of the Pyrrhocoroidea (Hemiptera). Phytophaga, 1, 75-92.
Allen, J.M., LaFrance, R., Folk, R.A., Johnson, K.P. & Guralnick, R.P. (2018) aTRAM 2.0: an improved, flexible locus assembler for NGS data. Evolutionary Bioinformatics, 14, 1-4.
Bae, S.D., Kim, H.J. & Mainali, B.P. (2014) Infestation of Riptortus pedestris (Fabricius) decreases the nutritional quality and germination potential of soybean seeds. Journal of Asia-Pacific Entomology, 17, 477-481.
Barba-Montoya, J., Dos Reis, M., Schneider, H., Donoghue, P.C.J. & Yang, Z. (2018) Constraining uncertainty in the timescale of angiosperm evolution and the veracity of a Cretaceous Terrestrial Revolution. New Phytologist, 218, 819-834.
Becker-Migdisova, E.E. (1962). Order Heteroptera: Heteropterans, or True Bugs, in Osnovy paleontologii. Tom 9. In: Rohdendorf, B.B. (Ed.), Chlenistonogie. Trakheinye i khelitserovye (Fundamentals of Paleontology: Vol. 9. Arthropoda: Tracheata and Chelicerata), Moscow: Akad. Nauk SSSR, pp. 217-224.
Brenner, G. (1996) Evidence for the earliest stage of angiosperm pollen evolution: a paleoequatorial section from Israel. In: Taylor, D. & Hickey, L. (Eds.) Flowering plant origin, evolution and phylogeny. New York: Chapman & Hall, pp. 91-115.
Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K. et al (2009) BLAST+: architecture and applications. BMC Bioinformatics, 10, 421.
Cascales-Miñana, B. & Cleal, C. (2014) The plant fossil record reflects just two great extinction events. Terra Nova, 26, 195-200.
Cassis, G. & Schuh, R.T. (2012) Systematics, biodiversity, biogeography, and host associations of the Miridae (Insecta: Hemiptera: Heteroptera: Cimicomorpha). Annual Review of Entomology, 57, 377-404.
Cobben, R.H. (1978) Evolutionary trends in Heteroptera. Part II. Mouthpart structures and feeding strategies. Agricultural Research Reports, 78-5, 1-407.
Cockerell, T.D.A. (1921) Some Eocene insects from Colorado and Wyoming. Proceedings of the United States National Museum, 59, 29-39.
Condamine, F.L., Rolland, J. & Morlon, H. (2013) Macroevolutionary perspectives to environmental change. Ecology Letters, 16, 72-85.
Couturier, G., Kahn, F. & Padilha de Oliveira, M.D.S. (1998) New evidences on the coevolution between bugs (Hemiptera: Thaumastocoridae: Xylastodorinae) and the New World palms. Annales de la Société Entomologique de France, 34(1), 99-101.
Cruaud, A., Rønsted, N., Chantarasuwan, B., Chou, L.S., Clement, W.L., Couloux, A. et al (2012) An extreme case of plant-insect codiversification: figs and fig-pollinating wasps. Systematic Biology, 61, 1029-1047.
Dmitriev, V.Y., Aristov, D.S., Bashkuev, A.S., Vasilenko, D.V., Vřsanský, P., Gorochovc, A.V. et al (2018) Insect diversity from the Carboniferous to Recent. Paleontological Journal, 52, 610-619.
Dolling, W.R. (1981) A rationalized classification of the burrower bugs (Cydnidae). Systematic Entomology, 6, 61-76.
Edwards, C.T., Saltzman, M.R., Royer, D.L. & Fike, D.A. (2017) Oxygenation as a driver of the great Ordovician biodiversification event. Nature Geoscience, 10, 925-929.
Favret, C. & Voegtlin, D.J. (2004) Speciation by host-switching in pinyon Cinara (Insecta: Hemiptera: Aphididae). Molecular Phylogenetics and Evolution, 32(1), 139-151.
Forthman, M., Miller, C.W. & Kimball, R.T. (2019) Phylogenomic analysis suggests Coreidae and Alydidae (Hemiptera: Heteroptera) are not monophyletic. Zoologica Scripta, 48, 520-534.
Friis, E.M., Pedersen, K.R. & Crane, P.R. (2006) Cretaceous angiosperm flowers: innovation and evolution in plant reproduction. Palaeogeography, Palaeoclimatology, Palaeoecology, 232(2-4), 251-293.
Fujiyama, I. (1987) Middle Miocene insect fauna of Abura, Hokkaido, Japan, with notes on the occurrence of Cenozoic fossil insects in the Oshima Peninsula, Hokkaido. Memoirs of the National Science Museum, 20, 37-43.
Gao, C., Rédei, D., Shi, X., Cai, B., Liang, K., Gao, S. et al (2017) A comparative study of the abdominal trichobothria of Trichophora, with emphasis on Lygaeoidea (Hemiptera: Heteroptera). European Journal of Entomology, 114, 587-602.
Giebel, C.G. (1856). Fauna der Vorwelt mit steter Berücksichtigung der lebenden Thiere. Zweiter Band: Gliederthiere. Erste Abtheilung: Insecten und Spinnen. Leipzig: Brockhaus.
Goloboff, P.A. & Catalano, S.A. (2016) TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics, 32, 221-238.
Goodchild, A.J.P. (1963) Studies on the functional anatomy of the intestines of Heteroptera. Proceedings of the Zoological Society of London, 141, 851-910.
Gordon, E.R., McFrederick, Q. & Weirauch, C. (2016) Phylogenetic evidence for ancient and persistent environmental symbiont reacquisition in Largidae (Hemiptera: Heteroptera). Applied and Environment Microbiology, 82, 7123-7133.
Grabherr, M.G., Haas, B.J., Yassour, M., Levin, J.Z., Thompson, D.A., Amit, I. et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29, 644-652.
Grauvogel-Stamm, L. & Ash, S.R. (2005) Recovery of the Triassic land flora from the end-Permian life crisis. Comptes Rendus Palevol, 4, 593-608.
Grazia, J., Schuh, R.T. & Wheeler, W.C. (2008) Phylogenetic relationships of family groups in Pentatomoidea based on morphology and DNA sequences (Insecta: Heteroptera). Cladistics, 24, 932-976.
Grimaldi, D. & Engel, M.S. (2005) Evolution of insects. Cambridge, UK: Cambridge University Press.
Hamilton, G.C., Ahn, J.J., Bu, W.-J., Leskey, T.C., Nielsen, A.L., Park, Y.-L. et al (2018). Halyomorpha halys (Stal). In: McPherson, J.E. (Ed.), Invasive stink bugs and related species (Pentatomoidea): Biology, higher systematics, semiochemistry, and management. Boca Raton, London, New York: CRC Press, Taylor & Francis Group, pp. 243-292.
Heiss, E. & Poinar, G.O. (2012) New Aradidae in Mesozoic Burmese amber (Hemiptera, Heteroptera). Annalen des Naturhistorischen Museums in Wien, Serie A, 114, 307-316.
Hemala, V., Kment, P. & Malenovský, I. (2020) The comparative morphology of adult pregenital abdominal ventrites and trichobothria in Pyrrhocoroidea (Hemiptera: Heteroptera: Pentatomomorpha). Zoologischer Anzeiger, 284, 88-117.
Hemala, V., Kment, P., Tihlaříková, E., Neděla, V. & Malenovský, I. (2021) External structures of the metathoracic scent gland efferent system in the true bug superfamily Pyrrhocoroidea (Hemiptera: Heteroptera: Pentatomomorpha). Arthropod Structure & Development, 63(101058), 1-25.
Henry, T.J. (1997) Phylogenetic analysis of family groups within the infraorder Pentatomomorpha (Hemiptera: Heteroptera), with emphasis on the Lygaeoidea. Annals of the Entomological Society of America, 90, 275-301.
Henry, T.J. (2017) Biodiversity of Heteroptera. In: Foottit, R.G. & Adler, P.H. (Eds.) Insect biodiversity: science and society, 2nd edition. Oxford: Wiley-Blackwell, pp. 279-335.
Herczek, A. & Popov, Y. (2001) Redescription of the oldest plant bugs from the Upper Jurassic of the southern Kazakhstan (Heteroptera: Cimicomorpha, Miridae). Annals of the Upper Silesian Museum in Bytom, Entomology, 10-11, 121-128.
Hoang, D.T., Chernomor, O., Von Haeseler, A., Minh, B.Q. & Vinh, L.S. (2018) UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution, 35, 518-522.
Hua, J., Li, M., Dong, P., Cui, Y., Xie, Q. & Bu, W. (2008) Comparative and phylogenomic studies on the mitochondrial genomes of Pentatomomorpha (Insecta: Hemiptera: Heteroptera). BMC Genomics, 9, 610.
Hughes, N.F. & McDougall, A.B. (1987) Records of angiospermid pollen entry into the English Early Cretaceous succession. Review of Palaeobotany and Palynology, 50, 255-272.
Hughes, N.F., McDougall, A.B. & Chapman, J. (1991) Exceptional new record of Cretaceous Hauterivian angiospermid pollen from southern England. Journal of Micropalaeontology, 10, 75-82.
Hwang, W.S. & Weirauch, C. (2012) Evolutionary history of assassin bugs (Insecta: Hemiptera: Reduviidae): insights from divergence dating and ancestral state reconstruction. PLoS One, 7, e45523.
Irmis, R.B. & Whiteside, J.H. (2012) Delayed recovery of non-marine tetrapods after the end-Permian mass extinction tracks global carbon cycle. Proceedings of the Royal Society B: Biological Sciences, 279, 1310-1318.
Janz, N. & Nylin, S. (1998) Butterflies and plants: a phylogenetic study. Evolution, 52, 486-502.
Janz, N., Nylin, S. & Wahlberg, N. (2006) Diversity begets diversity: host expansions and the diversification of plant-feeding insects. BMC Evolutionary Biology, 6, 4.
Johnson, K.P., Dietrich, C.H., Friedrich, F., Beutel, R.G., Wipfler, B., Peters, R.S. et al (2018) Phylogenomics and the evolution of hemipteroid insects. Proceedings of the National Academy of Sciences of the United States of America, 115, 12775-12780.
Jung, S. & Lee, S. (2012) Molecular phylogeny of the plant bugs (Heteroptera: Miridae) and the evolution of feeding habits. Cladistics, 28, 50-79.
Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K., Von Haeseler, A. & Jermiin, L.S. (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods, 14, 587-589.
Katoh, K. & Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30, 772-780.
Kelton, L.A. (1959) Male genitalia as taxonomic characters in the Miridae (Hemiptera). The Canadian Entomologist, 11, 1-72.
Kieran, T.J., Gordon, E.R.L., Forthman, M., Hoey-Chamberlain, R., Kimball, R.T., Faircloth, B.C. et al (2019) Insight from an ultraconserved element bait set designed for hemipteran phylogenetics integrated with genomic resources. Molecular Phylogenetics and Evolution, 130, 297-303.
Kikuchi, Y., Hosokawa, T. & Fukatsu, T. (2011) An ancient but promiscuous host-symbiont association between Burkholderia gut symbionts and their heteropteran hosts. ISME Journal, 5, 446-460.
Kim, J., Lim, H.-S. & Jung, S. (2021) A first member of bamboo-feeding lineage plant bug (Hemiptera: Heteroptera: Miridae: Mecistoscelini) in mid-Cretaceous Burmese amber. Cretaceous Research, 121, 104741.
Kment, P., Hemala, V. & Malenovský, I. (2019) Scanning the Hyocephalidae: details of their external morphology with respect to phylogenetic relationships within Eutrichophora (Hemiptera: Heteroptera). Acta Entomologica Musei Nationalis Pragae, 59, 423-441.
Labandeira, C.C. & Sepkoski, J.J. Jr (1993) Insect diversity in the fossil record. Science, 261, 310-315.
Layton, M.B. (2000) Biology and damage of the tarnished plant bug, Lygus lineolaris, in cotton. Southwest. Entomology Supplies, 23, 7-20.
Leskey, T.C., Hamilton, G.C., Nielsen, A.L., Polk, D.F., Rodriguez-Saona, C., Bergh, J.C. et al (2012) Pest status of the brown marmorated stink bug, Halyomorpha halys in the USA. Outlooks on Pest Management, 23, 218-226.
Leston, D. (1961) Testis follicle number and the higher systematics of Miridae (Hemiptera-Heteroptera). Proceedings Zoological Society of London, 137, 89-106.
Lewitus, E. & Morlon, H. (2018) Detecting environment-dependent diversification from phylogenies: a simulation study and some empirical illustrations. Systematic Biology, 67, 576-593.
Li, H. (2003) Lower Cretaceous angiosperm leaf from Wuhe in Anhui, China. Chinese Science Bulletin, 48, 611-614.
Li, H., Leavengood, J.M., Chapman, E.G., Burkhardt, D., Song, F., Jiang, P. et al (2017) Mitochondrial phylogenomics of Hemiptera reveals adaptive innovations driving the diversification of true bugs. Proceedings of the Royal Society B: Biological Sciences, 284, 20171223.
Li, H.T., Yi, T.S., Gao, L.M., Ma, P.F., Zhang, T., Yang, J.B. et al (2019a) Origin of angiosperms and the puzzle of the Jurassic gap. Nature Plants, 5, 461-470.
Li, K., Zhang, X., Guo, J., Penn, H., Wu, T., Li, L. et al (2019b) Feeding of Riptortus pedestris on soybean plants, the primary cause of soybean staygreen syndrome in the Huang-Huai-Hai river basin. The Crop Journal, 7, 360-367.
Li, M., Tian, Y., Zhao, Y. & Bu, W. (2012) Higher level phylogeny and the first divergence time estimation of Heteroptera (Insecta: Hemiptera) based on multiple genes. PLoS One, 7, e32152.
Li, M., Wang, Y., Xie, Q., Tian, X., Li, T., Zhang, H. et al (2016) Reanalysis of the phylogenetic relationships of the Pentatomomorpha (Hemiptera: Heteroptera) based on ribosomal, Hox and mitochondrial genes. Entomotaxonomia, 38, 81-91.
Li, T., Gao, C., Cui, Y., Xie, Q. & Bu, W. (2013) The complete mitochondrial genome of the stalk-eyed bug Chauliops fallax Scott, and the monophyly of Malcidae (Hemiptera: Heteroptera). PLoS One, 8, e55381.
Lin, C.S. & Yang, C.T. (2005) External male genitalia of the Miridae (Hemiptera: Heteroptera). National Museum of Natural History Taiwan Special Publication, 9, 1-174.
Lin, Q.B. (1977) Fossil insects from Yunnan. Mesozoic Fossils from Yunnan, 2, 373-382.
Lis, J.A., Ziaja, D.J., Lis, B. & Gradowska, P. (2017) Non-monophyly of the “cydnoid” complex within Pentatomoidea (Hemiptera: Heteroptera) revealed by Bayesian phylogenetic analysis of nuclear rDNA sequences. Arthropod Systematics & Phylogeny, 75, 481-496.
Liu, Y., Li, H., Song, F., Zhao, Y., Wilson, J.J. & Cai, W. (2019) Higher-level phylogeny and evolutionary history of Pentatomomorpha (Hemiptera: Heteroptera) inferred from mitochondrial genome sequences. Systematic Entomology, 44, 810-819.
Liu, Y., Song, F., Jiang, P., Wilson, J.J., Cai, W. & Li, H. (2018) Compositional heterogeneity in true bug mitochondrial phylogenomics. Molecular Phylogenetics and Evolution, 118, 135-144.
Lu, Y., Wu, K., Jiang, Y., Xia, B., Li, P., Feng, H. et al (2010) Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China. Science, 328, 1151-1154.
Maddison, W.P. & Maddison, D.R. (2019). Mesquite: a modular system for evolutionary analysis. Version 3.61, Available at: http://mesquiteproject.org
Maxwell, W.D. (1992) Permian and early Triassic extinction of non-marine tetrapods. Palaeontology, 35, 571-583.
Mayhew, P.J., Jenkins, G.B. & Benton, T.G. (2008) A long-term association between global temperature and biodiversity, origination and extinction in the fossil record. Proceedings of the Royal Society B: Biological Sciences, 275, 47-53.
McElwain, J.C. & Punyasena, S.W. (2007) Mass extinction events and the plant fossil record. Trends in Ecology & Evolution, 22, 548-557.
Menard, K.L., Schuh, R.T. & Woolley, J.B. (2014) Total-evidence phylogenetic analysis and reclassification of the Phylinae (Insecta: Heteroptera: Miridae), with the recognition of new tribes and subtribes and a redefinition of Phylini. Cladistics, 30, 391-427.
Morkel, C. (2007) On kleptoparasitic stilt bugs (Insecta, Heteroptera: Berytidae) in spider funnel-webs (Arachnida, Araneae: Agelenidae), with notes on their origin. Mainzer Naturwissenschaftliches Archiv, Beiheft, 31, 129-143.
de Moya, R.S., Weirauch, C., Sweet, A.D., Skinner, R.K., Walden, K.K.O., Swanson, D.R. et al (2019) Deep instability in the phylogenetic backbone of Heteroptera is only partly overcome by transcriptome-based phylogenomics. Insect Systematics and Diversity, 3, 1-14.
Namyatova, A.A. & Cassis, G. (2019) First record of the subfamily Psallopinae (Heteroptera: Miridae) from Australia and discussion of its systematic position and diagnostic characters. Austral Entomology, 58, 156-170.
Nguyen, L.T., Schmidt, H.A., von Haeseler, A. & Minh, B.Q. (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32, 268-274.
Panizzi, A.R., Tiago, L. & Paula, L.M. (2021) Electronic monitoring of feeding behavior of phytophagous true bugs (Heteroptera). Cham: Springer Nature Switzerland AG.
Paradis, E. & Schliep, K. (2019) ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 35, 526-528.
Percy, D.M., Page, R.D. & Cronk, Q.C. (2004) Plant-insect interactions: double-dating associated insect and plant lineages reveals asynchronous radiations. Systematic Biology, 53, 120-127.
Petersen, M., Meusemann, K., Donath, A., Dowling, D., Liu, S., Peters, R.S. et al (2017) Orthograph: a versatile tool for mapping coding nucleotide sequences to clusters of orthologous genes. BMC Bioinformatics, 18, 111.
Pluot-Sigwalt, D. & Moulet, P. (2020) Morphological types of spermatheca in Coreidae: bearing on intra-familial classification and tribal-groupings (Hemiptera: Heteroptera). Zootaxa, 4834(4), 451-501.
Pluot-Sigwalt, D. & Lis, J.A. (2008) Morphology of the spermatheca in the Cydnidae (Hemiptera: Heteroptera): bearing of its diversity on classification and phylogeny. European Journal of Entomology, 105, 279-312.
Popov, Y.A. (1971) Historical development of the infraorder Nepomorpha (Heteroptera). Akademiya Nauk SSSR, Trudy Paleontologicheskogo Instituta, 129, 1-228.
Popov, Y.A. (1989) New fossil Hemiptera (Heteroptera and Coleorrhyncha) from the Mesozoic of Mongolia. Neues Jahrbuch für Geologie und Paläontologie Monatshefte, 3, 166-181.
Popov, Y.A., Dolling, W.R. & Whalley, P.E.S. (1994) British Upper Triassic and Lower Jurassic Heteroptera and Coleorrhyncha (Insecta: Hemiptera). Genus, 5(4), 307-347.
Popov, Y.A. & Herczek, A. (1992) The first Isometopinae from Baltic amber (Insecta: Heteroptera, Miridae). Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universität Hamburg, 73, 241-258.
Raup, D.M. (1979) Size of the Permo-Triassic bottleneck and its evolutionary implications. Science, 206, 217-218.
Reineke, A., Karlovsky, P. & Zebitz, C.P.W. (1998) Preparation and purification of DNA from insects for AFLP analysis. Insect Molecular Biology, 7, 95-99.
Reinhard, C.T., Planavsky, N.J., Olson, S.L., Lyons, T.W. & Erwin, D.H. (2016) Earth's oxygen cycle and the evolution of animal life. Proceedings of the National Academy of Sciences of the United States of America, 113, 8933-8938.
Revell, L.J. (2012) Phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3, 217-223.
Roca-Cusachs, M., Schwertner, C.F., Kim, J., Eger, J., Grazia, J. & Jung, S. (2022) Opening Pandora's box: molecular phylogeny of the stink bugs (Hemiptera: Heteroptera: Pentatomidae) reveals great incongruences in the current classification. Systematic Entomology, 47, 36-51.
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S. et al (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539-542.
Schaefer, C.W. (1975) Heteropteran trichobothria (Hemiptera: Heteroptera). International Journal of Insect Morphology and Embryology, 4, 193-264.
Schaefer, C.W. & Panizzi, A.R. (2000) Heteroptera of economic importance. Boca Raton, FL: CRC Press.
Schuh, R.T. (1974) The Orthotylinae and Phylinae (Hemiptera: Miridae) of South Africa with a phylogenetic analysis of the ant-mimetic tribes of the two subfamilies for the world. Entomology Americana, 47, 1-332.
Schuh, R.T. (1976) Pretarsal structure in the Miridae (Hemiptera) with a cladistic analysis of relationships within the family. American Museum Novitiates, 2601, 1-39.
Schuh, R.T. & Štys, P. (1991) Phylogenetic analysis of cimicomorphan family relationships (Heteroptera). Journal of the New York Entomological Society, 99, 298-350.
Schuh, R.T., Weirauch, C. & Wheeler, W.C. (2009) Phylogenetic relationships within the Cimicomorpha (Hemiptera: Heteroptera): a total-evidence analysis. Systematic Entomology, 34, 15-48.
Schuh, R.T. & Weirauch, C. (2020) True bugs of the world (Hemiptera: Heteroptera): classification and natural history, 2nd edition. Rochdale, UK: Siri Scientific Press.
Sharma, A., Khan, A.N., Subrahmanyam, S., Raman, A., Taylor, G.S. & Fletcher, M.J. (2014) Salivary proteins of plant-feeding hemipteroids-implication in phytophagy. Bulletin of Entomological Research, 104, 117-136.
Shcherbakov, D.E. (2008) Insect recovery after the Permian/Triassic crisis. Alavesia, 2, 125-131.
Shcherbakov, D.E. (2010) The earliest true bugs and aphids from the Middle Triassic of France (Hemiptera). Russian Entomological Journal, 19, 179-182.
Slater, J.A. (1950) An investigation of the female genitalia as taxonomic characters in the Miridae (Hemiptera). Iowa State College Journal of Science, 25, 1-81.
Slater, J.A. (1973) A contribution to the biology and taxonomy of Australian Thaumastocoridae with the description of a new species (Hemiptera: Heteroptera). Australian Journal of Entomology, 12, 151-156.
Slater, J.A. (1976) Monocots and chinch bugs: a study of host plant relationships in the lygaeid subfamily Blissinae (Hemiptera: Lygaeidae). Biotropica, 8(3), 143-165.
Song, N., An, S.H., Yin, X.M., Zhao, T. & Wang, X.Y. (2016) Insufficient resolving power of mitogenome data in deciphering deep phylogeny of Holometabola. Journal of Systematics and Evolution, 54, 545-559.
Štys, P. (1964) The morphology and relationship of the family Hyocephalidae (Heteroptera). Acta Zoologica Academiae Scientiarum Hungaricae, 10, 229-262.
Štys, P. (1967) Monograph of Malcinae, with reconsideration of morphology and phylogeny of related groups (Heteroptera, Malcidae). Acta Entomologica Musei Nationalis Pragae, 37, 351-516.
Sun, G., Dilcher, D.L., Zheng, S. & Zhou, Z. (1998) In search of the first flower: a Jurassic angiosperm, Archaefructus, from northeast China. Science, 282, 1692-1695.
Swanson, D.R. (2020) Misfit micrelytrines: revised identities for two extinct true bugs (Heteroptera). Palaeoentomology, 3, 546-551.
Tennant, J.P., Mannion, P.D. & Upchurch, P. (2016) Sea level regulated tetrapod diversity dynamics through the Jurassic/Cretaceous interval. Nature Communications, 7, 12737.
Theobald, N. (1937) Les insectes fossiles des terrains oligocènes de France. Bulletin Mensuel (Mémoires) de la Société des Sciences de Nancy 1, 1-473.
Tian, X., Xie, Q., Li, M., Gao, C., Cui, Y., Li, X. et al (2011) Phylogeny of pentatomomorphan bugs (Hemiptera-Heteroptera: Pentatomomorpha) based on six Hox gene fragments. Zootaxa, 2888, 57-68.
Tian, Y., Zhu, W., Li, M., Xie, Q. & Bu, W. (2008) Influence of data conflict and molecular phylogeny of major clades in Cimicomorphan true bugs (Insecta: Hemiptera: Heteroptera). Molecular Phylogenetics and Evolution, 47, 581-597.
Tillyard, R.J. (1926) Upper permian insects of new South Wales Part 1. Introduction and the order Hemiptera. Proceedings of the Linnean Society of New South Wales, 51, 1-30.
Tilmon, K.J. (2008) Specialisation, speciation, and radiation: the evolutionary biology of herbivorous insects. Berkeley, CA: University of California Press.
Van Doesburg, P.H., Cassis, G. & Monteith, G.B. (2010) Discovery of a living fossil: a new xylastodorine species from New Caledonia (Heteroptera: Thaumastocoridae) and first record of the subfamily from the eastern Hemisphere. Zoologische Mededelingen, 84, 93-115.
Wang, Y., Brożek, J. & Dai, W. (2020) Morphological disparity of the mouthparts in polyphagous species of Largidae (Heteroptera: Pentatomomorpha: Pyrrhocoroidea) reveals feeding specialization. Insects, 11(3), 145.
Wang, Y.-H., Cui, Y., Rédei, D., Baňař, P., Xie, Q., Štys, P. et al (2016) Phylogenetic divergences of the true bugs (Insecta: Hemiptera: Heteroptera), with emphasis on the aquatic lineages: the last piece of the aquatic insect jigsaw originated in the Late Permian/Early Triassic. Cladistics, 32, 390-405.
Wang, Y.-H., Moreira, F.F.F., Rédei, D., Chen, P.-P., Kuechler, S.M., Luo, J.-Y. et al (2021) Diversification of true water bugs revealed by transcriptome-based phylogenomics. Systematic Entomology, 46, 339-356.
Wang, Y.-H., Wu, H.-Y., Rédei, D., Xie, Q., Chen, Y., Chen, P.-P. et al (2019) When did the ancestor of true bugs become stinky? Disentangling the phylogenomics of Hemiptera-Heteroptera. Cladistics, 35, 42-66.
Ward, P.D. (2006) Out of thin air: Dinosaurs, birds, and Earth’s ancient atmosphere. Washington, DC: Joseph Henry Press.
Weirauch, C., Schuh, R.T., Cassis, G. & Wheeler, W.C. (2019) Revisiting habitat and lifestyle transitions in Heteroptera (Insecta: Hemiptera): insights from a combined morphological and molecular phylogeny. Cladistics, 35, 67-105.
Wermelinger, B., Wyniger, D. & Forster, B. (2008) First records of an invasive bug in Europe: Halyomorpha halys Stål (Heteroptera: Pentatomidae), a new pest on woody ornamentals and fruit trees? Mittlungen der Schwzerischen Entomologischen Gesellschaft, 81, 1-8.
Wheeler, A.G. (2001) Biology of the plant bugs (Hemiptera: Miridae): pests, predators, opportunists. New York: Cornell University Press.
Wheeler, W.C., Schuh, R.T. & Bang, R. (1993) Cladistic relationships among higher groups of Heteroptera: congruence between morphological and molecular data sets. Entomologica Scandinavica, 24, 121-137.
Wu, K., Li, W., Feng, H. & Guo, Y. (2002) Seasonal abundance of the mirids, Lygus lucorum and Adelphocoris spp. (Hemiptera: Miridae) on Bt cotton in northern China. Crop Protection, 21, 997-1002.
Wu, Y.-Z., Rédei, D., Eger, J. Jr, Wang, Y.-H., Wu, H.-Y., Carapezza, A. et al (2018) Phylogeny and the colourful history of jewel bugs (Insecta: Hemiptera: Scutelleridae). Cladistics, 34, 502-516.
Xia, X.H. (2013) DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution. Molecular Biology and Evolution, 30, 1720-1728.
Xie, Q., Bu, W. & Zheng, L. (2005) The Bayesian phylogenetic analysis of the 18S rRNA sequences from the main lineages of Trichophora (Insecta: Heteroptera: Pentatomomorpha). Molecular Phylogenetics and Evolution, 34, 448-451.
Xie, Y., Wu, G., Tang, J., Luo, R., Patterson, J., Liu, S. et al (2014) SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads. Bioinformatics, 30, 1660-1666.
Yang, H., Li, T., Dang, K. & Bu, W. (2018) Compositional and mutational rate heterogeneity in mitochondrial genomes and its effect on the phylogenetic inferences of Cimicomorpha (Hemiptera: Heteroptera). BMC Genomics, 19, 264.
Yang, L., Su, D., Chang, X., Foster, C.S.P., Sun, L., Huang, C.H. et al (2020) Phylogenomic insights into deep phylogeny of angiosperms based on broad nuclear gene sampling. Plant Communications, 1, 100027.
Yang, Z. (2007) PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution, 24, 1586-1591.
Yao, Y.Z., Cai, W.Z. & Ren, D. (2007) The first fossil Cydnidae (Hemiptera: Pentatomoidea) from the Late Mesozoic of China. Zootaxa, 1388, 59-68.
Ye, Z., Damgaard, J., Yang, H., Hebsgaard, M.B., Weir, T. & Bu, W. (2020) Phylogeny and diversification of the true water bugs (Insecta: Hemiptera: Heteroptera: Nepomorpha). Cladistics, 36, 72-87.
Yu, S., Wang, Y., Rédei, D., Xie, Q. & Bu, W. (2013) Secondary structure models of 18s and 28s rRNAs of the true bugs based on complete rDNA sequences of Eurydema maracandica oshanin, 1871 (Heteroptera, Pentatomidae). ZooKeys, 319, 363-377.
Yuan, M.L., Zhang, Q.L., Guo, Z.L., Wang, J. & Shen, Y.Y. (2015) Comparative mitogenomic analysis of the superfamily Pentatomoidea (Insecta: Hemiptera: Heteroptera) and phylogenetic implications. BMC Genomics, 16, 460.
Zhang, J.F. (1989) Fossil insects from Shanwang, Shandong, China. Beijing: Science Press.
Zhang, J., Weirauch, C., Zhang, G. & Forero, D. (2016) Molecular phylogeny of Harpactorinae and Bactrodinae uncovers complex evolution of sticky trap predation in assassin bugs (Heteroptera: Reduviidae). Cladistics, 32, 538-554.
Zhang, L., Chen, F., Zhang, X., Li, Z., Zhao, Y., Lohaus, R. et al (2020) The water lily genome and the early evolution of flowering plants. Nature, 577, 79-84.
Bayesian modelling of the fossil record enlightens the evolutionary history of Hemiptera