Mind the Outgroup and Bare Branches in Total-Evidence Dating: a Case Study of Pimpliform Darwin Wasps (Hymenoptera, Ichneumonidae)
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33057674
PubMed Central
PMC7875445
DOI
10.1093/sysbio/syaa079
PII: 5924386
Knihovny.cz E-zdroje
- MeSH
- biologická evoluce MeSH
- fylogeneze MeSH
- počítačová simulace MeSH
- sršňovití * genetika MeSH
- zkameněliny MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Taxon sampling is a central aspect of phylogenetic study design, but it has received limited attention in the context of total-evidence dating, a widely used dating approach that directly integrates molecular and morphological information from extant and fossil taxa. We here assess the impact of commonly employed outgroup sampling schemes and missing morphological data in extant taxa on age estimates in a total-evidence dating analysis under the uniform tree prior. Our study group is Pimpliformes, a highly diverse, rapidly radiating group of parasitoid wasps of the family Ichneumonidae. We analyze a data set comprising 201 extant and 79 fossil taxa, including the oldest fossils of the family from the Early Cretaceous and the first unequivocal representatives of extant subfamilies from the mid-Paleogene. Based on newly compiled molecular data from ten nuclear genes and a morphological matrix that includes 222 characters, we show that age estimates become both older and less precise with the inclusion of more distant and more poorly sampled outgroups. These outgroups not only lack morphological and temporal information but also sit on long terminal branches and considerably increase the evolutionary rate heterogeneity. In addition, we discover an artifact that might be detrimental for total-evidence dating: "bare-branch attraction," namely high attachment probabilities of certain fossils to terminal branches for which morphological data are missing. Using computer simulations, we confirm the generality of this phenomenon and show that a large phylogenetic distance to any of the extant taxa, rather than just older age, increases the risk of a fossil being misplaced due to bare-branch attraction. After restricting outgroup sampling and adding morphological data for the previously attracting, bare branches, we recover a Jurassic origin for Pimpliformes and Ichneumonidae. This first age estimate for the group not only suggests an older origin than previously thought but also that diversification of the crown group happened well before the Cretaceous-Paleogene boundary. Our case study demonstrates that in order to obtain robust age estimates, total-evidence dating studies need to be based on a thorough and balanced sampling of both extant and fossil taxa, with the aim of minimizing evolutionary rate heterogeneity and missing morphological information. [Bare-branch attraction; ichneumonids; fossils; morphological matrix; phylogeny; RoguePlots.].
Abteilung für Biowissenschaften Naturhistorisches Museum Basel 4051 Basel Switzerland
Biodiversity Unit University of Turku Turku Finland
Department of Entomology National Museum of Natural History Washington DC 20560 USA
Department of Life Sciences Natural History Museum London SW7 5BD UK
Eben 21 A 4202 Kirchschlag Austria
Graduate School of Agricultural Science Department of Agrobioscience Kobe University 657 8501 Japan
Institute of Ecology and Evolution Department of Biology University of Bern 3012 Bern Switzerland
Zobrazit více v PubMed
Antropov A.V., Belokobylskij S.A., Compton S.G., Dlussky G.M., Khalaim A.I., Kolyada V.A., Kozlov M.A., Perfilieva K.S., Rasnitsyn A.P.. 2014. The wasps, bees and ants (Insecta: Vespida[Formula: see text]Hymenoptera) from the Insect Limestone (Late Eocene) of the Isle of Wight, UK. Earth Environ. Sci. Trans. R. Soc. Edinb. 104:335–446.
Arcila D., Alexander Pyron R., Tyler J.C., Ortí G., Betancur R. R.. 2015. An evaluation of fossil tip-dating versus node-age calibrations in tetraodontiform fishes (Teleostei: Percomorphaceae). Mol. Phylogenet. Evol. 82:131–145. PubMed
Bagley J.C., Mayden R.L., Harris P.M.. 2018. Phylogeny and divergence times of suckers (Cypriniformes: Catostomidae) inferred from Bayesian total-evidence analyses of molecules, morphology, and fossils. PeerJ. 6:e5168. PubMed PMC
Bannikov A.F., Tyler J.C., Arcila D., Carnevale G.. 2017. A new family of gymnodont fish (Tetraodontiformes) from the earliest Eocene of the Peri-Tethys (Kabardino-Balkaria, northern Caucasus, Russia). J. Syst. Palaeontol. 15:129–146.
Barido-Sottani J., Aguirre-Fernández G., Hopkins M.J., Stadler T., Warnock R.. 2019. Ignoring stratigraphic age uncertainty leads to erroneous estimates of species divergence times under the fossilized birth–death process. Proc. R. Soc. B Biol. Sci. 286:20190685. PubMed PMC
Beaulieu J.M., O’Meara B.C., Crane P., Donoghue M.J.. 2015. Heterogeneous rates of molecular evolution and diversification could explain the triassic age estimate for angiosperms. Syst. Biol. 64:869–878. PubMed
Beck R.M.D., Lee M.S.Y.. 2014. Ancient dates or accelerated rates? Morphological clocks and the antiquity of placental mammals. Proc. R. Soc. B Biol. Sci. 281:20141278. PubMed PMC
Borowiec M.L., Rabeling C., Brady S.G., Fisher B.L., Schultz T.R., Ward P.S.. 2019. Compositional heterogeneity and outgroup choice influence the internal phylogeny of the ants. Mol. Phylogenet. Evol. 134:111–121. PubMed
Broad G.R., Shaw M.R., Fitton M.G.. 2018. Ichneumonid wasps (Hymenoptera: Ichneumonidae): their classification and biology. Field Studies Council and Royal Entomological Society. United Kingdom, Telford and St Albans.
Close R.A., Johanson Z., Tyler J.C., Harrington R.C., Friedman M.. 2016. Mosaicism in a new Eocene pufferfish highlights rapid morphological innovation near the origin of crown tetraodontiforms. Palaeontology 59:499–514.
Deans A.R., Basibuyuk H.H., Azar D., Nel A.. 2004. Descriptions of two new Early Cretaceous (Hauterivian) ensign wasp genera (Hymenoptera: Evaniidae) from Lebanese amber. Cretac. Res. 25:509–516.
Delsuc F., Brinkmann H., Philippe H.. 2005. Phylogenomics and the reconstruction of the tree of life. Nat. Rev. Genet. 6:361–375. PubMed
Donoghue P.C.J., Benton M.J.. 2007. Rocks and clocks: calibrating the Tree of Life using fossils and molecules. Trends Ecol. Evol. 22:424–431. PubMed
Donoghue P.C.J., Yang Z.. 2016. The evolution of methods for establishing evolutionary timescales. Philos. Trans. R Soc. B. 371:20160020. PubMed PMC
Dornburg A., Friedman M., Near T.J.. 2015. Phylogenetic analysis of molecular and morphological data highlights uncertainty in the relationships of fossil and living species of Elopomorpha (Actinopterygii: Teleostei). Mol. Phylogenet. Evol. 89:205–218. PubMed
Dowton M., Austin A.D.. 1994. Molecular phylogeny of the insect order Hymenoptera: apocritan relationships. Proc. Natl. Acad. Sci. USA 91:9911–9915. PubMed PMC
Duchêne D., Duchêne S., Ho S.Y.W.. 2015. Tree imbalance causes a bias in phylogenetic estimation of evolutionary timescales using heterochronous sequences. Mol. Ecol. Resour. 15:785–794. PubMed
Duchêne S., Lanfear R., Ho S.Y.W.. 2014. The impact of calibration and clock-model choice on molecular estimates of divergence times. Mol. Phylogenet. Evol. 78:277–289. PubMed
Dunn C.W., Hejnol A., Matus D.Q., Pang K., Browne W.E., Smith S.A., Seaver E., Rouse G.W., Obst M., Edgecombe G.D., Sørensen M.V., Haddock S.H.D., Schmidt-Rhaesa A., Okusu A., Kristensen R.M., Wheeler W.C., Martindale M.Q., Giribet G.. 2008. Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:745–749. PubMed
van Eldijk T.J.B., Wappler T., Strother P.K., van der Weijst C.M.H., Rajaei H., Visscher H., van de Schootbrugge B.. 2018. A Triassic-Jurassic window into the evolution of Lepidoptera. Sci. Adv. 4:e1701568. PubMed PMC
Fitch W.M., Bruschi M.. 1987. The evolution of prokaryotic ferredoxins—with a general method correcting for unobserved substitutions in less branched lineages. Mol. Biol. Evol. 4:381–394. PubMed
Gauld I.D., Mound L.A.. 1982. Homoplasy and the delineation of holophyletic genera in some insect groups. Syst. Entomol. 7:73–86.
Gauld I.D., Wahl D.B., Broad G.R.. 2002. The suprageneric groups of the Pimplinae (Hymenoptera: Ichneumonidae): a cladistic re-evaluation and evolutionary biological study. Zool. J. Linn. Soc. 136:421–485.
Gavryushkina A., Welch D., Stadler T., Drummond A.J.. 2014. Bayesian inference of sampled ancestor trees for epidemiology and fossil calibration. PLoS Comput. Biol. 10:e1003919. PubMed PMC
Giribet G., Ribera C.. 1998. The position of arthropods in the animal kingdom: a search for a reliable outgroup for internal arthropod phylogeny. Mol. Phylogenet. Evol. 9:481–488. PubMed
Graham S.W., Olmstead R.G., Barrett S.C.H.. 2002. Rooting phylogenetic trees with distant outgroups: a case study from the commelinoid monocots. Mol. Biol. Evol. 19:1769–1781. PubMed
Graybeal A. 1998. Is it better to add taxa or characters to a difficult phylogenetic problem? Syst. Biol. 47:9–17. PubMed
Grimaldi D. 1999. The co-radiations of pollinating insects and angiosperms in the cretaceous. Ann. Mo. Bot. Gard. 86:373–406.
Grimm G.W., Kapli P., Bomfleur B., McLoughlin S., Renner S.S.. 2015. Using more than the oldest fossils: dating Osmundaceae with three Bayesian clock approaches. Syst. Biol. 64:396–405. PubMed
Guillerme T., Cooper N.. 2016. Effects of missing data on topological inference using a Total Evidence approach. Mol. Phylogenet. Evol. 94, Part A:146–158. PubMed
Harrington S.M., Reeder T.W.. 2017. Phylogenetic inference and divergence dating of snakes using molecules, morphology and fossils: new insights into convergent evolution of feeding morphology and limb reduction. Biol. J. Linn. Soc. 121:379–394.
Hayes K.A., Cowie R.H., Thiengo S.C.. 2009. A global phylogeny of apple snails: Gondwanan origin, generic relationships, and the influence of outgroup choice (Caenogastropoda: Ampullariidae). Biol. J. Linn. Soc. 98:61–76.
Heath T.A., Hedtke S.M., Hillis D.M.. 2008. Taxon sampling and the accuracy of phylogenetic analyses. J. Syst. Evol. 19:239–257.
Heath T.A., Huelsenbeck J.P., Stadler T.. 2014. The fossilized birth–death process for coherent calibration of divergence-time estimates. Proc. Natl. Acad. Sci. USA 111:E2957–E2966. PubMed PMC
Herrera J.P., Davalos L.M.. 2016. Phylogeny and divergence times of lemurs inferred with recent and ancient fossils in the tree. Syst. Biol. 65:772–791. PubMed
Höhna S., Stadler T., Ronquist F., Britton T.. 2011. Inferring speciation and extinction rates under different sampling schemes. Mol. Biol. Evol. 28:2577–2589. PubMed
Holland B.R., Penny D., Hendy M.D., Sullivan J.. 2003. Outgroup misplacement and phylogenetic inaccuracy under a molecular clock—a simulation study. Syst. Biol. 52:229–238. PubMed
Katoh K., Standley D.M.. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30:772–780. PubMed PMC
Kealy S., Beck R.. 2017. Total evidence phylogeny and evolutionary timescale for Australian faunivorous marsupials (Dasyuromorphia). BMC Evol. Biol. 17:240. PubMed PMC
Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., Markowitz S., Duran C., Thierer T., Ashton B., Meintjes P., Drummond A.. 2012. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. PubMed PMC
Khalaim A.I. 2008. Fossil ichneumon wasps (Hymenoptera: Ichneumonidae) form Biamo (Russia), Oligocene. Alavesia 2:101–112.
King B., Qiao T., Lee M.S.Y., Zhu M., Long J.A.. 2017a. Bayesian morphological clock methods resurrect placoderm monophyly and reveal rapid early evolution in jawed vertebrates. Syst. Biol. 66:499–516. PubMed
King B., Qiao T., Lee M.S.Y., Zhu M., Long J.A.. 2017b. Bayesian morphological clock methods resurrect placoderm monophyly and reveal rapid early evolution in jawed vertebrates. Syst. Biol. 66:499–516. PubMed
Kirchberger P.C., Sefc K.M., Sturmbauer C., Koblmüller S.. 2014. Outgroup effects on root position and tree topology in the AFLP phylogeny of a rapidly radiating lineage of cichlid fish. Mol. Phylogenet. Evol. 70:57–62. PubMed PMC
Kittel R.N., Austin A.D., Klopfstein S.. 2016. Molecular and morphological phylogenetics of chelonine parasitoid wasps (Hymenoptera: Braconidae), with a critical assessment of divergence time estimations. Mol. Phylogenet. Evol. 101:224–241. PubMed
Klopfstein S. 2020. The age of insects and the revival of minimum age trees. Austral: Entomol; 10.1111/aen.12478. DOI
Klopfstein S., Langille B., Spasojevic T., Broad G.R., Cooper S.J.B., Austin A.D., Niehuis O.. 2019a. Hybrid capture data unravel a rapid radiation of pimpliform parasitoid wasps (Hymenoptera: Ichneumonidae: Pimpliformes). Syst. Entomol. 44:361–383.
Klopfstein S., Massingham T., Goldman N.. 2017. More on the best evolutionary rate for phylogenetic analysis. Syst. Biol. 66:769–785. PubMed PMC
Klopfstein S., Santos B.F., Shaw M.R., Alvarado M., Bennett A.M.R., Pos D.D., Giannotta M., Florez A.F.H., Karlsson D., Khalaim A.I., Lima A.R., Mikó I., Sääksjärvi I.E., Shimizu S., Spasojevic T., van Noort S., Vilhelmsen L., Broad G.R.. 2019b. Darwin wasps: a new name heralds renewed efforts to unravel the evolutionary history of Ichneumonidae. Entomol. Commun. 1:ec01006.
Klopfstein S., Spasojevic T.. 2019. Illustrating phylogenetic placement of fossils using RoguePlots: an example from ichneumonid parasitoid wasps (Hymenoptera, Ichneumonidae) and an extensive morphological matrix. PLoS One 425090. PubMed PMC
Klopfstein S., Vilhelmsen L., Ronquist F.. 2015. A nonstationary Markov model detects directional evolution in hymenopteran morphology. Syst. Biol. 64:1089–1103. PubMed PMC
Kopylov D.S. 2009. A new subfamily of ichneumonids from the Lower Cretaceous of Transbaikalia and Mongolia (Insecta: Hymenoptera: Ichneumonidae). Paleontol. J. 43:83–93.
Kopylov D.S. 2010a. Ichneumonids of the subfamily Tanychorinae (Insecta: Hymenoptera: Ichneumonidae) from the Lower Cretaceous of Transbaikalia and Mongolia. Paleontol. J. 44:180–187.
Kopylov D.S. 2010b. A new subfamily of ichneumon wasps (Insecta: Hymenoptera: Ichneumonidae) from the Upper Cretaceous of the Russian Far East. Paleontol. J. 44:422–433.
Kopylov D.S., Brothers D.J., Rasnitsyn A.P.. 2010. Two new labenopimpline ichneumonids (Hymenoptera: Ichneumonidae) from the upper cretaceous of Southern Africa. Afr. Invertebr. 51:423–430.
Kopylov D.S., Rasnitsyn A.P.. 2017. New sepulcids (Hymenoptera: Sepulcidae) from the Lower Cretaceous of Asia: II. Ghilarellinae and Trematothoracinae. Paleontol. J. 51:291–303.
Kopylov D.S., Spasojevic T., Klopfstein S.. 2018. New ichneumonids (Hymenoptera, Ichneumonidae) from the Eocene Tadushi Formation, Russian Far East. Zootaxa 4442:319–330. PubMed
Lanfear R., Frandsen P.B., Wright A.M., Senfeld T., Calcott B.. 2017. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34:772–773. PubMed
Lee M.S.Y. 2016. Multiple morphological clocks and total-evidence tip-dating in mammals. Biol. Lett. 12:20160033. PubMed PMC
Lewis P.O. 2001. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50:913–925. PubMed
Li L., Kopylov D.S., Shih C., Ren D.. 2017. The first record of Ichneumonidae (Insecta: Hymenoptera) from the Upper Cretaceous of Myanmar. Cretac. Res. 70:152–162.
Linder H.P., Hardy C.R., Rutschmann F.. 2005. Taxon sampling effects in molecular clock dating: an example from the African Restionaceae. Mol. Phylogenet. Evol. 35:569–582. PubMed
Luo A., Duchêne D.A., Zhang C., Zhu C.-D., Ho S.Y.W.. 2020. A simulation-based evaluation of tip-dating under the fossilized birth–death process. Syst. Biol. 69:325–344. PubMed PMC
Magallón S. 2014. A review of the effect of relaxed clock method, long branches, genes, and calibrations in the estimation of angiosperm age. Bot. Sci. 92:1–22.
Magallón S., Hilu K.W., Quandt D.. 2013. Land plant evolutionary timeline: Gene effects are secondary to fossil constraints in relaxed clock estimation of age and substitution rates. Am. J. Bot. 100:556–573. PubMed
Matschiner M. 2019. Selective sampling of species and fossils influences age estimates under the fossilized birth–death model. Front. Genet. 10:1–10. PubMed PMC
McCormack J.E., Hird S.M., Zellmer A.J., Carstens B.C., Brumfield R.T.. 2013. Applications of next-generation sequencing to phylogeography and phylogenetics. Mol. Phylogenet. Evol. 66:526–538. PubMed
McKellar R.C., Kopylov D.S., Engel M.S.. 2013. Ichneumonidae (Insecta: Hymenoptera) in Canadian Late Cretaceous amber. Foss. Rec. 16:217–227.
Menier J.J., Nel A., Waller A., Ploëg G.D.. 2004.. A new fossil ichneumon wasp from the Lowermost Eocene amber of Paris Basin (France), with a checklist of fossil Ichneumonoidea s.l. (Insecta: Hymenoptera: Ichneumonidae: Metopiinae). Geol. Acta Int. Earth Sci. J. 2:83–94.
Milne R.I. 2009. Effects of taxon sampling on molecular dating for within-genus divergence events, when deep fossils are used for calibration. J. Syst. Evol. 47:383–401.
Misof B., Liu S., Meusemann K., Peters R.S., Donath A., Mayer C., Frandsen P.B., Ware J., Flouri T., Beutel R.G., Niehuis O., Petersen M., Izquierdo-Carrasco F., Wappler T., Rust J., Aberer A.J., Aspöck U., Aspöck H., Bartel D., Blanke A., Berger S., Böhm A., Buckley T.R., Calcott B., Chen J., Friedrich F., Fukui M., Fujita M., Greve C., Grobe P., Gu S., Huang Y., Jermiin L.S., Kawahara A.Y., Krogmann L., Kubiak M., Lanfear R., Letsch H., Li Y., Li Z., Li J., Lu H., Machida R., Mashimo Y., Kapli P., McKenna D.D., Meng G., Nakagaki Y., Navarrete-Heredia J.L., Ott M., Ou Y., Pass G., Podsiadlowski L., Pohl H., Reumont B.M. von, Schütte K., Sekiya K., Shimizu S., Slipinski A., Stamatakis A., Song W., Su X., Szucsich N.U., Tan M., Tan X., Tang M., Tang J., Timelthaler G., Tomizuka S., Trautwein M., Tong X., Uchifune T., Walzl M.G., Wiegmann B.M., Wilbrandt J., Wipfler B., Wong T.K.F., Wu Q., Wu G., Xie Y., Yang S., Yang Q., Yeates D.K., Yoshizawa K., Zhang Q., Zhang R., Zhang W., Zhang Y., Zhao J., Zhou C., Zhou L., Ziesmann T., Zou S., Li Y., Xu X., Zhang Y., Yang H., Wang J., Wang J., Kjer K.M., Zhou X.. 2014. Phylogenomics resolves the timing and pattern of insect evolution. Science 346:763–767. PubMed
Nixon K.C., Carpenter J.M.. 1993. On outgroups. Cladistics 9:413–426. PubMed
O’Hanlon S.J., Rieux A., Farrer R.A., Rosa G.M., Waldman B., Bataille A., Kosch T.A., Murray K.A., Brankovics B., Fumagalli M., Martin M.D., Wales N., Alvarado-Rybak M., Bates K.A., Berger L., Böll S., Brookes L., Clare F., Courtois E.A., Cunningham A.A., Doherty-Bone T.M., Ghosh P., Gower D.J., Hintz W.E., Höglund J., Jenkinson T.S., Lin C.-F., Laurila A., Loyau A., Martel A., Meurling S., Miaud C., Minting P., Pasmans F., Schmeller D.S., Schmidt B.R., Shelton J.M.G., Skerratt L.F., Smith F., Soto-Azat C., Spagnoletti M., Tessa G., Toledo L.F., Valenzuela-Sánchez A., Verster R., Vörös J., Webb R.J., Wierzbicki C., Wombwell E., Zamudio K.R., Aanensen D.M., James T.Y., Gilbert M.T.P., Weldon C., Bosch J., Balloux F., Garner T.W.J., Fisher M.C.. 2018. Recent Asian origin of chytrid fungi causing global amphibian declines. Science 360:621–627. PubMed PMC
O’Reilly J.E., Donoghue P.C.J.. 2016. Tips and nodes are complementary not competing approaches to the calibration of molecular clocks. Biol. Lett. 12:20150975. PubMed PMC
O’Reilly J.E., dos Reis M., Donoghue P.C.J.. 2015. Dating tips for divergence-time estimation. Trends Genet. 31:637–650. PubMed
PaleoBioDB. 2020. The paleobiology database. Available from: https://paleobiodb.org.
Parins-Fukuchi C., Brown J.W.. 2017. What drives results in Bayesian morphological clock analyses? bioRxiv: 219048.
Paterson R.S., Rybczynski N., Kohno N., Maddin H.C.. 2020. A total evidence phylogenetic analysis of pinniped phylogeny and the possibility of parallel evolution within a monophyletic framework. Front. Ecol. Evol. 7:1–16.
Peters R.S., Krogmann L., Mayer C., Donath A., Gunkel S., Meusemann K., Kozlov A., Podsiadlowski L., Petersen M., Lanfear R., Diez P.A., Heraty J., Kjer K.M., Klopfstein S., Meier R., Polidori C., Schmitt T., Liu S., Zhou X., Wappler T., Rust J., Misof B., Niehuis O.. 2017. Evolutionary history of the hymenoptera. Curr. Biol. 27:1013–1018. PubMed
Philippe H., Brinkmann H., Lavrov D.V., Littlewood D.T.J., Manuel M., Wörheide G., Baurain D.. 2011. Resolving difficult phylogenetic questions: why more sequences are not enough. PLoS Biol. 9:e1000602. PubMed PMC
Pick K.S., Philippe H., Schreiber F., Erpenbeck D., Jackson D.J., Wrede P., Wiens M., Alié A., Morgenstern B., Manuel M., Wörheide G.. 2010. Improved phylogenomic taxon sampling noticeably affects nonbilaterian relationships. Mol. Biol. Evol. 27:1983–1987. PubMed PMC
Püschel H.P., O’Reilly J.E., Pisani D., Donoghue P.C.J.. 2020. The impact of fossil stratigraphic ranges on tip-calibration, and the accuracy and precision of divergence time estimates. Palaeontology 63: 67–83.
Puslednik L., Serb J.M.. 2008. Molecular phylogenetics of the Pectinidae (Mollusca: Bivalvia) and effect of increased taxon sampling and outgroup selection on tree topology. Mol. Phylogenet. Evol. 48:1178–1188. PubMed
Pyron R.A. 2011. Divergence time estimation using fossils as terminal taxa and the origins of lissamphibia. Syst. Biol. 60:466–481. PubMed
Pyron R.A. 2017. Novel approaches for phylogenetic inference from morphological data and total-evidence dating in squamate reptiles (lizards, snakes, and amphisbaenians). Syst. Biol. 66:38–56. PubMed
Quicke D.L.J. 2014. The braconid and ichneumonid parasitoid wasps: biology, systematics, evolution and ecology. Chichester, United Kingdom, John Wiley & Sons, Ltd.
Rambaut A., Drummond A.J., Xie D., Baele G., Suchard M.A., Susko E.. 2018. Posterior summarization in Bayesian phylogenetics using tracer 1.7. Syst. Biol. 67:901–904. PubMed PMC
Rasnitsyn A.P., Bashkuev A.S., Kopylov D.S., Lukashevich E.D., Ponomarenko A.G., Popov Yu.A., Rasnitsyn D.A., Ryzhkova O.V., Sidorchuk E.A., Sukatsheva I.D., Vorontsov D.D.. 2016. Sequence and scale of changes in the terrestrial biota during the Cretaceous (based on materials from fossil resins). Cretac. Res. 61:234–255.
Rasnitsyn A.P., Quicke D.L.. 2002. History of insects. Springer Science & Business Media; Dordrecht, Netherlands, Springer.
Ronquist F., Klopfstein S., Vilhelmsen L., Schulmeister S., Murray D.L., Rasnitsyn A.P.. 2012a. A total-evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera. Syst. Biol. 61:973–999. PubMed PMC
Ronquist F., Lartillot N., Phillips M.J.. 2016. Closing the gap between rocks and clocks using total-evidence dating. Philos. Trans. R. Soc. B 371:20150136. PubMed PMC
Ronquist F., Teslenko M., van der Mark P., Ayres D.L., Darling A., Höhna S., Larget B., Liu L., Suchard M.A., Huelsenbeck J.P.. 2012b. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61:539–542. PubMed PMC
Rota-Stabelli O., Telford M.J.. 2008. A multi criterion approach for the selection of optimal outgroups in phylogeny: recovering some support for Mandibulata over Myriochelata using mitogenomics. Mol. Phylogenet. Evol. 48:103–111. PubMed
Saladin B., Leslie A.B., Wueest R.O., Litsios G., Conti E., Salamin N., Zimmermann N.E.. 2017. Fossils matter: improved estimates of divergence times in Pinus reveal older diversification. BMC Evol. Biol. 17:95. PubMed PMC
Sharkey M.J., Wahl D.B.. 1992. Cladistics of the Ichneumonoidea (Hymenoptera). J. Hymenopt. Res. 1:15–24. PubMed
Soares A.E.R., Schrago C.G.. 2012. The influence of taxon sampling and tree shape on molecular dating: an empirical example from mammalian mitochondrial genomes. Bioinforma. Biol. Insights 6:BBI.S9677. PubMed PMC
Soares A.E.R., Schrago C.G.. 2015. The influence of taxon sampling on Bayesian divergence time inference under scenarios of rate heterogeneity among lineages. J. Theor. Biol. 364:31–39. PubMed
Spasojevic T., Broad G.R., Bennett A.M.R., Klopfstein S.. 2018a. Ichneumonid parasitoid wasps from the Early Eocene Green River Formation: five new species and a revision of the known fauna (Hymenoptera, Ichneumonidae). PalZ 92:35–63.
Spasojevic T., Wedmann S., Klopfstein S.. 2018b. Seven remarkable new fossil species of parasitoid wasps (Hymenoptera, Ichneumonidae) from the Eocene Messel Pit. PLoS One 13:e0197477. PubMed PMC
Tarrío R., Rodríguez-Trelles F., Ayala F.J.. 2000. Tree rooting with outgroups when they differ in their nucleotide composition from the ingroup: the Drosophila saltans and Willistoni groups, a case study. Mol. Phylogenet. Evol. 16:344–349. PubMed
Thomas J.A., Trueman J.W.H., Rambaut A., Welch J.J.. 2013. Relaxed phylogenetics and the palaeoptera problem: resolving deep ancestral splits in the insect phylogeny. Syst. Biol. 62:285–297. PubMed
Tong K.J., Duchêne S., Ho S.Y.W., Lo N.. 2015. Comment on “Phylogenomics resolves the timing and pattern of insect evolution.” Science 349:487–487. PubMed
Travouillon K.J., Phillips M.J.. 2018. Total evidence analysis of the phylogenetic relationships of bandicoots and bilbies (Marsupialia: Peramelemorphia): reassessment of two species and description of a new species. Zootaxa 4378:224. PubMed
Wahl D., Gauld I.. 1998. The cladistics and higher classification of the Pimpliformes (Hymenoptera: Ichneumonidae). Syst. Entomol. 23:265–298.
Wang X., Grohé C., Su D.F., White S.C., Ji X., Kelley J., Jablonski N.G., Deng T., You Y., Yang X.. 2018. A new otter of giant size, Siamogale melilutra sp. nov. (Lutrinae: Mustelidae: Carnivora), from the latest Miocene Shuitangba site in north-eastern Yunnan, south-western China, and a total-evidence phylogeny of lutrines. J. Syst. Palaeontol. 16:39–65.
Ware J.L., Litman J., Klass K.-D., Spearman L.A.. 2008. Relationships among the major lineages of Dictyoptera: the effect of outgroup selection on dictyopteran tree topology. Syst. Entomol. 33:429–450.
Warnock R.C.M., Yang Z., Donoghue P.C.J.. 2011. Exploring uncertainty in the calibration of the molecular clock. Biol. Lett. 8:156–159. PubMed PMC
Welch J.J., Bromham L.. 2005. Molecular dating when rates vary. Trends Ecol. Evol. 20:320–327. PubMed
Wertheim J.O., Fourment M., Pond K., L S.. 2012. Inconsistencies in estimating the age of HIV-1 subtypes due to heterotachy. Mol. Biol. Evol. 29:451–456. PubMed PMC
Wheeler W.C. 1990. Nucleic acid sequence phylogeny and random outgroups. Cladistics 6:363–367. PubMed
Whitfield J.B. 2002. Estimating the age of the polydnavirus/braconid wasp symbiosis. Proc. Natl. Acad. Sci. USA 99:7508–7513. PubMed PMC
Wilberg E.W. 2015. What’s in an outgroup? The impact of outgroup choice on the phylogenetic position of thalattosuchia (Crocodylomorpha) and the origin of Crocodyliformes. Syst. Biol. 64:621–637. PubMed
Wright A.M., Lloyd G.T., Hillis D.M.. 2016. Modeling character change heterogeneity in phylogenetic analyses of morphology through the use of priors. Syst. Biol. 65:602–611. PubMed
Yu D.S.K., van Achterberg C., Horstmann K.. 2016. Taxapad 2016, Ichneumonoidea 2015. Database on flash-drive. Nepean, Ontario, Canada.
Zhang C., Stadler T., Klopfstein S., Heath T.A., Ronquist F.. 2016. Total-evidence dating under the fossilized birth–death process. Syst. Biol. 65:228–249. PubMed PMC
Zwickl D.J., Hillis D.M.. 2002. Increased taxon sampling greatly reduces phylogenetic error. Syst. Biol. 51:588–598. PubMed