Liposomes: Structure, Biomedical Applications, and Stability Parameters With Emphasis on Cholesterol

. 2021 ; 9 () : 705886. [epub] 20210909

Status odvoláno Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy, odvolaná publikace

Perzistentní odkaz   https://www.medvik.cz/link/pmid34568298

Liposomes are essentially a subtype of nanoparticles comprising a hydrophobic tail and a hydrophilic head constituting a phospholipid membrane. The spherical or multilayered spherical structures of liposomes are highly rich in lipid contents with numerous criteria for their classification, including structural features, structural parameters, and size, synthesis methods, preparation, and drug loading. Despite various liposomal applications, such as drug, vaccine/gene delivery, biosensors fabrication, diagnosis, and food products applications, their use encounters many limitations due to physico-chemical instability as their stability is vigorously affected by the constituting ingredients wherein cholesterol performs a vital role in the stability of the liposomal membrane. It has well established that cholesterol exerts its impact by controlling fluidity, permeability, membrane strength, elasticity and stiffness, transition temperature (Tm), drug retention, phospholipid packing, and plasma stability. Although the undetermined optimum amount of cholesterol for preparing a stable and controlled release vehicle has been the downside, but researchers are still focused on cholesterol as a promising material for the stability of liposomes necessitating explanation for the stability promotion of liposomes. Herein, the prior art pertaining to the liposomal appliances, especially for drug delivery in cancer therapy, and their stability emphasizing the roles of cholesterol.

Odvolání publikace

PubMed

Zobrazit více v PubMed

Abd El-Fattah A. I., Fathy M. M., Ali Z. Y., El-Garawany A. E.-R. A., Mohamed E. K. (2017). Enhanced Therapeutic Benefit of Quercetin-Loaded Phytosome Nanoparticles in Ovariectomized Rats. Chemico-Biological Interactions 271, 30–38. 10.1016/j.cbi.2017.04.026 PubMed DOI

Abdelkader H., Alani A. W. G., Alany R. G. (2014). Recent Advances in Non-ionic Surfactant Vesicles (Niosomes): Self-Assembly, Fabrication, Characterization, Drug Delivery Applications and Limitations. Drug Deliv. 21 (2), 87–100. 10.3109/10717544.2013.838077 PubMed DOI

Abu-Dahab R., Schäfer U. F., Lehr C.-M. (2001). Lectin-functionalized Liposomes for Pulmonary Drug Delivery: Effect of Nebulization on Stability and Bioadhesion. Eur. J. Pharm. Sci. 14 (1), 37–46. 10.1016/s0928-0987(01)00147-6 PubMed DOI

Agarwal R., Katare O. P., Vyas S. P. (2001). Preparation and In Vitro Evaluation of Liposomal/niosomal Delivery Systems for Antipsoriatic Drug Dithranol. Int. J. Pharm. 228 (1-2), 43–52. 10.1016/s0378-5173(01)00810-9 PubMed DOI

Agrawal M. M., Jawade S., Khan S. (2012). A Review on Liposome. Int. J. Adv. Res. Pharm. Bio Sci. 2 (1), 453–465.

Aguilar-Pérez K., Avilés-Castrillo J., Medina D. I., Parra-Saldivar R., Iqbal H. (2020). Insight into Nanoliposomes as Smart Nanocarriers for Greening the Twenty-First century Biomedical Settings. Front. Bioeng. Biotechnol. 8, 1441. 10.3389/fbioe.2020.579536 PubMed DOI PMC

Ainbinder D., Paolino D., Fresta M., Touitou E. (2010). Drug Delivery Applications with Ethosomes. J Biomed. Nanotechnol 6 (5), 558–568. 10.1166/jbn.2010.1152 PubMed DOI

Akabori K., Nagle J. F. (2015). Structure of the DMPC Lipid Bilayer Ripple Phase. Soft matter 11 (5), 918–926. 10.1039/c4sm02335h PubMed DOI PMC

Akbarzadeh A., Rezaei-Sadabady R., Davaran S., Joo S. W., Zarghami N., Hanifehpour Y., et al. (2013). Liposome: Classification, Preparation, and Applications. Nanoscale Res. Lett. 8 (1), 102. 10.1186/1556-276X-8-102 PubMed DOI PMC

Al-Remawi M., Elsayed A., Maghrabi I., Hamaidi M., Jaber N. (2017). Chitosan/lecithin Liposomal Nanovesicles as an Oral Insulin Delivery System. Pharm. Dev. Technol. 22 (3), 390–398. 10.1080/10837450.2016.1213745 PubMed DOI

Alizadeh E., Akbarzadeh A., Eslaminejad M. B., Barzegar A., Hashemzadeh S., Nejati-Koshki K., et al. (2015). Up Regulation of Liver-Enriched Transcription Factors HNF4a and HNF6 and Liver-specific MicroRNA (miR-122) by Inhibition of Let-7b in Mesenchymal Stem Cells. Chem. Biol. Drug Des. 85 (3), 268–279. 10.1111/cbdd.12398 PubMed DOI

AllenLiposomes T. M. (1997). Liposomen. DrugsSuppl 54, 8–14. 10.2165/00003495-199700544-00004 DOI

Alving C. R., Rao M., Steers N. J., Matyas G. R., Mayorov A. V. (2012). Liposomes Containing Lipid A: an Effective, Safe, Generic Adjuvant System for Synthetic Vaccines. Expert Rev. Vaccin. 11 (6), 733–744. 10.1586/erv.12.35 PubMed DOI

Anderson M., Omri A. (2004). The Effect of Different Lipid Components on the In Vitro Stability and Release Kinetics of Liposome Formulations. Drug Deliv. 11 (1), 33–39. 10.1080/10717540490265243 PubMed DOI

Anselmo A. C., Mitragotri S. (2015). A Review of Clinical Translation of Inorganic Nanoparticles. Aaps J. 17 (5), 1041–1054. 10.1208/s12248-015-9780-2 PubMed DOI PMC

Anwekar H., Patel S., Singhai A. (2011). Liposome-as Drug Carriers. Int. J. Pharm. Life Sci., 2.(7)

Aoki H., Mizuno M., Natsume A., Tsugawa T., Tsujimura K., Takahashi T., et al. (2001). Dendritic Cells Pulsed with Tumor Extract-Cationic Liposome Complex Increase the Induction of Cytotoxic T Lymphocytes in Mouse Brain Tumor. Cancer Immunol. Immunother. 50 (9), 463–468. 10.1007/s002620100220 PubMed DOI PMC

Aramaki K., Watanabe Y., Takahashi J., Tsuji Y., Ogata A., Konno Y. (2016). Charge Boosting Effect of Cholesterol on Cationic Liposomes. Colloids Surf. A: Physicochemical Eng. Aspects 506, 732–738. 10.1016/j.colsurfa.2016.07.040 DOI

Arora R. (2016). Advances in Niosome as a Drug Carrier: a Review. Asian J. Pharmaceutics (Ajp) Free full text articles Asian J Pharm, 1.(1)

Ashok B., Arleth L., Hjelm R. P., Rubinstein I., Önyüksel H. (2004). In Vitro characterization of PEGylated Phospholipid Micelles for Improved Drug Solubilization: Effects of PEG Chain Length and PC Incorporation. J. Pharm. Sci. 93 (10), 2476–2487. 10.1002/jps.20150 PubMed DOI

Asprea M., Tatini F., Piazzini V., Rossi F., Bergonzi M., Bilia A. (2019). Stable, Monodisperse, and Highly Cell-Permeating Nanocochleates from Natural Soy Lecithin Liposomes. Pharmaceutics 11 (1), 34. 10.3390/pharmaceutics11010034 PubMed DOI PMC

Atrooz O. M. (2011). Efects of Alkylresorcinolic Lipids Obtained from Acetonic Extract of Jordanian Wheat Grains on Liposome Properties. Int. J. Biol. Chem. 5 (5), 314–321. 10.3923/ijbc.2011.314.321 DOI

Attia M. F., Anton N., Wallyn J., Omran Z., Vandamme T. F. (2019). An Overview of Active and Passive Targeting Strategies to Improve the Nanocarriers Efficiency to Tumour Sites. J. Pharm. Pharmacol. 71 (8), 1185–1198. 10.1111/jphp.13098 PubMed DOI

Attwood S., Choi Y., Leonenko Z. (2013). Preparation of DOPC and DPPC Supported Planar Lipid Bilayers for Atomic Force Microscopy and Atomic Force Spectroscopy. Ijms 14 (2), 3514–3539. 10.3390/ijms14023514 PubMed DOI PMC

Awasthi V. D., Garcia D., Goins B. A., Phillips W. T. (2003). Circulation and Biodistribution Profiles of Long-Circulating PEG-Liposomes of Various Sizes in Rabbits. Int. J. Pharm. 253 (1-2), 121–132. 10.1016/s0378-5173(02)00703-2 PubMed DOI

Bae Y., Jung M. K., Mun J. Y., Mallick S., Song S. J., Kim D. M., et al. (2018). DQAsomes Nanoparticles Promote Osteogenic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells. Bull. Korean Chem. Soc. 39 (1), 97–104. 10.1002/bkcs.11355 DOI

Bakker-Woudenberg I. A. J. M. (2002). Long-circulating Sterically Stabilized Liposomes as Carriers of Agents for Treatment of Infection or for Imaging Infectious Foci. Int. J. Antimicrob. Agents 19 (4), 299–311. 10.1016/s0924-8579(02)00021-3 PubMed DOI

Barenholz Y. (2016). Chapter 13. Doxil - the First FDA-Approved Nano-Drug: from Basics via CMC, Cell Culture and Animal Studies to Clinical Use. Nanomedicines: Des. Deliv. Detect. 51, 315–345. 10.1039/9781782622536-00315 DOI

Barenholz Y. (2021). Doxil - the First FDA-Approved Nano-Drug: From an Idea to a Product. Handbook harnessing Biomater. nanomedicine, 463–528. Jenny Stanford Publishing. 10.1201/9781003125259-16 DOI

Barnes L. D., Giuliano E. A., Ota J. (2010). Cellular Localization of Visudyne as a Function of Time after Local Injection in an In Vivo Model of Squamous Cell Carcinoma: an Investigation into Tumor Cell Death. Vet. Ophthalmol. 13 (3), 158–165. 10.1111/j.1463-5224.2010.00775.x PubMed DOI

Barratt G. (2003). Colloidal Drug Carriers: Achievements and Perspectives. Cell Mol. Life Sci. CMLS 60 (1), 21–37. 10.1007/s000180300002 PubMed DOI PMC

Battaglia L., Ugazio E. (2019). Lipid nano- and microparticles overview of patent-related research. J. Nanomater. 2019, 2834941. 10.1155/2019/2834941 DOI

Baykal-Caglar E., Hassan-Zadeh E., Saremi B., Huang J. (2012). Preparation of Giant Unilamellar Vesicles from Damp Lipid Film for Better Lipid Compositional Uniformity. Biochim. Biophys. Acta (Bba) - Biomembranes 1818 (11), 2598–2604. 10.1016/j.bbamem.2012.05.023 PubMed DOI

Benech R.-O., Kheadr E. E., Laridi R., Lacroix C., Fliss I. (2002). Inhibition of Listeria Innocua in Cheddar Cheese by Addition of Nisin Z in Liposomes or by In Situ Production in Mixed Culture. Appl. Environ. Microbiol. 68 (8), 3683–3690. 10.1128/aem.68.8.3683-3690.2002 PubMed DOI PMC

Benesch M., Urban C. (2008). Liposomal Cytarabine for Leukemic and Lymphomatous Meningitis: Recent Developments. Expert Opin. Pharmacother. 9 (2), 301–309. 10.1517/14656566.9.2.301 PubMed DOI

Bennett W. F. D., MacCallum J. L., Hinner M. J., Marrink S. J., Tieleman D. P. (2009). Molecular View of Cholesterol Flip-Flop and Chemical Potential in Different Membrane Environments. J. Am. Chem. Soc. 131 (35), 12714–12720. 10.1021/ja903529f PubMed DOI

Benvegnu T., Lemiègre L., Cammas-Marion S. (2009). New Generation of Liposomes Called Archaeosomes Based on Natural or Synthetic Archaeal Lipids as Innovative Formulations for Drug Delivery. Ddf 3 (3), 206–220. 10.2174/187221109789105630 PubMed DOI

Benz M., Gutsmann T., Chen N., Tadmor R., Israelachvili J. (2004). Correlation of AFM and SFA Measurements Concerning the Stability of Supported Lipid Bilayers. Biophysical J. 86 (2), 870–879. 10.1016/s0006-3495(04)74162-4 PubMed DOI PMC

Bern C., Adler-Moore J., Berenguer J., Boelaert M., den Boer M., Davidson R. N., et al. (2006). Liposomal Amphotericin B for the Treatment of Visceral Leishmaniasis. Clin. Infect. Dis. 43 (7), 917–924. 10.1086/507530 PubMed DOI

Bhatt P., Lalani R., Vhora I., Patil S., Amrutiya J., Misra A., et al. (2018). Liposomes Encapsulating Native and Cyclodextrin Enclosed Paclitaxel: Enhanced Loading Efficiency and its Pharmacokinetic Evaluation. Int. J. pharmaceutics 536 (1), 95–107. 10.1016/j.ijpharm.2017.11.048 PubMed DOI

Briuglia M.-L., Rotella C., McFarlane A., Lamprou D. A. (2015). Influence of Cholesterol on Liposome Stability and on In Vitro Drug Release. Drug Deliv. Transl. Res. 5 (3), 231–242. 10.1007/s13346-015-0220-8 PubMed DOI

B.T.S. Thirumamagal B., Zhao X. B., Bandyopadhyaya A. K., Sureshbabu Narayanasamy S., Johnsamuel J., Tiwari R., et al. (2006). Receptor-targeted Liposomal Delivery of boron-containing Cholesterol Mimics for boron Neutron Capture Therapy (BNCT). Bioconjug. Chem. 17 (5), 1141–1150. 10.1021/bc060075d PubMed DOI

Bulbake U., Doppalapudi S., Kommineni N., Khan W. (2017). Liposomal Formulations in Clinical Use: An Updated Review. Pharmaceutics 9 (2), 12. 10.3390/pharmaceutics9020012 PubMed DOI PMC

Burton A. J., Giguère S., Berghaus L. J., Hondalus M. K., Arnold R. D. (2015). Efficacy of Liposomal Gentamicin against Rhodococcus Equi in a Mouse Infection Model and Colocalization with R. Equi in Equine Alveolar Macrophages. Vet. Microbiol. 176 (3-4), 292–300. 10.1016/j.vetmic.2015.01.015 PubMed DOI

Campbell R. B., Balasubramanian S. V., Straubinger R. M. (2001). Influence of Cationic Lipids on the Stability and Membrane Properties of Paclitaxel‐containing Liposomes. J. Pharm. Sci. 90 (8), 1091–1105. 10.1002/jps.1063 PubMed DOI

Caracciolo G., Pozzi D., Amenitsch H., Caminiti R. (2005). Multicomponent Cationic Lipid−DNA Complex Formation: Role of Lipid Mixing. Langmuir 21 (25), 11582–11587. 10.1021/la052077c PubMed DOI

Cardenia V., Waraho T., Rodriguez‐Estrada M. T., Julian McClements D., Decker E. A. (2011). Antioxidant and Prooxidant Activity Behavior of Phospholipids in Stripped Soybean Oil‐in‐Water Emulsions. J. Am. Oil Chem. Soc. 88 (9), 1409–1416. 10.1007/s11746-011-1807-y DOI

Carlson D. L., Than K. D., Roberts A. L. (2006). Acid- and Base-Catalyzed Hydrolysis of Chloroacetamide Herbicides. J. Agric. Food Chem. 54 (13), 4740–4750. 10.1021/jf0530704 PubMed DOI

Chen C., Johnston T. D., Jeon H., Gedaly R., McHugh P. P., Burke T. G., et al. (2009). An In Vitro Study of Liposomal Curcumin: Stability, Toxicity and Biological Activity in Human Lymphocytes and Epstein-Barr Virus-Transformed Human B-Cells. Int. J. Pharm. 366 (1-2), 133–139. 10.1016/j.ijpharm.2008.09.009 PubMed DOI

Chen C., Han D., Cai C., Tang X. (2010). An Overview of Liposome Lyophilization and its Future Potential. J. controlled release 142 (3), 299–311. 10.1016/j.jconrel.2009.10.024 PubMed DOI

Chen J.-H., Ling R., Yao Q., Li Y., Chen T., Wang Z., et al. (2005). Effect of Small-Sized Liposomal Adriamycin Administered by Various Routes on a Metastatic Breast Cancer Model. Endocr. Relat. Cancer 12 (1), 93–100. 10.1677/erc.1.00871 PubMed DOI

Chen J., Lu W.-L., Gu W., Lu S.-S., Chen Z.-P., Cai B.-C., et al. (2014). Drug-in-cyclodextrin-in-liposomes: A Promising Delivery System for Hydrophobic Drugs. Expert Opin. Drug Deliv. 11 (4), 565–577. 10.1517/17425247.2014.884557 PubMed DOI

Chen X., Wang X., Wang Y., Yang L., Hu J., Xiao W., et al. (2010). Improved Tumor-Targeting Drug Delivery and Therapeutic Efficacy by Cationic Liposome Modified with Truncated bFGF Peptide. J. controlled release 145 (1), 17–25. 10.1016/j.jconrel.2010.03.007 PubMed DOI

Chen Y., Sun J., Lu Y., Tao C., Huang J., Zhang H., et al. (2013). Complexes Containing Cationic and Anionic pH-Sensitive Liposomes: Comparative Study of Factors Influencing Plasmid DNA Gene Delivery to Tumors. Int. J. Nanomedicine 8, 1573–1593. 10.2147/IJN.S42800 PubMed DOI PMC

Chen Y., Wu Q., Zhang Z., Yuan L., Liu X., Zhou L. (2012). Preparation of Curcumin-Loaded Liposomes and Evaluation of Their Skin Permeation and Pharmacodynamics. Molecules 17 (5), 5972–5987. 10.3390/molecules17055972 PubMed DOI PMC

Cheng M. H. Y., Harmatys K. M., Charron D. M., Chen J., Zheng G. (2019). Stable J‐Aggregation of an aza‐BODIPY‐Lipid in a Liposome for Optical Cancer Imaging. Angew. Chem. 131 (38), 13528–13533. 10.1002/ange.201907754 PubMed DOI

Cheng Y., Ji Y. (2019). RGD-modified Polymer and Liposome Nanovehicles: Recent Research Progress for Drug Delivery in Cancer Therapeutics. Eur. J. Pharm. Sci. 128, 8–17. 10.1016/j.ejps.2018.11.023 PubMed DOI

Chetoni P., Rossi S., Burgalassi S., Monti D., Mariotti S., Saettone M. F. (2004). Comparison of Liposome-Encapsulated Acyclovir with Acyclovir Ointment: Ocular Pharmacokinetics in Rabbits. J. Ocul. Pharmacol. Ther. 20 (2), 169–177. 10.1089/108076804773710849 PubMed DOI

Chibowski E., Szcześ A. (2016). Zeta Potential and Surface Charge of DPPC and DOPC Liposomes in the Presence of PLC Enzyme. Adsorption 22 (4-6), 755–765. 10.1007/s10450-016-9767-z DOI

Choi M. J., Maibach H. I. (2005). Liposomes and Niosomes as Topical Drug Delivery Systems. Skin Pharmacol. Physiol. 18 (5), 209–219. 10.1159/000086666 PubMed DOI

Christensen D., Foged C., Rosenkrands I., Lundberg C. V., Andersen P., Agger E. M., et al. (2010). CAF01 Liposomes as a Mucosal Vaccine Adjuvant: In Vitro and In Vivo Investigations. Int. J. pharmaceutics 390 (1), 19–24. 10.1016/j.ijpharm.2009.10.043 PubMed DOI

Chupin V., Boots J. W. P., Killian J. A., Demel R. A., de Kruijff B. (2002). Thermotropic Phase Behavior of Monoglyceride-Dicetylphosphate Dispersions and Interactions with Proteins: a 2H and 31P NMR Study. Biophysical J. 82 (2), 843–851. 10.1016/s0006-3495(02)75446-5 PubMed DOI PMC

Collier M. A., Bachelder E. M., Ainslie K. M. (2017). Electrosprayed Myocet-like Liposomes: an Alternative to Traditional Liposome Production. Pharm. Res. 34 (2), 419–426. 10.1007/s11095-016-2072-4 PubMed DOI

Cordeiro C., Wiseman D. J., Lutwyche P., Uh M., Evans J. C., Finlay B. B., et al. (2000). Antibacterial Efficacy of Gentamicin Encapsulated in pH-Sensitive Liposomes against an In Vivo Salmonella enterica Serovar Typhimurium Intracellular Infection Model. Antimicrob. Agents Chemother. 44 (3), 533–539. 10.1128/aac.44.3.533-539.2000 PubMed DOI PMC

Crommelin D. J. A., van Hoogevest P., Storm G. (2020). The Role of Liposomes in Clinical Nanomedicine Development. What Now? Now what?. J. Controlled Release 318, 256–263. 10.1016/j.jconrel.2019.12.023 PubMed DOI

Csiszár A., Hersch N., Dieluweit S., Biehl R., Merkel R., Hoffmann B. (2010). Novel Fusogenic Liposomes for Fluorescent Cell Labeling and Membrane Modification. Bioconjug. Chem. 21 (3), 537–543. 10.1021/bc900470y PubMed DOI

D'Avanzo N., Hyrc K., Enkvetchakul D., Covey D. F., Nichols C. G. (2011). Enantioselective Protein-Sterol Interactions Mediate Regulation of Both Prokaryotic and Eukaryotic Inward Rectifier K+ Channels by Cholesterol. PLoS One 6 (4), e19393. 10.1371/journal.pone.0019393 PubMed DOI PMC

Daemen T., Demare A., Bungener L., Dejonge J., Huckriede A., Wilschut J. (2005). Virosomes for Antigen and DNA Delivery. Adv. Drug Deliv. Rev. 57 (3), 451–463. 10.1016/j.addr.2004.09.005 PubMed DOI

Dana P., Bunthot S., Suktham K., Surassmo S., Yata T., Namdee K., et al. (2020). Active Targeting Liposome-PLGA Composite for Cisplatin Delivery against Cervical Cancer. Colloids Surf. B: Biointerfaces 196, 111270. 10.1016/j.colsurfb.2020.111270 PubMed DOI

Daraee H., Etemadi A., Kouhi M., Alimirzalu S., Akbarzadeh A. (2016). Application of Liposomes in Medicine and Drug Delivery. Artif. Cell Nanomedicine, Biotechnol. 44 (1), 381–391. 10.3109/21691401.2014.953633 PubMed DOI

Davidsen J., Rosenkrands I., Christensen D., Vangala A., Kirby D., Perrie Y., et al. (2005). Characterization of Cationic Liposomes Based on Dimethyldioctadecylammonium and Synthetic Cord Factor from M. tuberculosis (Trehalose 6,6'-Dibehenate)-A Novel Adjuvant Inducing Both strong CMI and Antibody Responses. Biochim. Biophys. Acta 1718 (1-2), 22–31. 10.1016/j.bbamem.2005.10.011 PubMed DOI

Davidson E. M., Haroutounian S., Kagan L., Naveh M., Aharon A., Ginosar Y. (2016). A Novel Proliposomal Ropivacaine Oil. Anesth. Analgesia 122 (5), 1663–1672. 10.1213/ane.0000000000001200 PubMed DOI

Dayan N., Touitou E. (2000). Carriers for Skin Delivery of Trihexyphenidyl HCl: Ethosomes vs. Liposomes. Biomaterials 21 (18), 1879–1885. 10.1016/s0142-9612(00)00063-6 PubMed DOI

Demetzos C. (2008). Differential Scanning Calorimetry (DSC): a Tool to Study the thermal Behavior of Lipid Bilayers and Liposomal Stability. J. liposome Res. 18 (3), 159–173. 10.1080/08982100802310261 PubMed DOI

Deng H., Song K., Zhao X., Li Y., Wang F., Zhang J., et al. (2017). Tumor Microenvironment Activated Membrane Fusogenic Liposome with Speedy Antibody and Doxorubicin Delivery for Synergistic Treatment of Metastatic Tumors. ACS Appl. Mater. Inter. 9 (11), 9315–9326. 10.1021/acsami.6b14683 PubMed DOI

Deng M., Tu N., Bai F., Wang L. (2012). Surface Functionalization of Hydrophobic Nanocrystals with One Particle Per Micelle for Bioapplications. Chem. Mater. 24 (13), 2592–2597. 10.1021/cm301285g DOI

Deniz A., Sade A., Severcan F., Keskin D., Tezcaner A., Banerjee S. (2010). Celecoxib-loaded Liposomes: Effect of Cholesterol on Encapsulation and In Vitro Release Characteristics. Biosci. Rep. 30 (5), 365–373. 10.1042/bsr20090104 PubMed DOI

Devrim B., Kara A., Vural İ., Bozkır A. (2016). Lysozyme-loaded Lipid-Polymer Hybrid Nanoparticles: Preparation, Characterization and Colloidal Stability Evaluation. Drug Dev. Ind. Pharm. 42 (11), 1865–1876. 10.1080/03639045.2016.1180392 PubMed DOI

Dokka S., Toledo D., Shi X., Castranova V., Rojanasakul Y. (2000). Oxygen Radical-Mediated Pulmonary Toxicity Induced by Some Cationic Liposomes. Pharm. Res. 17 (5), 521–525. 10.1023/a:1007504613351 PubMed DOI

Domínguez A. R., Hidalgo D. O., Garrido R. V., Sánchez E. T. (2005). Liposomal Cytarabine (DepoCyte) for the Treatment of Neoplastic Meningitis. Clin. Transl Oncol. 7 (6), 232–238. 10.1007/bf02710168 PubMed DOI

Dos Santos N., Mayer L. D., Abraham S. A., Gallagher R. C., Cox K. A. K., Tardi P. G., et al. (2002). Improved Retention of Idarubicin after Intravenous Injection Obtained for Cholesterol-free Liposomes. Biochim. Biophys. Acta (Bba) - Biomembranes 1561 (2), 188–201. 10.1016/s0005-2736(02)00345-0 PubMed DOI

Drin G., Morello V., Casella J.-F., Gounon P., Antonny B. (2008). Asymmetric Tethering of Flat and Curved Lipid Membranes by a Golgin. Science 320 (5876), 670–673. 10.1126/science.1155821 PubMed DOI

Drulis-Kawa Z., Dorotkiewicz-Jach A. (2010). Liposomes as Delivery Systems for Antibiotics. Int. J. Pharm. 387 (1-2), 187–198. 10.1016/j.ijpharm.2009.11.033 PubMed DOI

Dua J., Rana A., Bhandari A. (2012). Liposome: Methods of Preparation and Applications. Int. J. Pharm. Stud. Res. 3 (2), 14–20.

Ducat E., Deprez J., Gillet A., Noël A., Evrard B., Peulen O., et al. (2011). Nuclear Delivery of a Therapeutic Peptide by Long Circulating pH-Sensitive Liposomes: Benefits over Classical Vesicles. Int. J. pharmaceutics 420 (2), 319–332. 10.1016/j.ijpharm.2011.08.034 PubMed DOI

Düzgünes N., Simões S., Slepushkin V., Pretzer E., Rossi J. J., De Clercq E., et al. (2001). Enhanced Inhibition of HIV-1 Replication in Macrophages by Antisense Oligonucleotides, Ribozymes and Acyclic Nucleoside Phosphonate Analogs Delivered in pH-Sensitive Liposomes. Nucleosides Nucleotides Nucleic Acids 20 (4-7), 515–523. 10.1081/NCN-100002327 PubMed DOI

Dynarowicz-Łątka P., Seoane R., Minones J., Jr, Velo M., Minones J. (2003). Study of Penetration of Amphotericin B into Cholesterol or Ergosterol Containing Dipalmitoyl Phosphatidylcholine Langmuir Monolayers. Colloids Surf. B: Biointerfaces 27 (2-3), 249–263.

El-Samaligy M. S., Afifi N. N., Mahmoud E. A. (2006). Evaluation of Hybrid Liposomes-Encapsulated Silymarin Regarding Physical Stability and In Vivo Performance. Int. J. Pharm. 319 (1-2), 121–129. 10.1016/j.ijpharm.2006.04.023 PubMed DOI

El-Samaligy M. S., Afifi N. N., Mahmoud E. A. (2006). Increasing Bioavailability of Silymarin Using a Buccal Liposomal Delivery System: Preparation and Experimental Design Investigation. Int. J. Pharm. 308 (1-2), 140–148. 10.1016/j.ijpharm.2005.11.006 PubMed DOI

Ellis M., Bernsen R., Ali-Zadeh H., Kristensen J., Hedström U., Poughias L., et al. (2009). A Safety and Feasibility Study Comparing an Intermittent High Dose with a Daily Standard Dose of Liposomal Amphotericin B for Persistent Neutropenic Fever. J. Med. Microbiol. 58 (11), 1474–1485. 10.1099/jmm.0.012401-0 PubMed DOI

Eloy J. O., Claro de Souza M., Petrilli R., Barcellos J. P. A., Lee R. J., Marchetti J. M. (2014). Liposomes as Carriers of Hydrophilic Small Molecule Drugs: Strategies to Enhance Encapsulation and Delivery. Colloids Surf. B: Biointerfaces 123, 345–363. 10.1016/j.colsurfb.2014.09.029 PubMed DOI

Epstein H., Gutman D., Cohen-Sela E., Haber E., Elmalak O., Koroukhov N., et al. (2008). Preparation of Alendronate Liposomes for Enhanced Stability and Bioactivity: In Vitro and In Vivo Characterization. Aaps J. 10 (4), 505–515. 10.1208/s12248-008-9060-5 PubMed DOI PMC

Evjen T. J., Nilssen E. A., Barnert S., Schubert R., Brandl M., Fossheim S. L. (2011). Ultrasound-mediated Destabilization and Drug Release from Liposomes Comprising Dioleoylphosphatidylethanolamine. Eur. J. Pharm. Sci. 42 (4), 380–386. 10.1016/j.ejps.2011.01.002 PubMed DOI

Fang J.-Y., Fang C.-L., Liu C.-H., Su Y.-H. (2008). Lipid Nanoparticles as Vehicles for Topical Psoralen Delivery: Solid Lipid Nanoparticles (SLN) versus Nanostructured Lipid Carriers (NLC). Eur. J. Pharmaceutics Biopharmaceutics 70 (2), 633–640. 10.1016/j.ejpb.2008.05.008 PubMed DOI

Fang J.-Y., Hung C.-F., Hwang T.-L., Huang Y.-L. (2005). Physicochemical Characteristics Andin Vivodeposition of Liposome-Encapsulated tea Catechins by Topical and Intratumor Administrations. J. Drug Target. 13 (1), 19–27. 10.1080/10611860400015977 PubMed DOI

Farzad N., Barati N., Momtazi-Borojeni A. A., Yazdani M., Arab A., Razazan A., et al. (2019). P435 HER2/neu-Derived Peptide Conjugated to Liposomes Containing DOPE as an Effective Prophylactic Vaccine Formulation for Breast Cancer. Artif. Cell Nanomedicine, Biotechnol. 47 (1), 664–672. 10.1080/21691401.2019.1576702 PubMed DOI

Fattal E., Couvreur P., Dubernet C. (2004). "Smart" Delivery of Antisense Oligonucleotides by Anionic pH-Sensitive Liposomes. Adv. Drug Deliv. Rev. 56 (7), 931–946. 10.1016/j.addr.2003.10.037 PubMed DOI

Faustino C. M. C., Calado A. R. T., Garcia-Rio L. (2011). Mixed Micelle Formation between Amino Acid-Based Surfactants and Phospholipids. J. Colloid Interf. Sci. 359 (2), 493–498. 10.1016/j.jcis.2011.04.016 PubMed DOI

Felnerova D., Viret J.-F., Glück R., Moser C. (2004). Liposomes and Virosomes as Delivery Systems for Antigens, Nucleic Acids and Drugs. Curr. Opin. Biotechnol. 15 (6), 518–529. 10.1016/j.copbio.2004.10.005 PubMed DOI

Figueroa-Robles A., Antunes-Ricardo M., Guajardo-Flores D. (2020). Encapsulation of Phenolic Compounds with Liposomal Improvement in the Cosmetic Industry. Int. J. Pharm. 593, 120125. 10.1016/j.ijpharm.2020.120125 PubMed DOI

Franzé S., Selmin F., Samaritani E., Minghetti P., Cilurzo F. (2018). Lyophilization of Liposomal Formulations: Still Necessary, Still Challenging. Pharmaceutics 10 (3), 139. 10.3390/pharmaceutics10030139 PubMed DOI PMC

Freedman M., Chang E. H., Zhou Q., Pirollo K. F. (2009). Nanodelivery of MRI Contrast Agent Enhances Sensitivity of Detection of Lung Cancer Metastases. Acad. Radiol. 16 (5), 627–637. 10.1016/j.acra.2008.12.002 PubMed DOI PMC

Frenzel M., Steffen-Heins A. (2015). Whey Protein Coating Increases Bilayer Rigidity and Stability of Liposomes in Food-like Matrices. Food Chem. 173, 1090–1099. 10.1016/j.foodchem.2014.10.076 PubMed DOI

Fuchsluger T. A., Hintschich C., Steuhl K.-P., Meller D. (2006). Adjuvante topische Interferon-α-2b-Therapie bei epithelialen Tumoren der Augenoberfläche. Ophthalmologe 103 (2), 124–128. 10.1007/s00347-005-1249-8 PubMed DOI

Fujisawa T., Miyai H., Hironaka K., Tsukamoto T., Tahara K., Tozuka Y., et al. (2012). Liposomal Diclofenac Eye Drop Formulations Targeting the Retina: Formulation Stability Improvement Using Surface Modification of Liposomes. Int. J. Pharm. 436 (1-2), 564–567. 10.1016/j.ijpharm.2012.07.024 PubMed DOI

Gabriëls M., Plaizier-Vercammen J. (2003). Physical and Chemical Evaluation of Liposomes, Containing Artesunate. J. Pharm. Biomed. Anal. 31 (4), 655–667. 10.1016/s0731-7085(02)00678-7 PubMed DOI

Garbuzenko O., Barenholz Y., Priev A. (2005). Effect of Grafted PEG on Liposome Size and on Compressibility and Packing of Lipid Bilayer. Chem. Phys. Lipids 135 (2), 117–129. 10.1016/j.chemphyslip.2005.02.003 PubMed DOI

Garg T., K. Goyal A. (2014). Liposomes: Targeted and Controlled Delivery System. Ddl 4 (1), 62–71. 10.2174/22103031113036660015 DOI

Ghanbarzadeh S., Valizadeh H., Zakeri-Milani P. (2013). The Effects of Lyophilization on the Physico-Chemical Stability of Sirolimus Liposomes. Adv. Pharm. Bull. 3 (1), 25–29. 10.5681/apb.2013.005 PubMed DOI PMC

Ghazizadeh E., Neshastehriz A. (2020). Different Liposome Patterns to Detection of Acute Leukemia Based on Electrochemical Cell Sensor. Analytica Chim. Acta. PubMed

Giulimondi F., Digiacomo L., Pozzi D., Palchetti S., Vulpis E., Capriotti A. L., et al. (2019). Interplay of Protein corona and Immune Cells Controls Blood Residency of Liposomes. Nat. Commun. 10 (1), 3686–3711. 10.1038/s41467-019-11642-7 PubMed DOI PMC

Goto T., Morishita M., Nishimura K., Nakanishi M., Kato A., Ehara J., et al. (2006). Novel Mucosal Insulin Delivery Systems Based on Fusogenic Liposomes. Pharm. Res. 23 (2), 384–391. 10.1007/s11095-005-9175-7 PubMed DOI

Gross N., Ranjbar M., Evers C., Hua J., Martin G., Schulze B., et al. (2013). Choroidal Neovascularization Reduced by Targeted Drug Delivery with Cationic Liposome-Encapsulated Paclitaxel or Targeted Photodynamic Therapy with Verteporfin Encapsulated in Cationic Liposomes. Mol. Vis. 19, 54–61. PubMed PMC

Gullapalli R. R., Demirel M. C., Butler P. J. (2008). Molecular Dynamics Simulations of DiI-C18(3) in a DPPC Lipid Bilayer. Phys. Chem. Chem. Phys. 10 (24), 3548–3560. 10.1039/b716979e PubMed DOI PMC

Hadavi R., Jafari S. M., Katouzian I. (2020). Nanoliposomal Encapsulation of Saffron Bioactive Compounds; Characterization and Optimization. Int. J. Biol. Macromolecules 164, 4046–4053. 10.1016/j.ijbiomac.2020.09.028 PubMed DOI

Hahn V., Friedt W. (2012). Important Characters by Recombinant DNA Technology. Prog. Bot. Stuctural Bot. Physiol. Genet. Taxonomy Geobotany/Fortschritte der Botanik Struktur Physiologie Genetik Systematik Geobotanik 53, 181.

Hashemzadeh H., Javadi H., Darvishi M. H. (2020). Study of Structural Stability and Formation Mechanisms in DSPC and DPSM Liposomes: A Coarse-Grained Molecular Dynamics Simulation. Sci. Rep. 10 (1), 1837–1910. 10.1038/s41598-020-58730-z PubMed DOI PMC

Hashemzadeh H., Javadi H., Darvishi M. H. (2020). Study of Structural Stability and Formation Mechanisms in DSPC and DPSM Liposomes: A Coarse-Grained Molecular Dynamics Simulation. Sci. Rep. 10 (1), 1837. 10.1038/s41598-020-58730-z PubMed DOI PMC

Hathout R. M., Mansour S., Mortada N. D., Guinedi A. S. (2007). Liposomes as an Ocular Delivery System for Acetazolamide: In Vitro and In Vivo Studies. Aaps Pharmscitech 8 (1), E1–E12. 10.1208/pt0801001 PubMed DOI PMC

He J., Evers D. L., O’Leary T. J., Mason J. T. (2012). Immunoliposome-PCR: a Generic Ultrasensitive Quantitative Antigen Detection System. J. nanobiotechnology 10 (1), 26. 10.1186/1477-3155-10-26 PubMed DOI PMC

He K., Tang M. (2018). Safety of Novel Liposomal Drugs for Cancer Treatment: Advances and Prospects. Chemico-Biological Interactions 295, 13–19. 10.1016/j.cbi.2017.09.006 PubMed DOI

Hilmer S. N., Cogger V. C., Muller M., Le Couteur D. G. (2004). The Hepatic Pharmacokinetics of Doxorubicin and Liposomal Doxorubicin. Drug Metab. Dispos 32 (8), 794–799. 10.1124/dmd.32.8.794 PubMed DOI

Hirano M., Nakamura S., Mitsunaga F., Okada M., Shimuzu K., Imamura T. (2002). Transfer of Maternally Administered Fusogenic Liposome-DNA Complexes into Monkey Fetuses in a Pregnancy Model. J. Gene Med. 4 (5), 560–566. 10.1002/jgm.289 PubMed DOI

Ho J. A., Zeng S. C., Huang M. R., Kuo H. Y. (2006). Development of Liposomal Immunosensor for the Measurement of Insulin with Femtomole Detection. Anal. Chim. Acta 556 (1), 127–132. 10.1016/j.aca.2005.08.074 PubMed DOI

Homann H.-H., Rosbach O., Moll W., Vogt P. M., Germann G., Hopp M., et al. (2007). A Liposome Hydrogel with Polyvinyl-Pyrrolidone Iodine in the Local Treatment of Partial-Thickness Burn Wounds. Ann. Plast. Surg. 59 (4), 423–427. 10.1097/sap.0b013e3180326fcf PubMed DOI

Hong S.-S., Oh K. T., Choi H.-G., Lim S.-J. (2019). Liposomal Formulations for Nose-To-Brain Delivery: Recent Advances and Future Perspectives. Pharmaceutics 11 (10), 540. 10.3390/pharmaceutics11100540 PubMed DOI PMC

Hosny K. M. (2010). Ciprofloxacin as Ocular Liposomal Hydrogel. Aaps Pharmscitech 11 (1), 241–246. 10.1208/s12249-009-9373-4 PubMed DOI PMC

Hu Q., Bally M. B., Madden T. D. (2002). Subcellular Trafficking of Antisense Oligonucleotides and Down-Regulation of Bcl-2 Gene Expression in Human Melanoma Cells Using a Fusogenic Liposome Delivery System. Nucleic Acids Res. 30 (16), 3632–3641. 10.1093/nar/gkf448 PubMed DOI PMC

Hua S. (2013). Targeting Sites of Inflammation: Intercellular Adhesion Molecule-1 as a Target for Novel Inflammatory Therapies. Front. Pharmacol. 4, 127. 10.3389/fphar.2013.00127 PubMed DOI PMC

Huang F.-Y. J., Hung C.-C., Chang C.-W., Chao J.-H., Hsieh B.-T. (2018). Evaluation of Injectable Chitosan-Based Co-cross-linking Hydrogel for Local Delivery of 188Re-LIPO-DOX to Breast-Tumor-Bearing Mouse Model. Anticancer Res. 38 (8), 4651–4659. 10.21873/anticanres.12770 PubMed DOI

Huh S. Y., Shin J. W., Na J. I., Huh C. H., Youn S. W., Park K. C. (2010). Efficacy and Safety of Liposome-Encapsulated 4-N-Butylresorcinol 0.1% Cream for the Treatment of Melasma: A Randomized Controlled Split-Face Trial. J. Dermatol. 37 (4), 311–315. 10.1111/j.1346-8138.2010.00787.x PubMed DOI

Husain S., Capitano B., Corcoran T., Studer S. M., Crespo M., Johnson B., et al. (2010). Intrapulmonary Disposition of Amphotericin B after Aerosolized Delivery of Amphotericin B Lipid Complex (Abelcet; ABLC) in Lung Transplant Recipients. Transplantation 90 (11), 1215–1219. 10.1097/tp.0b013e3181f995ea PubMed DOI

Ib G., Corredig M. (2013). Storage Stability and Physical Characteristics of tea-polyphenol-bearing Nanoliposomes Prepared with Milk Fat Globule Membrane Phospholipids. J. Agric. Food Chem. 61 (13), 3242–3251. PubMed

Ichikawa K., Hikita T., Maeda N., Takeuchi Y., Namba Y., Oku N. (2004). PEGylation of Liposome Decreases the Susceptibility of Liposomal Drug in Cancer Photodynamic Therapy. Biol. Pharm. Bull. 27 (3), 443–444. 10.1248/bpb.27.443 PubMed DOI

Ichikawa K., Hikita T., Maeda N., Yonezawa S., Takeuchi Y., Asai T., et al. (2005). Antiangiogenic Photodynamic Therapy (PDT) by Using Long-Circulating Liposomes Modified with Peptide Specific to Angiogenic Vessels. Biochim. Biophys. Acta (Bba) - Biomembranes 1669 (1), 69–74. 10.1016/j.bbamem.2005.02.003 PubMed DOI

Jacoby G., Cohen K., Barkan K., Talmon Y., Peer D., Beck R. (2015). Metastability in Lipid Based Particles Exhibits Temporally Deterministic and Controllable Behavior. Sci. Rep. 5, 9481. 10.1038/srep09481 PubMed DOI PMC

Jain A., Jain S. K. (2016). In Vitro release Kinetics Model Fitting of Liposomes: An Insight. Chem. Phys. Lipids 201, 28–40. 10.1016/j.chemphyslip.2016.10.005 PubMed DOI

Jain A. K., Thanki K., Jain S. (2014). Solidified Self-Nanoemulsifying Formulation for Oral Delivery of Combinatorial Therapeutic Regimen: Part I. Formulation Development, Statistical Optimization, and In Vitro Characterization. Pharm. Res. 31 (4), 923–945. 10.1007/s11095-013-1213-2 PubMed DOI

Jain M., Zellweger M., Frobert A., Valentin J., Bergh H. v. d., Wagnières G., et al. (2016). Intra-Arterial Drug and Light Delivery for Photodynamic Therapy Using Visudyne: Implication for Atherosclerotic Plaque Treatment. Front. Physiol. 7, 400. 10.3389/fphys.2016.00400 PubMed DOI PMC

Jain N., Gupta B. P., Thakur N., Jain R., Banweer J., Jain D. K., et al. (2010). Phytosome: a Novel Drug Delivery System for Herbal Medicine. Int. J. Pharm. Sci. Drug Res. 2 (4), 224–228.

Jeon M., Kim G., Lee W., Im H-J. (2020). Development of Theranostic PEGylated Liposomal Au-Liposome for Effective Tumor Passive Targeting and Photothermal Therapy. Soc. Nucl. Med 61, 1076.

Jimbo T., Sakuma Y., Urakami N., Ziherl P., Imai M. (2016). Role of Inverse-Cone-Shape Lipids in Temperature-Controlled Self-Reproduction of Binary Vesicles. Biophysical J. 110 (7), 1551–1562. 10.1016/j.bpj.2016.02.028 PubMed DOI PMC

Jiménez-Escrig A., Sánchez-Muniz F. J. (2000). Dietary Fibre from Edible Seaweeds: Chemical Structure, Physicochemical Properties and Effects on Cholesterol Metabolism. Nutr. Res. 20 (4), 585–598. 10.1016/s0271-5317(00)00149-4 DOI

Johnston M. J. W., Semple S. C., Klimuk S. K., Ansell S., Maurer N., Cullis P. R. (2007). Characterization of the Drug Retention and Pharmacokinetic Properties of Liposomal Nanoparticles Containing Dihydrosphingomyelin. Biochim. Biophys. Acta (Bba) - Biomembranes 1768 (5), 1121–1127. 10.1016/j.bbamem.2007.01.019 PubMed DOI

Johnstone S. A., Masin D., Mayer L., Bally M. B. (2001). Surface-associated Serum Proteins Inhibit the Uptake of Phosphatidylserine and Poly(ethylene Glycol) Liposomes by Mouse Macrophages. Biochim. Biophys. Acta (Bba) - Biomembranes 1513 (1), 25–37. 10.1016/s0005-2736(01)00292-9 PubMed DOI

Joly F., Ray-Coquard I., Fabbro M., Donoghoe M., Boman K., Sugimoto A., et al. (2011). Decreased Hypersensitivity Reactions with Carboplatin-Pegylated Liposomal Doxorubicin Compared to Carboplatin-Paclitaxel Combination: Analysis from the GCIG CALYPSO Relapsing Ovarian Cancer Trial. Gynecol. Oncol. 122 (2), 226–232. 10.1016/j.ygyno.2011.04.019 PubMed DOI

Joshi S., Hussain M. T., Roces C. B., Anderluzzi G., Kastner E., Salmaso S., et al. (2016). Microfluidics Based Manufacture of Liposomes Simultaneously Entrapping Hydrophilic and Lipophilic Drugs. Int. J. pharmaceutics 514 (1), 160–168. 10.1016/j.ijpharm.2016.09.027 PubMed DOI

Jung H.-S., Ishii H., Shimanouchi T., Umakoshi H., Kuboi R. (2007). Immobilized-liposome Sensor System for Detection of Proteins under Stress Conditions. Membrane 32 (5), 294–301. 10.5360/membrane.32 DOI

Jung J. H., Ree M., Kim H. (2006). Acid-and Base-Catalyzed Hydrolyses of Aliphatic Polycarbonates and Polyesters. Catal. Today 115 (1-4), 283–287. 10.1016/j.cattod.2006.02.060 DOI

Jung S.-Y., Holden M. A., Cremer P. S., Collier C. P. (2005). Two-Component Membrane Lithography via Lipid Backfilling. ChemPhysChem. 6 (3), 423–426. 10.1002/cphc.200400540 PubMed DOI

Jung S. H., Jung S. H., Seong H., Cho S. H., Jeong K. S., Shin B. C. (2009). Polyethylene Glycol-Complexed Cationic Liposome for Enhanced Cellular Uptake and Anticancer Activity. Int. J. Pharm. 382 (1-2), 254–261. 10.1016/j.ijpharm.2009.08.002 PubMed DOI

Park J. W., Benz C. C., Martin F. J. (2004). in Future Directions of Liposome-And Immunoliposome-Based Cancer Therapeutics. Seminars in Oncology (Elsevier; ). PubMed

Kafle A., Akamatsu M., Bhadani A., Sakai K., Kaise C., Kaneko T., et al. (2020). Phase Behavior of the Bilayers Containing Hydrogenated Soy Lecithin and β-sitosteryl Sulfate. Langmuir. 10.1021/acs.langmuir.0c00472 PubMed DOI

Kang S. H., Cho H.-J., Shim G., Lee S., Kim S.-H., Choi H.-G., et al. (2011). Cationic Liposomal Co-delivery of Small Interfering RNA and a MEK Inhibitor for Enhanced Anticancer Efficacy. Pharm. Res. 28 (12), 3069–3078. 10.1007/s11095-011-0569-4 PubMed DOI

Karmali P. P., Chaudhuri A. (2007). Cationic Liposomes as Non-viral Carriers of Gene Medicines: Resolved Issues, Open Questions, and Future Promises. Med. Res. Rev. 27 (5), 696–722. 10.1002/med.20090 PubMed DOI

Kashapov R., Ibragimova A., Pavlov R., Gabdrakhmanov D., Kashapova N., Burilova E., et al. (2021). Nanocarriers for Biomedicine: From Lipid Formulations to Inorganic and Hybrid Nanoparticles. Ijms 22 (13), 7055. 10.3390/ijms22137055 PubMed DOI PMC

Kaur G., Garg T., Rath G., Goyal A. K. (2016). Archaeosomes: an Excellent Carrier for Drug and Cell Delivery. Drug Deliv. 23 (7), 2497–2512. 10.3109/10717544.2015.1019653 PubMed DOI

Khadke S., Roces C. B., Donaghey R., Giacobbo V., Su Y., Perrie Y. (2020). Scalable Solvent-free Production of Liposomes. J. Pharm. Pharmacol. 72 (10), 1328–1340. 10.1111/jphp.13329 PubMed DOI

Khosravi-Darani K., Zahed O., Aarabi S. (2018). Antioxidant activity of Zataria multiflora boiss. Essential oil encapsulated in nanoliposome in broth media and minced beef. Pak. J. Biotechnol. 15 (2), 365–375.

Kidd P. M. (2009). Bioavailability and Activity of Phytosome Complexes from Botanical Polyphenols: the Silymarin, Curcumin, green tea, and Grape Seed Extracts. Altern. Med. Rev. 14 (3), 226–246. PubMed

Kitayama H., Takechi Y., Tamai N., Matsuki H., Yomota C., Saito H. (2014). Thermotropic Phase Behavior of Hydrogenated Soybean Phosphatidylcholine-Cholesterol Binary Liposome Membrane. Chem. Pharm. Bull. 62 (1), 58–63. 10.1248/cpb.c13-00587 PubMed DOI

Kleusch C., Hersch N., Hoffmann B., Merkel R., Csiszár A. (2012). Fluorescent Lipids: Functional Parts of Fusogenic Liposomes and Tools for Cell Membrane Labeling and Visualization. Molecules 17 (1), 1055–1073. 10.3390/molecules17011055 PubMed DOI PMC

Kshirsagar N. A., Pandya S. K., Kirodian G. B., Sanath S. (2005). Liposomal Drug Delivery System from Laboratory to Clinic. J. Postgrad. Med. 51 Suppl 1 (5), S5–S15. PubMed

Kunisawa J., Masuda T., Katayama K., Yoshikawa T., Tsutsumi Y., Akashi M., et al. (2005). Fusogenic Liposome Delivers Encapsulated Nanoparticles for Cytosolic Controlled Gene Release. J. controlled release 105 (3), 344–353. 10.1016/j.jconrel.2005.03.020 PubMed DOI

Kunzelmann-Marche C., Freyssinet J.-M., Martínez M. C. (2002). Loss of Plasma Membrane Phospholipid Asymmetry Requires Raft Integrity. J. Biol. Chem. 277 (22), 19876–19881. 10.1074/jbc.m200324200 PubMed DOI

Laouini A., Jaafar-Maalej C., Limayem-Blouza I., Sfar S., Charcosset C., Fessi H. (2012). Preparation, Characterization and Applications of Liposomes: State of the Art. J Coll. Sci. Biotechnol. 1 (2), 147–168. 10.1166/jcsb.2012.1020 DOI

Lebègue E., Anderson C. M., Dick J. E., Webb L. J., Bard A. J. (2015). Electrochemical Detection of Single Phospholipid Vesicle Collisions at a Pt Ultramicroelectrode. Langmuir 31 (42), 11734–11739. 10.1021/acs.langmuir.5b03123 PubMed DOI

Lee C. M., Flynn R., Hollywood J. A., Scallan M. F., Harrison P. T. (2012). Correction of the ΔF508 Mutation in the Cystic Fibrosis Transmembrane Conductance Regulator Gene by Zinc-Finger Nuclease Homology-Directed Repair. BioResearch open access 1 (3), 99–108. 10.1089/biores.2012.0218 PubMed DOI PMC

Lee J., Kim H.-J., Kim J. (2008). Polydiacetylene Liposome Arrays for Selective Potassium Detection. J. Am. Chem. Soc. 130 (15), 5010–5011. 10.1021/ja709996c PubMed DOI

Lee S. C., Lee K. E., Kim J. J., Lim S. H. (2005). The Effect of Cholesterol in the Liposome Bilayer on the Stabilization of Incorporated Retinol. J. Liposome Res. 15 (3-4), 157–166. 10.1080/08982100500364131 PubMed DOI

Li J., Wang X., Zhang T., Wang C., Huang Z., Luo X., et al. (2015). A Review on Phospholipids and Their Main Applications in Drug Delivery Systems. Asian J. Pharm. Sci. 10 (2), 81–98. 10.1016/j.ajps.2014.09.004 DOI

Li M., Du C., Guo N., Teng Y., Meng X., Sun H., et al. (2019). Composition Design and Medical Application of Liposomes. Eur. J. Med. Chem. 164, 640–653. 10.1016/j.ejmech.2019.01.007 PubMed DOI

Liang L. P. T. H. J., Chung T. W., Liu Y. Y. H. D. Z. (2007). Liposomes Incorporated with Cholesterol for Drug Release Triggered by Magnetic Field. J. Med. Biol. Eng. 27 (1), 29–34.

Liang X. F., Wang H. J., Luo H., Tian H., Zhang B. B., Hao L. J., et al. (2008). Characterization of Novel Multifunctional Cationic Polymeric Liposomes Formed from Octadecyl Quaternized Carboxymethyl Chitosan/cholesterol and Drug Encapsulation. Langmuir 24 (14), 7147–7153. 10.1021/la703775a PubMed DOI

Lira R. B., Seabra M. A. B. L., Matos A. L. L., Vasconcelos J. V., Bezerra D. P., de Paula E., et al. (2013). Studies on Intracellular Delivery of Carboxyl-Coated CdTe Quantum Dots Mediated by Fusogenic Liposomes. J. Mater. Chem. B 1 (34), 4297–4305. 10.1039/c3tb20245c PubMed DOI

Liu B., Krieger M. (2002). Highly Purified Scavenger Receptor Class B, Type I Reconstituted into Phosphatidylcholine/cholesterol Liposomes Mediates High Affinity High Density Lipoprotein Binding and Selective Lipid Uptake. J. Biol. Chem. 277 (37), 34125–34135. 10.1074/jbc.m204265200 PubMed DOI

Liu W. L., Zou M. Z., Qin S. Y., Cheng Y. J., Ma Y. H., Sun Y. X., et al. (2020). Recent Advances of Cell Membrane‐Coated Nanomaterials for Biomedical Applications. Adv. Funct. Mater. 30 (39), 2003559. 10.1002/adfm.202003559 DOI

Liu X., Madhankumar A. B., Miller P. A., Duck K. A., Hafenstein S., Rizk E., et al. (2016). MRI Contrast Agent for Targeting Glioma: Interleukin-13 Labeled Liposome Encapsulating Gadolinium-DTPA. Neuro Oncol. 18 (5), 691–699. 10.1093/neuonc/nov263 PubMed DOI PMC

Liu Y., Castro Bravo K. M., Liu J. (2021). Targeted Liposomal Drug Delivery: a Nanoscience and Biophysical Perspective. Nanoscale Horiz. 6 (2), 78–94. 10.1039/d0nh00605j PubMed DOI

López-Pinto J. M., González-Rodríguez M. L., Rabasco A. M. (2005). Effect of Cholesterol and Ethanol on Dermal Delivery from DPPC Liposomes. Int. J. pharmaceutics 298 (1), 1–12. 10.1016/j.ijpharm.2005.02.021 PubMed DOI

López-Revuelta A., Sánchez-Gallego J. I., Hernández-Hernández A., Sánchez-Yagüe J., Llanillo M. (2006). Membrane Cholesterol Contents Influence the Protective Effects of Quercetin and Rutin in Erythrocytes Damaged by Oxidative Stress. Chemico-biological interactions 161 (1), 79–91. 10.1016/j.cbi.2006.03.004 PubMed DOI

Lowis S., Lewis I., Lewis I., Elsworth A., Weston C., Doz F., et al. (2006). A Phase I Study of Intravenous Liposomal Daunorubicin (DaunoXome) in Paediatric Patients with Relapsed or Resistant Solid Tumours. Br. J. Cancer 95 (5), 571–580. 10.1038/sj.bjc.6603288 PubMed DOI PMC

Lu F. S. H., Nielsen N. S., Baron C. P., Jensen L. H. S., Jacobsen C. (2012). Physico-chemical Properties of marine Phospholipid Emulsions. J. Am. Oil Chem. Soc. 89 (11), 2011–2024. 10.1007/s11746-012-2105-z DOI

Lv H., Zhang S., Wang B., Cui S., Yan J. (2006). Toxicity of Cationic Lipids and Cationic Polymers in Gene Delivery. J. Controlled Release 114 (1), 100–109. 10.1016/j.jconrel.2006.04.014 PubMed DOI

Maeda N., Takeuchi Y., Takada M., Sadzuka Y., Namba Y., Oku N. (2004). Anti-neovascular Therapy by Use of Tumor Neovasculature-Targeted Long-Circulating Liposome. J. controlled release 100 (1), 41–52. 10.1016/j.jconrel.2004.07.033 PubMed DOI

Manconi M., Marongiu F., Castangia I., Manca M. L., Caddeo C., Tuberoso C. I. G., et al. (2016). Polymer-associated Liposomes for the Oral Delivery of Grape Pomace Extract. Colloids Surf. B: biointerfaces 146, 910–917. 10.1016/j.colsurfb.2016.07.043 PubMed DOI

Mannino R., Lu R. (2018). Cochleates Made with Soy Phosphatidylserine. Google Patents.

Mansoori M., Agrawal S., Jawade S., Khan M. (2012). A Review on Liposome. Int. J. Adv. Res. Pharm. Bio-sciences 2 (4), 453–464.

Maritim S., Boulas P., Lin Y. (2021). Comprehensive Analysis of Liposome Formulation Parameters and Their Influence on Encapsulation, Stability and Drug Release in Glibenclamide Liposomes. Int. J. Pharmaceutics 592, 120051. 10.1016/j.ijpharm.2020.120051 PubMed DOI

Marsh D. (2001). Elastic Constants of Polymer-Grafted Lipid Membranes. Biophysical J. 81 (4), 2154–2162. 10.1016/s0006-3495(01)75863-8 PubMed DOI PMC

Matole V., Shegaonkar A., Kumbhar S., Thorat Y., Hosmani A. (2020). Need of Liposomes as a Novel Drug Delivery System. Res. J. Pharm. Dosage Forms Technology 12 (4), 285–294. 10.5958/0975-4377.2020.00047.6 DOI

Matsuoka S., Murata M. (2002). Cholesterol Markedly Reduces Ion Permeability Induced by Membrane-Bound Amphotericin B.. Biochim. Biophys. Acta (Bba) - Biomembranes 1564 (2), 429–434. 10.1016/s0005-2736(02)00491-1 PubMed DOI

Mehnert W., Mäder K. (2012). Solid Lipid Nanoparticles. Adv. Drug Deliv. Rev. 64, 83–101. 10.1016/j.addr.2012.09.021 PubMed DOI

Metselaar J. M., Wauben M. H. M., Wagenaar-Hilbers J. P. A., Boerman O. C., Storm G. (2003). Complete Remission of Experimental Arthritis by Joint Targeting of Glucocorticoids with Long-Circulating Liposomes. Arthritis Rheum. 48 (7), 2059–2066. 10.1002/art.11140 PubMed DOI

Meure L. A., Foster N. R., Dehghani F. (2008). Conventional and Dense Gas Techniques for the Production of Liposomes: a Review. Aaps Pharmscitech 9 (3), 798. 10.1208/s12249-008-9097-x PubMed DOI PMC

Miao L., Nielsen M., Thewalt J., Ipsen J. H., Bloom M., Zuckermann M. J., et al. (2002). From Lanosterol to Cholesterol: Structural Evolution and Differential Effects on Lipid Bilayers. Biophysical J. 82 (3), 1429–1444. 10.1016/s0006-3495(02)75497-0 PubMed DOI PMC

Moghimi S. M., Hunter A. C., Murray J. C. (2001). Long-circulating and Target-specific Nanoparticles: Theory to Practice. Pharmacol. Rev. 53 (2), 283–318. PubMed

Moghimi S. M., Patel H. M. (2002). Modulation of Murine Liver Macrophage Clearance of Liposomes by Diethylstilbestrol. The Effect of Vesicle Surface Charge and a Role for the Complement Receptor Mac-1 (CD11b/CD18) of Newly Recruited Macrophages in Liposome Recognition. J. Control. Release 78 (1-3), 55–65. 10.1016/s0168-3659(01)00481-3 PubMed DOI

Moghimi S. M., Szebeni J. (2003). Stealth Liposomes and Long Circulating Nanoparticles: Critical Issues in Pharmacokinetics, Opsonization and Protein-Binding Properties. Prog. lipid Res. 42 (6), 463–478. 10.1016/s0163-7827(03)00033-x PubMed DOI

Montaseri H., Kruger C. A., Abrahamse H. (2020). Review: Organic Nanoparticle Based Active Targeting for Photodynamic Therapy Treatment of Breast Cancer Cells. Oncotarget 11 (22), 2120–2136. 10.18632/oncotarget.27596 PubMed DOI PMC

Mozafari M. R. (2005). Liposomes: an Overview of Manufacturing Techniques. Cell Mol Biol Lett 10 (4), 711–719. PubMed

Mozafari M. R., Reed C. J., Rostron C. (2007). Cytotoxicity Evaluation of Anionic Nanoliposomes and Nanolipoplexes Prepared by the Heating Method without Employing Volatile Solvents and Detergents. Pharmazie 62 (3), 205–209. PubMed

Müller R. H., Mäder K., Gohla S. (2000). Solid Lipid Nanoparticles (SLN) for Controlled Drug Delivery - a Review of the State of the Art. Eur. J. Pharm. Biopharm. 50 (1), 161–177. 10.1016/s0939-6411(00)00087-4 PubMed DOI

Müller R. H., Radtke M., Wissing S. A. (2002). Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) in Cosmetic and Dermatological Preparations. Adv. Drug Deliv. Rev. 54, S131–S155. 10.1016/s0169-409x(02)00118-7 PubMed DOI

Müller R., Petersen R., Hommoss A., Pardeike J. (2007). Nanostructured Lipid Carriers (NLC) in Cosmetic Dermal Products☆. Adv. Drug Deliv. Rev. 59 (6), 522–530. 10.1016/j.addr.2007.04.012 PubMed DOI

Nagarajan R. (2002). Molecular Packing Parameter and Surfactant Self-Assembly: The Neglected Role of the Surfactant Tail†. Langmuir 18 (1), 31–38. 10.1021/la010831y DOI

Nakanishi T., Hayashi A., Kunisawa J., Tsutsumi Y., Tanaka K., Yashiro-Ohtani Y., et al. (2000). Fusogenic Liposomes Efficiently Deliver Exogenous Antigen through the Cytoplasm into the MHC Class I Processing Pathway. Eur. J. Immunol. 30 (6), 1740–1747. 10.1002/1521-4141(200006)30:6<1740::aid-immu1740>3.0.co;2-u PubMed DOI

Naskar A., Kim K.-s. (2021). Potential novel food-related and biomedical applications of nanomaterials combined with bacteriocins. Pharmaceutics 13, 86. 10.3390/pharmaceutics13010086 PubMed DOI PMC

Nasrabadi H. T., Abbasi E., Davaran S., Kouhi M., Akbarzadeh A. (2016). Bimetallic Nanoparticles: Preparation, Properties, and Biomedical Applications. Artif. Cell Nanomedicine, Biotechnol. 44 (1), 376–380. 10.3109/21691401.2014.953632 PubMed DOI

Nasti T. H., Khan M. A., Owais M. (2006). Enhanced Efficacy of pH-Sensitive Nystatin Liposomes against Cryptococcus Neoformans in Murine Model. J. Antimicrob. Chemother. 57 (2), 349–352. 10.1093/jac/dki454 PubMed DOI

Noble G. T., Stefanick J. F., Ashley J. D., Kiziltepe T., Bilgicer B. (2014). Ligand-targeted Liposome Design: Challenges and Fundamental Considerations. Trends Biotechnology 32 (1), 32–45. 10.1016/j.tibtech.2013.09.007 PubMed DOI

North S., Butts C. (2005). Vaccination with BLP25 Liposome Vaccine to Treat Non-small Cell Lung and Prostate Cancers. Expert Rev. Vaccin. 4 (3), 249–257. 10.1586/14760584.4.3.249 PubMed DOI

Nunes S. S., Fernandes R. S., Cavalcante C. H., da Costa César I., Leite E. A., Lopes S. C. A., et al. (2019). Influence of PEG Coating on the Biodistribution and Tumor Accumulation of pH-Sensitive Liposomes. Drug Deliv. Transl. Res. 9 (1), 123–130. 10.1007/s13346-018-0583-8 PubMed DOI PMC

Ohvo-Rekilà H., Ramstedt B., Leppimäki P., Slotte J. P. (2002). Cholesterol Interactions with Phospholipids in Membranes. Prog. lipid Res. 41 (1), 66–97. 10.1016/s0163-7827(01)00020-0 PubMed DOI

Okamoto Y., Masum S. M., Miyazawa H., Yamazaki M. (2008). Low-pH-induced Transformation of Bilayer Membrane into Bicontinuous Cubic Phase in Dioleoylphosphatidylserine/monoolein Membranes. Langmuir 24 (7), 3400–3406. 10.1021/la7036795 PubMed DOI

Otake K., Imura T., Sakai H., Abe M. (2001). Development of a New Preparation Method of Liposomes Using Supercritical Carbon Dioxide. langmuir 17 (13), 3898–3901. 10.1021/la010122k DOI

Pan L. G., Tomás M. C., Añón M. C. (2002). Effect of sunflower Lecithins on the Stability of Water-In-Oil and Oil-In-Water Emulsions. J. Surfact Deterg 5 (2), 135–143. 10.1007/s11743-002-0213-1 DOI

Panahi Y., Farshbaf M., Mohammadhosseini M., Mirahadi M., Khalilov R., Saghfi S., et al. (2017). Recent Advances on Liposomal Nanoparticles: Synthesis, Characterization and Biomedical Applications. Artif. Cell Nanomedicine, Biotechnol. 45 (4), 788–799. 10.1080/21691401.2017.1282496 PubMed DOI

Papagiannaros A., Hatziantoniou S., Dimas K., Papaioannou G. T., Demetzos C. (2006). A Liposomal Formulation of Doxorubicin, Composed of Hexadecylphosphocholine (HePC): Physicochemical Characterization and Cytotoxic Activity against Human Cancer Cell Lines. Biomed. Pharmacother. 60 (1), 36–42. 10.1016/j.biopha.2005.09.001 PubMed DOI

Pastorino F., Brignole C., Marimpietri D., Cilli M., Gambini C., Ribatti D., et al. (2003). Vascular Damage and Anti-angiogenic Effects of Tumor Vessel-Targeted Liposomal Chemotherapy. Cancer Res. 63 (21), 7400–7409. PubMed

Patel N., Panda S. (2012). Liposome Drug Delivery System: a Critic Review. JPSBR 2 (4), 169–175.

Pavelić Z., Skalko-Basnet N., Jalsenjak I. (2005). Characterisation and In Vitro Evaluation of Bioadhesive Liposome Gels for Local Therapy of Vaginitis. Int. J. Pharm. 301 (1-2), 140–148. 10.1016/j.ijpharm.2005.05.022 PubMed DOI

Pawar A., Bothiraja C., Shaikh K., Mali A. (2015). An Insight into Cochleates, a Potential Drug Delivery System. RSC Adv. 5 (99), 81188–81202. 10.1039/c5ra08550k DOI

Pawar H. A., Bhangale B. D. (2015). Phytosome as a Novel Biomedicine: a Microencapsulated Drug Delivery System. J. Bioanal. Biomed. 7 (1), 6–12.

Peravali R., Brock R., Bright E., Mills P., Petty D., Alberts J. (2014). Enhancing the Enhanced Recovery Program in Colorectal Surgery - Use of Extended-Release Epidural Morphine (DepoDur). Ann. Coloproctol. 30 (4), 186. 10.3393/ac.2014.30.4.186 PubMed DOI PMC

Phuphanich S., Maria B., Braeckman R., Chamberlain M. (2007). A Pharmacokinetic Study of Intra-CSF Administered Encapsulated Cytarabine (DepoCyt) for the Treatment of Neoplastic Meningitis in Patients with Leukemia, Lymphoma, or Solid Tumors as Part of a Phase III Study. J. Neurooncol. 81 (2), 201–208. 10.1007/s11060-006-9218-x PubMed DOI

Pinilla C. M. B., Reque P. M., Brandelli A. (2020). Effect of Oleic Acid, Cholesterol, and Octadecylamine on Membrane Stability of Freeze-Dried Liposomes Encapsulating Natural Antimicrobials. Food Bioproc. Technol 13 (4), 599–610. 10.1007/s11947-020-02419-8 DOI

Portet T., Dimova R. (2010). A New Method for Measuring Edge Tensions and Stability of Lipid Bilayers: Effect of Membrane Composition. Biophysical J. 99 (10), 3264–3273. 10.1016/j.bpj.2010.09.032 PubMed DOI PMC

Portilla S., Fernández L., Gutiérrez D., Rodríguez A., García P. (2020). Encapsulation of the Antistaphylococcal Endolysin LysRODI in pH-Sensitive Liposomes. Antibiotics 9 (5), 242. 10.3390/antibiotics9050242 PubMed DOI PMC

Pradhan B., Kumar N., Saha S., Roy A. (2015). Liposome: Method of Preparation, Advantages, Evaluation and its Application. J. Appl. Pharm. Res. 3 (3), 01–08.

Puras G., Mashal M., Zárate J., Agirre M., Ojeda E., Grijalvo S., et al. (2014). A Novel Cationic Niosome Formulation for Gene Delivery to the Retina. J. Controlled Release 174, 27–36. 10.1016/j.jconrel.2013.11.004 PubMed DOI

Qiang L., Yi J., Fu-De C. (2004). Melanoma Vaccine Based on the Vector of Membrane Fusogenic Liposomes. Pharmazie 59 (4), 263–267. PubMed

Qiao C., Liu J., Yang J., Li Y., Weng J., Shao Y., et al. (2016). Enhanced Non-inflammasome Mediated Immune Responses by Mannosylated Zwitterionic-Based Cationic Liposomes for HIV DNA Vaccines. Biomaterials 85, 1–17. 10.1016/j.biomaterials.2016.01.054 PubMed DOI

Radwan Almofti M., Harashima H., Shinohara Y., Almofti A., Baba Y., Kiwada H. (2003). Cationic Liposome-Mediated Gene Delivery: Biophysical Study and Mechanism of Internalization. Arch. Biochem. Biophys. 410 (2), 246–253. 10.1016/s0003-9861(02)00725-7 PubMed DOI

Rahdar A., Sayyadi K., Sayyadi J., Yaghobi Z. (2019). Nano-gels: A Versatile Nano-Carrier Platform for Drug Delivery Systems: A Mini Review. Nanomedicine Res. J. 4 (1), 1–9.

Réthoré G., Montier T., Le Gall T., Delepine P., Cammas-Marion S., Lemiègre L., et al. (2007). Archaeosomes Based on Synthetic Tetraether-like Lipids as Novel Versatile Gene Delivery Systems. Chem. Commun. 20, 2054–2056. 10.1039/b618568a() PubMed DOI

Ricci M., Oliva R., Del Vecchio P., Paolantoni M., Morresi A., Sassi P. (2016). DMSO-induced Perturbation of Thermotropic Properties of Cholesterol-Containing DPPC Liposomes. Biochim. Biophys. Acta (Bba) - Biomembranes 1858 (12), 3024–3031. 10.1016/j.bbamem.2016.09.012 PubMed DOI

Rizvi I., Nath S., Obaid G., Ruhi M. K., Moore K., Bano S., et al. (2019). A Combination of Visudyne and a Lipid-Anchored Liposomal Formulation of Benzoporphyrin Derivative Enhances Photodynamic Therapy Efficacy in a 3D Model for Ovarian Cancer. Photochem. Photobiol. 95 (1), 419–429. 10.1111/php.13066 PubMed DOI PMC

Rosenkrands I., Agger E. M., Olsen A. W., Korsholm K. S., Andersen C. S., Jensen K. T., et al. (2005). Cationic Liposomes Containing Mycobacterial Lipids: a New Powerful Th1 Adjuvant System. Infect. Immun. 73 (9), 5817–5826. 10.1128/iai.73.9.5817-5826.2005 PubMed DOI PMC

Rovira-Bru M., Thompson D. H., Szleifer I. (2002). Size and Structure of Spontaneously Forming Liposomes in lipid/PEG-Lipid Mixtures. Biophysical J. 83 (5), 2419–2439. 10.1016/s0006-3495(02)75255-7 PubMed DOI PMC

Raj S., Khurana S., Choudhari R., Kesari K. K., Kamal M. A., Garg N., et al. (Editors) (2021). Specific Targeting Cancer Cells with Nanoparticles and Drug Delivery in Cancer Therapy. Seminars in Cancer Biology (Elsevier; ). PubMed

Saadat E., Amini M., Khoshayand M. R., Dinarvand R., Dorkoosh F. A. (2014). Synthesis and Optimization of a Novel Polymeric Micelle Based on Hyaluronic Acid and Phospholipids for Delivery of Paclitaxel, In Vitro and In-Vivo Evaluation. Int. J. Pharm. 475 (1-2), 163–173. 10.1016/j.ijpharm.2014.08.030 PubMed DOI

Sahoo S. K., Labhasetwar V. (2003). Nanotech Approaches to Drug Delivery and Imaging. Drug Discov. Today 8 (24), 1112–1120. 10.1016/s1359-6446(03)02903-9 PubMed DOI

Saliba A.-E., Vonkova I., Deghou S., Ceschia S., Tischer C., Kugler K. G., et al. (2016). A Protocol for the Systematic and Quantitative Measurement of Protein-Lipid Interactions Using the Liposome-Microarray-Based Assay. Nat. Protoc. 11 (6), 1021–1038. 10.1038/nprot.2016.059 PubMed DOI

Samuni A. M., Lipman A., Barenholz Y. (2000). Damage to Liposomal Lipids: protection by Antioxidants and Cholesterol-Mediated Dehydration. Chem. Phys. Lipids 105 (2), 121–134. 10.1016/s0009-3084(99)00136-x PubMed DOI

Sankhyan A., Pawar P. (2012). Recent Trends in Niosome as Vesicular Drug Delivery System. J. Appl. Pharm. Sci. 2 (6), 20–32.

Santos H. d. L., Lopes M. L., Maggio B., Ciancaglini P. (2005). Na,K-ATPase Reconstituted in Liposomes: Effects of Lipid Composition on Hydrolytic Activity and Enzyme Orientation. Colloids Surf. B: Biointerfaces 41 (4), 239–248. 10.1016/j.colsurfb.2004.12.013 PubMed DOI

Scheffer L., Solomonov I., Jan Weygand M., Kjaer K., Leiserowitz L., Addadi L. (2005). Structure of Cholesterol/ceramide Monolayer Mixtures: Implications to the Molecular Organization of Lipid Rafts. Biophysical J. 88 (5), 3381–3391. 10.1529/biophysj.104.051870 PubMed DOI PMC

Scott M. J., Jones M. N. (2001). The Interaction of Phospholipid Liposomes with Zinc Citrate Particles: a Microcalorimetric Investigation. Colloids and Surfaces A:. Physicochemical Eng. Aspects 182 (1-3), 247–256. 10.1016/s0927-7757(00)00827-x DOI

Scrimgeour C., Gao Y., Oh W. Y., Shahidi F. (2005). Chemistry of Fatty Acids. Bailey's Ind. oil fat Prod., 1–40. 10.1002/047167849x.bio005 DOI

Semple S. C., Leone R., Wang J., Leng E. C., Klimuk S. K., Eisenhardt M. L., et al. (2005). Optimization and Characterization of a Sphingomyelin/cholesterol Liposome Formulation of Vinorelbine with Promising Antitumor Activity. J. Pharm. Sci. 94 (5), 1024–1038. 10.1002/jps.20332 PubMed DOI

Seo J. W., Qin S., Mahakian L. M., Watson K. D., Kheirolomoom A., Ferrara K. W. (2011). Positron Emission Tomography Imaging of the Stability of Cu-64 Labeled Dipalmitoyl and Distearoyl Lipids in Liposomes. J. controlled release 151 (1), 28–34. 10.1016/j.jconrel.2011.01.008 PubMed DOI PMC

Shah K. A., Date A. A., Joshi M. D., Patravale V. B. (2007). Solid Lipid Nanoparticles (SLN) of Tretinoin: Potential in Topical Delivery. Int. J. Pharm. 345 (1-2), 163–171. 10.1016/j.ijpharm.2007.05.061 PubMed DOI

Shehata T., Ogawara K., Higaki K., Kimura T. (2008). Prolongation of Residence Time of Liposome by Surface-Modification with Mixture of Hydrophilic Polymers. Int. J. Pharm. 359 (1-2), 272–279. 10.1016/j.ijpharm.2008.04.004 PubMed DOI

Shim G., Han S.-E., Yu Y.-H., Lee S., Lee H. Y., Kim K., et al. (2011). Trilysinoyl Oleylamide-Based Cationic Liposomes for Systemic Co-delivery of siRNA and an Anticancer Drug. J. controlled release 155 (1), 60–66. 10.1016/j.jconrel.2010.10.017 PubMed DOI

Shim G., Kim M.-G., Park J. Y., Oh Y.-K. (2013). Application of Cationic Liposomes for Delivery of Nucleic Acids. Asian J. Pharm. Sci. 8 (2), 72–80. 10.1016/j.ajps.2013.07.009 DOI

Shoji J. i., Tanihara Y., Uchiyama T., Kawai A. (2004). Preparation of Virosomes Coated with the Vesicular Stomatitis Virus Glycoprotein as Efficient Gene Transfer Vehicles for Animal Cells. Microbiol. Immunol. 48 (3), 163–174. 10.1111/j.1348-0421.2004.tb03502.x PubMed DOI

Shrivastava S., Lole K. S., Tripathy A. S., Shaligram U. S., Arankalle V. A. (2009). Development of Candidate Combination Vaccine for Hepatitis E and Hepatitis B: a Liposome Encapsulation Approach. Vaccine 27 (47), 6582–6588. 10.1016/j.vaccine.2009.08.033 PubMed DOI

Silindir M., Erdoğan S., Özer A. Y., Doğan A. L., Tuncel M., Uğur Ö., et al. (2013). Nanosized Multifunctional Liposomes for Tumor Diagnosis and Molecular Imaging by SPECT/CT. J. Liposome Res. 23 (1), 20–27. 10.3109/08982104.2012.722107 PubMed DOI

Silva C., Aranda F. J., Ortiz A., Martínez V., Carvajal M., Teruel J. A. (2011). Molecular Aspects of the Interaction between Plants Sterols and DPPC Bilayers. J. Colloid Interf. Sci. 358 (1), 192–201. 10.1016/j.jcis.2011.02.048 PubMed DOI

Silverman J. A., Reynolds L., Deitcher S. R. (2013). Pharmacokinetics and Pharmacodynamics of Vincristine Sulfate Liposome Injection (VSLI) in Adults with Acute Lymphoblastic Leukemia. J. Clin. Pharmacol. 53 (11), 1139–1145. 10.1002/jcph.155 PubMed DOI

Silverman J. A., Deitcher S. R. (2013). Marqibo (Vincristine Sulfate Liposome Injection) Improves the Pharmacokinetics and Pharmacodynamics of Vincristine. Cancer Chemother. Pharmacol. 71 (3), 555–564. 10.1007/s00280-012-2042-4 PubMed DOI PMC

Simões S., Moreira J. N., Fonseca C., Düzgüneş N., de Lima M. C. P. (2004). On the Formulation of pH-Sensitive Liposomes with Long Circulation Times. Adv. Drug Deliv. Rev. 56 (7), 947–965. 10.1016/j.addr.2003.10.038 PubMed DOI

Singh D., Dilnawaz F., Sahoo S. K. (2020). Challenges of Moving Theranostic Nanomedicine into the Clinic. Future Med. 10.2217/nnm-2019-0401 PubMed DOI

Sioud M., Sørensen D. R. (2003). Cationic Liposome-Mediated Delivery of siRNAs in Adult Mice. Biochem. biophysical Res. Commun. 312 (4), 1220–1225. 10.1016/j.bbrc.2003.11.057 PubMed DOI

Socaciu C., Jessel R., Diehl H. A. (2000). Competitive Carotenoid and Cholesterol Incorporation into Liposomes: Effects on Membrane Phase Transition, Fluidity, Polarity and Anisotropy. Chem. Phys. Lipids 106 (1), 79–88. 10.1016/s0009-3084(00)00135-3 PubMed DOI

Sodt A. J., Pastor R. W., Lyman E. (2015). Hexagonal Substructure and Hydrogen Bonding in Liquid-Ordered Phases Containing Palmitoyl Sphingomyelin. Biophysical J. 109 (5), 948–955. 10.1016/j.bpj.2015.07.036 PubMed DOI PMC

Sugita T., Yoshikawa T., Gao J.-Q., Shimokawa M., Oda A., Niwa T., et al. (2005). Fusogenic Liposome Can Be Used as an Effective Vaccine Carrier for Peptide Vaccination to Induce Cytotoxic T Lymphocyte (CTL) Response. Biol. Pharm. Bull. 28 (1), 192–193. 10.1248/bpb.28.192 PubMed DOI

Suk J. S., Xu Q., Kim N., Hanes J., Ensign L. M. (2016). PEGylation as a Strategy for Improving Nanoparticle-Based Drug and Gene Delivery. Adv. Drug Deliv. Rev. 99 (Pt A), 28–51. 10.1016/j.addr.2015.09.012 PubMed DOI PMC

Sun M., Northup N., Marga F., Huber T., Byfield F. J., Levitan I., et al. (2007). The Effect of Cellular Cholesterol on Membrane-Cytoskeleton Adhesion. J. Cel. Sci. 120 (13), 2223–2231. 10.1242/jcs.001370 PubMed DOI

Tabatabaei Mirakabad F. S., Akbarzadeh A., Milani M., Zarghami N., Taheri-Anganeh M., Zeighamian V., et al. (2016). A Comparison between the Cytotoxic Effects of Pure Curcumin and Curcumin-Loaded PLGA-PEG Nanoparticles on the MCF-7 Human Breast Cancer Cell Line. Artif. Cell Nanomedicine, Biotechnol. 44 (1), 423–430. 10.3109/21691401.2014.955108 PubMed DOI

Tan C., Feng B., Zhang X., Xia W., Xia S. (2016). Biopolymer-coated Liposomes by Electrostatic Adsorption of Chitosan (Chitosomes) as Novel Delivery Systems for Carotenoids. Food hydrocolloids 52, 774–784. 10.1016/j.foodhyd.2015.08.016 DOI

Thompson A. K., Haisman D., Singh H. (2006). Physical Stability of Liposomes Prepared from Milk Fat Globule Membrane and Soya Phospholipids. J. Agric. Food Chem. 54 (17), 6390–6397. 10.1021/jf0605695 PubMed DOI

Toh M.-R., Chiu G. N. C. (2013). Liposomes as Sterile Preparations and Limitations of Sterilisation Techniques in Liposomal Manufacturing. Asian J. Pharm. Sci. 8 (2), 88–95. 10.1016/j.ajps.2013.07.011 DOI

Torchilin V. P. (2006). Recent Approaches to Intracellular Delivery of Drugs and DNA and Organelle Targeting. Annu. Rev. Biomed. Eng. 8, 343–375. 10.1146/annurev.bioeng.8.061505.095735 PubMed DOI

Trandum C., Westh P., Jørgensen K., Mouritsen O. G. (2000). A Thermodynamic Study of the Effects of Cholesterol on the Interaction between Liposomes and Ethanol. Biophysical J. 78 (5), 2486–2492. 10.1016/s0006-3495(00)76793-2 PubMed DOI PMC

Trucillo P., Campardelli R., Reverchon E. (2020). Liposomes: From Bangham to Supercritical Fluids. Processes 8 (9), 1022. 10.3390/pr8091022 DOI

Trucillo P., Campardelli R., Reverchon E. (2017). Supercritical CO 2 Assisted Liposomes Formation: Optimization of the Lipidic Layer for an Efficient Hydrophilic Drug Loading. J. Co2 utilization 18, 181–188. 10.1016/j.jcou.2017.02.001 DOI

Tzogani K., Penttilä K., Lapveteläinen T., Hemmings R., Koenig J., Freire J., et al. (2020). EMA Review of Daunorubicin and Cytarabine Encapsulated in Liposomes (Vyxeos, CPX-351) for the Treatment of Adults with Newly Diagnosed, Therapy-Related Acute Myeloid Leukemia or Acute Myeloid Leukemia with Myelodysplasia-Related Changes. Oncologist 25 (9), e1414–e20. 10.1634/theoncologist.2019-0785 PubMed DOI PMC

Ulrich A. S. (2002). Biophysical Aspects of Using Liposomes as Delivery Vehicles. Biosci. Rep. 22 (2), 129–150. 10.1023/a:1020178304031 PubMed DOI

Vakili-Ghartavol R., Rezayat S. M., Faridi-Majidi R., Sadri K., Jaafari M. R. (2020). Optimization of Docetaxel Loading Conditions in Liposomes: Proposing Potential Products for Metastatic Breast Carcinoma Chemotherapy. Sci. Rep. 10 (1), 5569. 10.1038/s41598-020-62501-1 PubMed DOI PMC

Van Slooten M. L., Storm G., Zoephel A., Küpcü Z., Boerman O., Crommelin D. J. A., et al. (2000). Liposomes Containing Interferon-Gamma as Adjuvant in Tumor Cell Vaccines. Pharm. Res. 17 (1), 42–48. 10.1023/a:1007514424253 PubMed DOI

Varypataki E. M., Benne N., Bouwstra J., Jiskoot W., Ossendorp F. (2017). Efficient Eradication of Established Tumors in Mice with Cationic Liposome-Based Synthetic Long-Peptide Vaccines. Cancer Immunol. Res. 5 (3), 222–233. 10.1158/2326-6066.cir-16-0283 PubMed DOI

Veneti E., Tu R. S., Auguste D. T. (2016). RGD-targeted Liposome Binding and Uptake on Breast Cancer Cells Is Dependent on Elastin Linker Secondary Structure. Bioconjug. Chem. 27 (8), 1813–1821. 10.1021/acs.bioconjchem.6b00205 PubMed DOI

Wagner A., Platzgummer M., Kreismayr G., Quendler H., Stiegler G., Ferko B., et al. (2006). GMP Production of Liposomes-A New Industrial Approach. J. liposome Res. 16 (3), 311–319. 10.1080/08982100600851086 PubMed DOI

Walde P., Ichikawa S. (2001). Enzymes inside Lipid Vesicles: Preparation, Reactivity and Applications. Biomol. Eng. 18 (4), 143–177. 10.1016/s1389-0344(01)00088-0 PubMed DOI

Wang Y., Tu S., Li R., Yang X., Liu L., Zhang Q. (2010). Cholesterol Succinyl Chitosan Anchored Liposomes: Preparation, Characterization, Physical Stability, and Drug Release Behavior. Nanomedicine: Nanotechnology, Biol. Med. 6 (3), 471–477. 10.1016/j.nano.2009.09.005 PubMed DOI

Wang Y., Wang S., Firempong C. K., Zhang H., Wang M., Zhang Y., et al. (2017). Enhanced Solubility and Bioavailability of Naringenin via Liposomal Nanoformulation: Preparation and In Vitro and In Vivo Evaluations. Aaps Pharmscitech 18 (3), 586–594. 10.1208/s12249-016-0537-8 PubMed DOI

Weissig V. (2015). DQAsomes as the Prototype of Mitochondria-Targeted Pharmaceutical Nanocarriers: Preparation, Characterization, and Use. Mitochondrial Med. Springer, 1–11. 10.1007/978-1-4939-2288-8_1 PubMed DOI

Weng C.-S., Wu C.-C., Chen T.-C., Chen J.-R., Huang C.-Y., Chang C.-L. (2019). Retrospective Analysis of Comparative Outcomes in Recurrent Platinum-Sensitive Ovarian Cancer Treated with Pegylated Liposomal Doxorubicin (Lipo-Dox) and Carboplatin versus Paclitaxel and Carboplatin. Cmar 11, 9899–9905. 10.2147/cmar.s217329 PubMed DOI PMC

Wibroe P. P., Ahmadvand D., Oghabian M. A., Yaghmur A., Moghimi S. M. (2016). An Integrated Assessment of Morphology, Size, and Complement Activation of the PEGylated Liposomal Doxorubicin Products Doxil, Caelyx, DOXOrubicin, and SinaDoxosome. J. Controlled Release 221, 1–8. 10.1016/j.jconrel.2015.11.021 PubMed DOI

Wong J. P., Nagata L. P., Dale R. M. (2001). Liposome-encapsulated Nucleic Acid-Based Drugs and Vaccines as Novel Antiviral Agents. Recent Dev. Antivir. Res., 175–191.

Wu R. G., Dai J. D., Wu F. G., Zhang X. H., Li W. H., Wang Y. R. (2012). Competitive Molecular Interaction Among Paeonol-Loaded Liposomes: Differential Scanning Calorimetry and Synchrotron X-ray Diffraction Studies. Int. J. Pharm. 438 (1-2), 91–97. 10.1016/j.ijpharm.2012.08.052 PubMed DOI

Wu X., Dai X., Liao Y., Sheng M., Shi X. (2021). Investigation on Drug Entrapment Location in Liposomes and Transfersomes Based on Molecular Dynamics Simulation. J. Mol. Model. 27 (4), 1–10. 10.1007/s00894-021-04722-3 PubMed DOI

Xia S., Xu S. (2005). Ferrous Sulfate Liposomes: Preparation, Stability and Application in Fluid Milk. Food Res. Int. 38 (3), 289–296. 10.1016/j.foodres.2004.04.010 DOI

Xu Q., Tanaka Y., Czernuszka J. T. (2007). Encapsulation and Release of a Hydrophobic Drug from Hydroxyapatite Coated Liposomes. Biomaterials 28 (16), 2687–2694. 10.1016/j.biomaterials.2007.02.007 PubMed DOI

Xu X., Khan M. A., Burgess D. J. (2011). A Quality by Design (QbD) Case Study on Liposomes Containing Hydrophilic API: I. Formulation, Processing Design and Risk Assessment. Int. J. Pharm. 419 (1-2), 52–59. 10.1016/j.ijpharm.2011.07.012 PubMed DOI

Yamauchi M., Tsutsumi K., Abe M., Uosaki Y., Nakakura M., Aoki N. (2007). Release of Drugs from Liposomes Varies with Particle Size. Biol. Pharm. Bull. 30 (5), 963–966. 10.1248/bpb.30.963 PubMed DOI

Yang T., Cui F.-D., Choi M.-K., Lin H., Chung S.-J., Shim C.-K., et al. (2007). Liposome Formulation of Paclitaxel with Enhanced Solubility and Stability. Drug Deliv. 14 (5), 301–308. 10.1080/10717540601098799 PubMed DOI

Yang Z.-Z., Li J.-Q., Wang Z.-Z., Dong D.-W., Qi X.-R. (2014). Tumor-targeting Dual Peptides-Modified Cationic Liposomes for Delivery of siRNA and Docetaxel to Gliomas. Biomaterials 35 (19), 5226–5239. 10.1016/j.biomaterials.2014.03.017 PubMed DOI

Yavlovich A., Singh A., Tarasov S., Capala J., Blumenthal R., Puri A. (2009). Design of Liposomes Containing Photopolymerizable Phospholipids for Triggered Release of Contents. J. Therm. Anal. Calorim. 98 (1), 97–104. 10.1007/s10973-009-0228-8 PubMed DOI PMC

Yoshida I., Saito A. M., Tanaka S., Choi I., Hidaka M., Miyata Y., et al. (2020). Intravenous Itraconazole Compared with Liposomal Amphotericin B as Empirical Antifungal Therapy in Patients with Neutropaenia and Persistent Fever. Mycoses 63 (8), 794–801. 10.1111/myc.13100 PubMed DOI PMC

Yoshikawa T., Imazu S., Gao J.-Q., Hayashi K., Tsuda Y., Okada N., et al. (2006). Non-methylated CpG Motif Packaged into Fusogenic Liposomes Enhance Antigen-specific Immunity in Mice. Biol. Pharm. Bull. 29 (1), 105–109. 10.1248/bpb.29.105 PubMed DOI

Yoshikawa T., Okada N., Tsujino M., Gao J.-Q., Hayashi A., Tsutsumi Y., et al. (2006). Vaccine Efficacy of Fusogenic Liposomes Containing Tumor Cell-Lysate against Murine B16BL6 Melanoma. Biol. Pharm. Bull. 29 (1), 100–104. 10.1248/bpb.29.100 PubMed DOI

Yu F., Tang X. (2016). Novel Long-Circulating Liposomes Consisting of PEG Modified β-Sitosterol for Gambogic Acid Delivery. j nanosci nanotechnol 16 (3), 3115–3121. 10.1166/jnn.2016.12405 PubMed DOI

Yu J. Y., Chuesiang P., Shin G. H., Park H. J. (2021). Post-processing Techniques for the Improvement of Liposome Stability. Pharmaceutics 13 (7), 1023. 10.3390/pharmaceutics13071023 PubMed DOI PMC

Yu T., Ji P., Zhao W. M. (2015). Preparation of Baicalein Liposome-Lyophilized Powder and its Pharmacokinetics Study. Zhong Yao Cai 38 (11), 2404–2407. PubMed

Yuba E. (2020). Development of Functional Liposomes by Modification of Stimuli-Responsive Materials and Their Biomedical Applications. J. Mater. Chem. B 8 (6), 1093–1107. 10.1039/c9tb02470k PubMed DOI

Yuba E., Kanda Y., Yoshizaki Y., Teranishi R., Harada A., Sugiura K., et al. (2015). pH-sensitive Polymer-Liposome-Based Antigen Delivery Systems Potentiated with Interferon-γ Gene Lipoplex for Efficient Cancer Immunotherapy. Biomaterials 67, 214–224. 10.1016/j.biomaterials.2015.07.031 PubMed DOI

Zaru M., Mourtas S., Klepetsanis P., Fadda A. M., Antimisiaris S. G. (2007). Liposomes for Drug Delivery to the Lungs by Nebulization. Eur. J. Pharmaceutics Biopharmaceutics 67 (3), 655–666. 10.1016/j.ejpb.2007.04.005 PubMed DOI

Zhang J., Chen Y., Li X., Liang X., Luo X. (2016). The Influence of Different Long-Circulating Materials on the Pharmacokinetics of Liposomal Vincristine Sulfate. Int. J. Nanomedicine 11, 4187–4197. 10.2147/IJN.S109547 PubMed DOI PMC

Zhang J., Tian H., Li C., Cheng L., Zhang S., Zhang X., et al. (2013). Antitumor Effects Obtained by Autologous Lewis Lung Cancer Cell Vaccine Engineered to Secrete Mouse Interleukin 27 by Means of Cationic Liposome. Mol. Immunol. 55 (3-4), 264–274. 10.1016/j.molimm.2013.02.006 PubMed DOI

Zhang J. A., Pawelchak J. (2000). Effect of pH, Ionic Strength and Oxygen burden on the Chemical Stability of EPC/cholesterol Liposomes under Accelerated Conditions. Part 1: Lipid Hydrolysis. Eur. J. Pharm. Biopharm. 50 (3), 357–364. 10.1016/s0939-6411(00)00127-2 PubMed DOI

Zhao L., Temelli F., Curtis J. M., Chen L. (2015). Preparation of Liposomes Using Supercritical Carbon Dioxide Technology: Effects of Phospholipids and Sterols. Food Res. Int. 77, 63–72. 10.1016/j.foodres.2015.07.006 DOI

Zhao X. B., Muthusamy N., Byrd J. C., Lee R. J. (2007). Cholesterol as a Bilayer Anchor for PEGylation and Targeting Ligand in Folate‐receptor‐targeted Liposomes. J. Pharm. Sci. 96 (9), 2424–2435. 10.1002/jps.20885 PubMed DOI

Zhao Y.-Z., Liang H.-D., Mei X.-G., Halliwell M. (2005). Preparation, Characterization and In Vivo Observation of Phospholipid-Based Gas-Filled Microbubbles Containing Hirudin. Ultrasound Med. Biol. 31 (9), 1237–1243. 10.1016/j.ultrasmedbio.2005.05.007 PubMed DOI

Zhu R., Wang Z., Liang P., He X., Zhuang X., Huang R., et al. (2017). Efficient VEGF Targeting Delivery of DOX Using Bevacizumab Conjugated SiO2@LDH for Anti-neuroblastoma Therapy. Acta Biomater. 63, 163–180. 10.1016/j.actbio.2017.09.009 PubMed DOI

Zupančič Š., Kocbek P., Zariwala M. G., Renshaw D., Gul M. O., Elsaid Z., et al. (2014). Design and Development of Novel Mitochondrial Targeted Nanocarriers, DQAsomes for Curcumin Inhalation. Mol. Pharm. 11 (7), 2334–2345. 10.1021/mp500003q PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...