Raman spectroscopy online monitoring of biomass production, intracellular metabolites and carbon substrates during submerged fermentation of oleaginous and carotenogenic microorganisms

. 2023 Dec 18 ; 22 (1) : 261. [epub] 20231218

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38110983

Grantová podpora
FMETEKN Grant, project 257622 Norges Forskningsråd
FORINFRA Grant, project 270038 Norges Forskningsråd
MATFONDAVTALE Grant, project 301834 Norges Forskningsråd
HAVBRUK2 Grant, project 302543 Norges Forskningsråd
Nordforsk Grant, project 103506 NordForsk

Odkazy

PubMed 38110983
PubMed Central PMC10729511
DOI 10.1186/s12934-023-02268-y
PII: 10.1186/s12934-023-02268-y
Knihovny.cz E-zdroje

BACKGROUND: Monitoring and control of both growth media and microbial biomass is extremely important for the development of economical bioprocesses. Unfortunately, process monitoring is still dependent on a limited number of standard parameters (pH, temperature, gasses etc.), while the critical process parameters, such as biomass, product and substrate concentrations, are rarely assessable in-line. Bioprocess optimization and monitoring will greatly benefit from advanced spectroscopy-based sensors that enable real-time monitoring and control. Here, Fourier transform (FT) Raman spectroscopy measurement via flow cell in a recirculatory loop, in combination with predictive data modeling, was assessed as a fast, low-cost, and highly sensitive process analytical technology (PAT) system for online monitoring of critical process parameters. To show the general applicability of the method, submerged fermentation was monitored using two different oleaginous and carotenogenic microorganisms grown on two different carbon substrates: glucose fermentation by yeast Rhodotorula toruloides and glycerol fermentation by marine thraustochytrid Schizochytrium sp. Additionally, the online FT-Raman spectroscopy approach was compared with two at-line spectroscopic methods, namely FT-Raman and FT-infrared spectroscopies in high throughput screening (HTS) setups. RESULTS: The system can provide real-time concentration data on carbon substrate (glucose and glycerol) utilization, and production of biomass, carotenoid pigments, and lipids (triglycerides and free fatty acids). Robust multivariate regression models were developed and showed high level of correlation between the online FT-Raman spectral data and reference measurements, with coefficients of determination (R2) in the 0.94-0.99 and 0.89-0.99 range for all concentration parameters of Rhodotorula and Schizochytrium fermentation, respectively. The online FT-Raman spectroscopy approach was superior to the at-line methods since the obtained information was more comprehensive, timely and provided more precise concentration profiles. CONCLUSIONS: The FT-Raman spectroscopy system with a flow measurement cell in a recirculatory loop, in combination with prediction models, can simultaneously provide real-time concentration data on carbon substrate utilization, and production of biomass, carotenoid pigments, and lipids. This data enables monitoring of dynamic behaviour of oleaginous and carotenogenic microorganisms, and thus can provide critical process parameters for process optimization and control. Overall, this study demonstrated the feasibility of using FT-Raman spectroscopy for online monitoring of fermentation processes.

Zobrazit více v PubMed

Ren LJ, Sun XM, Zhang LH, Huang H, Zhao QY. Exergy analysis for docosahexaenoic acid production by fermentation and strain improvement by adaptive laboratory evolution for Schizochytrium sp. Bioresour Technol. 2020;298:122562. doi: 10.1016/j.biortech.2019.122562. PubMed DOI

Liu ZJ, Natalizio F, Dragone G, Mussatto SI. Maximizing the simultaneous production of lipids and carotenoids by Rhodosporidium toruloides from wheat straw hydrolysate and perspectives for large-scale implementation. Bioresour Technol. 2021;340:125598. doi: 10.1016/j.biortech.2021.125598. PubMed DOI

Zhao Y, Song BC, Li J, Zhang JF. Rhodotorula toruloides: an ideal microbial cell factory to produce oleochemicals, carotenoids, and other products. World J Microbiol Biotechnol. 2022;38:13. doi: 10.1007/s11274-021-03201-4. PubMed DOI

Ethier S, Woisard K, Vaughan D, Wen ZY. Continuous culture of the microalgae Schizochytrium limacinum on biodiesel-derived crude glycerol for producing docosahexaenoic acid. Biores Technol. 2011;102:88–93. doi: 10.1016/j.biortech.2010.05.021. PubMed DOI

Gargalo CL, Lopez PC, Hasanzadeh A, Udugama IA, Gernaey KV. Chapter 5 - On-line monitoring of process parameters during fermentation. In: Sirohi R, Pandey A, Taherzadeh MJ, Larroche C, editors. Current developments in biotechnology and bioengineering. Amsterdam: Elsevier; 2022. pp. 117–164.

Wieland K, Masri M, von Poschinger J, Bruck T, Haisch C. Non-invasive Raman spectroscopy for time-resolved in-line lipidomics. RSC Adv. 2021;11:28565–28572. doi: 10.1039/D1RA04254H. PubMed DOI PMC

Hirsch E, Pataki H, Domjan J, Farkas A, Vass P, Feher C, Barta Z, Nagy ZK, Marosi GJ, Csontos I. Inline noninvasive Raman monitoring and feedback control of glucose concentration during ethanol fermentation. Biotechnol Progr. 2019;35:e2848. doi: 10.1002/btpr.2848. PubMed DOI

Schalk R, Braun F, Frank R, Rädle M, Gretz N, Methner F-J, Beuermann T. Non-contact Raman spectroscopy for in-line monitoring of glucose and ethanol during yeast fermentations. Bioprocess Biosyst Eng. 2017;40:1519–1527. doi: 10.1007/s00449-017-1808-9. PubMed DOI

Wang QY, Li ZG, Ma ZH, Liang LQ. Real time monitoring of multiple components in wine fermentation using an on-line auto-calibration Raman spectroscopy. Sensors Actuators B-Chem. 2014;202:426–432. doi: 10.1016/j.snb.2014.05.109. DOI

Schalk R, Heintz A, Braun F, Iacono G, Radle M, Gretz N, Methner FJ, Beuermann T. Comparison of Raman and mid-infrared spectroscopy for real-time monitoring of yeast fermentations: a proof-of-concept for multi-channel photometric sensors. Appl Sci Basel. 2019;9:2472. doi: 10.3390/app9122472. DOI

Gray SR, Peretti SW, Lamb HH. Real-time monitoring of high-gravity corn mash fermentation using in situ Raman spectroscopy. Biotechnol Bioeng. 2013;110:1654–1662. doi: 10.1002/bit.24849. PubMed DOI

Ewanick SM, Thompson WJ, Marquardt BJ, Bura R. Real-time understanding of lignocellulosic bioethanol fermentation by Raman spectroscopy. Biotechnol Biofuels. 2013;6:28. doi: 10.1186/1754-6834-6-28. PubMed DOI PMC

Dzurendova S, Shapaval V, Tafintseva V, Kohler A, Byrtusova D, Szotkowski M, Marova I, Zimmermann B. Assessment of biotechnologically important filamentous fungal biomass by Fourier Transform Raman Spectroscopy. Int J Mol Sci. 2021;22:6710. doi: 10.3390/ijms22136710. PubMed DOI PMC

Iversen JA, Berg RW, Ahring BK. Quantitative monitoring of yeast fermentation using Raman spectroscopy. Anal Bioanal Chem. 2014;406:4911–4919. doi: 10.1007/s00216-014-7897-2. PubMed DOI

Bowie BT, Chase DB, Griffiths PR. Factors affecting the performance of bench-top Raman spectrometers Part I: Instrumental effects. Appl Spectrosc. 2000;54:164a–173a. doi: 10.1366/0003702001949924. DOI

Boyaci IH, Temiz HT, Genis HE, Soykut EA, Yazgan NN, Guven B, Uysal RS, Bozkurt AG, Ilaslan K, Torun O, Seker FCD. Dispersive and FT-Raman spectroscopic methods in food analysis. RSC Adv. 2015;5:56606–56624. doi: 10.1039/C4RA12463D. DOI

Sivakesava S, Irudayaraj J, Demirci A. Monitoring a bioprocess for ethanol production using FT-MIR and FT-Raman spectroscopy. J Ind Microbiol Biotechnol. 2001;26:185–190. doi: 10.1038/sj.jim.7000124. PubMed DOI

Dzurendova S, Zimmermann B, Kohler A, Tafintseva V, Slany O, Certik M, Shapaval V. Microcultivation and FTIR spectroscopy-based screening revealed a nutrient-induced co-production of high-value metabolites in oleaginous Mucoromycota fungi. PLoS ONE. 2020;15:e0234870. doi: 10.1371/journal.pone.0234870. PubMed DOI PMC

Dzurendova S, Zimmermann B, Kohler A, Reitzel K, Nielsen UG, Dupuy-Galet BX, Leivers S, Horn SJ, Shapaval V. Calcium affects polyphosphate and lipid accumulation in Mucoromycota fungi. J Fungi. 2021;7:300. doi: 10.3390/jof7040300. PubMed DOI PMC

Langseter AM, Dzurendova S, Shapaval V, Kohler A, Ekeberg D, Zimmermann B. Evaluation and optimisation of direct transesterification methods for the assessment of lipid accumulation in oleaginous filamentous fungi. Microb Cell Fact. 2021;20:59. doi: 10.1186/s12934-021-01542-1. PubMed DOI PMC

Kosa G, Shapaval V, Kohler A, Zimmermann B. FTIR spectroscopy as a unified method for simultaneous analysis of intra- and extracellular metabolites in high-throughput screening of microbial bioprocesses. Microb Cell Fact. 2017;16:195. doi: 10.1186/s12934-017-0817-3. PubMed DOI PMC

Shapaval V, Afseth NK, Vogt G, Kohler A. Fourier transform infrared spectroscopy for the prediction of fatty acid profiles in Mucor fungi grown in media with different carbon sources. Microb Cell Fact. 2014;13:86. doi: 10.1186/1475-2859-13-86. PubMed DOI PMC

Kosa G, Kohler A, Tafintseva V, Zimmermann B, Forfang K, Afseth NK, Tzimorotas D, Vuoristo KS, Horn SJ, Mounier J, Shapaval V. Microtiter plate cultivation of oleaginous fungi and monitoring of lipogenesis by high-throughput FTIR spectroscopy. Microb Cell Fact. 2017;16:101. doi: 10.1186/s12934-017-0716-7. PubMed DOI PMC

Olsen PM, Kosa G, Kluver M, Kohler A, Shapaval V, Horn SJ. Production of docosahexaenoic acid from spruce sugars using Aurantiochytrium limacinum. Bioresour Technol. 2023;376:128827. doi: 10.1016/j.biortech.2023.128827. PubMed DOI

Demsar J, Curk T, Erjavec A, Gorup C, Hocevar T, Milutinovic M, Mozina M, Polajnar M, Toplak M, Staric A, et al. Orange: data mining toolbox in Python. J Mach Learn Res. 2013;14:2349–2353.

Toplak M, Birarda G, Read S, Sandt C, Rosendahl SM, Vaccari L, Demšar J, Borondics F. Infrared orange: connecting hyperspectral data with machine learning. Synchrotron Radiat News. 2017;30:40–45. doi: 10.1080/08940886.2017.1338424. DOI

Szotkowski M, Byrtusova D, Haronikova A, Vysoka M, Rapta M, Shapaval V, Marova I. Study of metabolic adaptation of red yeasts to waste animal fat substrate. Microorganisms. 2019;7:578. doi: 10.3390/microorganisms7110578. PubMed DOI PMC

Li ZP, Meng T, Hang W, Cao XY, Ni H, Shi YY, Li QB, Xiong YY, He N. Regulation of glucose and glycerol for production of docosahexaenoic acid in Schizochytrium limacinum SR21 with metabolomics analysis. Algal Res Biomass Biofuels Bioprod. 2021;58:102415.

Chang M, Zhang T, Guo X, Liu Y, Liu RJ, Jin QZ, Wang XG. Optimization of cultivation conditions for efficient production of carotenoid-rich DHA oil by Schizochytrium sp S31. Process Biochem. 2020;94:190–197. doi: 10.1016/j.procbio.2020.04.007. DOI

Liu ZJ, Radi M, Mohamed ETT, Feist AM, Dragone G, Mussatto SI. Adaptive laboratory evolution of Rhodosporidium toruloides to inhibitors derived from lignocellulosic biomass and genetic variations behind evolution. Bioresour Technol. 2021;333:125171. doi: 10.1016/j.biortech.2021.125171. PubMed DOI

Patel A, Liefeldt S, Rova U, Christakopoulos P, Matsakas L. Co-production of DHA and squalene by thraustochytrid from forest biomass. Sc Rep. 1992;2020:10. PubMed PMC

Mudalige A, Pemberton JE. Raman spectroscopy of glycerol/D2O solutions. Vib Spectrosc. 2007;45:27–35. doi: 10.1016/j.vibspec.2007.04.002. DOI

Mathlouthi M, Luu DV. Laser-Raman spectra of D-glucose and sucrose in aqueous-solution. Carbohyd Res. 1980;81:203–212. doi: 10.1016/S0008-6215(00)85652-9. DOI

Manghnani MH, Hushur A, Sekine T, Wu JS, Stebbins JF, Williams Q: Raman, Brillouin, and nuclear magnetic resonance spectroscopic studies on shocked borosilicate glass. Journal of Applied Physics 2011, 109.

Czamara K, Majzner K, Pacia MZ, Kochan K, Kaczor A, Baranska M. Raman spectroscopy of lipids: a review. J Raman Spectrosc. 2015;46:4–20. doi: 10.1002/jrs.4607. DOI

Jehlicka J, Edwards HGM, Orenc A. Raman spectroscopy of microbial pigments. Appl Environ Microbiol. 2014;80:3286–3295. doi: 10.1128/AEM.00699-14. PubMed DOI PMC

Cannizzaro C, Rhiel M, Marison I, von Stockar U. On-line monitoring of Phaffia rhodozyma fed-batch process with in situ dispersive Raman spectroscopy. Biotechnol Bioeng. 2003;83:668–680. doi: 10.1002/bit.10698. PubMed DOI

Zimmermann B, Kohler A. Optimizing Savitzky-Golay parameters for improving spectral resolution and quantification in infrared spectroscopy. Appl Spectrosc. 2013;67:892–902. doi: 10.1366/12-06723. PubMed DOI

Dzurendova S, Zimmermann B, Tafintseva V, Kohler A, Horn SJ, Shapaval V. Metal and phosphate ions show remarkable influence on the biomass production and lipid accumulation in oleaginous Mucor circinelloides. J Fungi (Basel) 2020;6:260. doi: 10.3390/jof6040260. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace