Application of vibrational spectroscopies as process analytical techniques for monitoring fermentation and the conversion of lignocellulosic biomass by oleaginous filamentous fungi
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
257622
Norges Forskningsråd
305215
Norges Forskningsråd
PubMed
41366398
PubMed Central
PMC12690941
DOI
10.1186/s12934-025-02868-w
PII: 10.1186/s12934-025-02868-w
Knihovny.cz E-zdroje
- Klíčová slova
- Biodiesel, Bioprocess monitoring, FTIR microscopy, Fourier transform infrared spectroscopy, Fourier transform raman spectroscopy, Lignocellulose, Mucor, Oleaginous microorganisms, Simultaneous saccharification and fermentation,
- MeSH
- biomasa MeSH
- biopaliva MeSH
- fermentace * MeSH
- glukosa metabolismus analýza MeSH
- hydrolýza MeSH
- lignin * metabolismus MeSH
- Mucor * metabolismus MeSH
- Ramanova spektroskopie metody MeSH
- spektroskopie infračervená s Fourierovou transformací MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biopaliva MeSH
- glukosa MeSH
- lignin * MeSH
- lignocellulose MeSH Prohlížeč
BACKGROUND: Oleaginous filamentous fungi, such as Mucor circinelloides, are capable of accumulating high levels of single cell oil (SCO), making them attractive candidates for the production of biodiesel and other oleochemicals. Lignocellulosic feedstocks offer an abundant and cost-effective carbon source for SCO production due to their high polysaccharide content. However, most oleaginous microorganisms cannot directly utilize cellulose and hemicellulose polysaccharides, necessitating their conversion into monosaccharides. Lignocellulosic substrates can be saccharified either separately from fermentation (separate hydrolysis and fermentation; SHF) or simultaneously (simultaneous saccharification and fermentation; SSF). This study evaluated SSF using M. circinelloides, as well as SHF cultivations on two types of lignocellulosic hydrolysates, and two control fermentations, with process monitoring via four vibrational spectroscopy techniques: Fourier Transform Infrared (FTIR) spectrometer with fibre optic probe, FTIR microspectrometer, FTIR spectrometer with high throughput setting (HTS), and FT-Raman spectrometer with HTS. RESULTS: Quantitative estimation of glucose in the cultivation media and lipid content in the biomass was achieved using PLSR analysis of FT-Raman measurements from the cell suspension. FT-Raman spectroscopy demonstrated exceptional capability for online and at-line process monitoring among the tested techniques. It enabled direct and rapid analysis of raw cell suspensions (containing growth media, cellulose-rich pulp substrate, and fungal biomass) without the need for sample pre-treatment, purification, or modification. FT-Raman provided comprehensive biochemical profiles, effectively detecting key chemical changes in both the cellulose-rich pulp substrates and the fungal biomass, including lipid accumulation by the oleaginous fungi. FTIR with fiber optics is effective for monitoring glucose in SHF processes, but its accuracy is limited in SSF processes due to the very low glucose concentrations. The study demonstrates that FTIR microspectroscopy is a valuable tool for lab-scale fermentation process development, as well as for investigating the bioconversion of lignocellulosic biomass into fungal biomass and metabolites. CONCLUSIONS: FT-Raman spectroscopy is highlighted as a powerful process analytical technology (PAT) tool for real-time or near-real-time monitoring of SSF processes for intracellular SCO production. Its ability to provide rich chemical information rapidly and without extensive sample preparation holds significant promise for optimizing industrial SCO production from lignocellulosic feedstocks.
Faculty of Chemistry Brno University of Technology Purkyňova 464 118 Brno 61200 Czech Republic
Faculty of Science and Technology Norwegian University of Life Sciences Postbox 5003 Ås 1432 Norway
Zobrazit více v PubMed
Mhlongo SI, Ezeokoli OT, Roopnarain A, Ndaba B, Sekoai PT, Habimana O, et al. The potential of single-cell oils derived from filamentous fungi as alternative feedstock sources for biodiesel production. Front Microbiol. 2021. 10.3389/fmicb.2021.637381. PubMed DOI PMC
Kosa G, Zimmermann B, Kohler A, Ekeberg D, Afseth NK, Mounier J, et al. High-throughput screening of mucoromycota fungi for production of low- and high-value lipids. Biotechnol Biofuels. 2018. 10.1186/s13068-018-1070-7. PubMed DOI PMC
Dzurendova S, Zimmermann B, Kohler A, Reitzel K, Nielsen UG, Dupuy–Galet BX, et al. Calcium affects polyphosphate and lipid accumulation in mucoromycota fungi. J Fungi. 2021. 10.3390/jof7040300. PubMed DOI PMC
Papanikolaou S, Galiotou-Panayotou M, Fakas S, Komaitis M, Aggelis G. Lipid production by oleaginous mucorales cultivated on renewable carbon sources. Eur J Lipid Sci Technol. 2007;109:1060–70. DOI
Qiao WC, Tao JQ, Luo Y, Tang TH, Miao JH, Yang QW. Microbial oil production from solid-state fermentation by a newly isolated oleaginous fungus, PubMed DOI PMC
Troiano D, Orsat V, Dumont MJ. Status of filamentous fungi in integrated biorefineries. Renew Sustain Energy Rev. 2020. 10.1016/j.rser.2019.109472. DOI
Gaykawad SS, Ramanand SS, Blomqvist J, Zimmermann B, Shapaval V, Kohler A, et al. Submerged fermentation of animal fat by-products by oleaginous filamentous fungi for the production of unsaturated single cell oil. Fermentation. 2021. 10.3390/fermentation7040300. DOI
Certik M, Adamechova Z, Laoteng K. Microbial production of gamma-linolenic acid: submerged versus solid-state fermentations. Food Sci Biotechnol. 2012;21:921–6. DOI
Dheeran P, Khanal S, Kumar S, Taherzadeh M. Fungal Biorefineries. In: Fungal biology. 1st edn. p. 1 online resource (XIV, 246 pages 232 illustrations, 227 illustrations in color. Cham: Springer International Publishing: Imprint: Springer,; 2018: 1 online resource (XIV, 246 pages 232 illustrations, 227 illustrations in color.
Dzurendova S, Shapaval V, Tafintseva V, Kohler A, Byrtusova D, Szotkowski M, et al. Assessment of biotechnologically important filamentous fungal biomass by fourier transform Raman spectroscopy. Int J Mol Sci. 2021. 10.3390/ijms22136710. PubMed DOI PMC
Dzurendova S, Zimmermann B, Kohler A, Tafintseva V, Slany O, Certik M, et al. Microcultivation and FTIR spectroscopy-based screening revealed a nutrient-induced co-production of high-value metabolites in oleaginous mucoromycota fungi. PLoS One. 2020;15:e0234870. PubMed DOI PMC
Dzurendova S, Zimmermann B, Tafintseva V, Kohler A, Ekeberg D, Shapaval V. The influence of phosphorus source and the nature of nitrogen substrate on the biomass production and lipid accumulation in oleaginous mucoromycota fungi. Appl Microbiol Biotechnol. 2020;104:8065–76. PubMed DOI PMC
Dzurendova S, Zimmermann B, Tafintseva V, Kohler A, Horn SJ, Shapaval V. Metal and phosphate ions show remarkable influence on the biomass production and lipid accumulation in oleaginous PubMed DOI PMC
Patel A, Shah AR. Integrated lignocellulosic biorefinery: gateway for production of second generation ethanol and value added products. J Bioresour Bioprod. 2021;6:108–28.
Marđetko N, Trontel A, Novak M, Pavlečić M, Dobrinčić A, Petravić Tominac V, Šantek B. Simultaneous saccharification and fermentation of pretreated corn cobs by mucor indicus for ethanol production. In: Clean Technologies. vol. 72025.
Karimi K, Emtiazi G, Taherzadeh MJ. Ethanol production from dilute-acid pretreated rice straw by simultaneous saccharification and fermentation with DOI
Formenti LR, Norregaard A, Bolic A, Hernandez DQ, Hagemann T, Heins AL, et al. Challenges in industrial fermentation technology research. Biotechnol J. 2014;9:727–38. PubMed DOI
Holzberg TR, Watson V, Brown S, Andar A, Ge XD, Kostov Y, et al. Sensors for biomanufacturing process development: facilitating the shift from batch to continuous manufacturing. Curr Opin Chem Eng. 2018;22:115–27. DOI
Paul A, Carl P, Westad F, Voss JP, Maiwald M. Towards process spectroscopy in complex fermentation samples and mixtures. Chem Ing Tech. 2016;88:756–63. DOI
Lourenco ND, Lopes JA, Almeida CF, Sarraguca MC, Pinheiro HM. Bioreactor monitoring with spectroscopy and chemometrics: a review. Anal Bioanal Chem. 2012;404:1211–37. PubMed DOI
Biechele P, Busse C, Solle D, Scheper T, Reardon K. Sensor systems for bioprocess monitoring. Eng Life Sci. 2015;15:469–88. DOI
Kuhar N, Sil S, Verma T, Umapathy S. Challenges in application of Raman spectroscopy to biology and materials. RSC Adv. 2018;8:25888–908. PubMed DOI PMC
Baker MJ, Trevisan J, Bassan P, Bhargava R, Butler HJ, Dorling KM, et al. Using fourier transform IR spectroscopy to analyze biological materials. Nat Protoc. 2014;9:1771–91. PubMed DOI PMC
Kosa G, Shapaval V, Kohler A, Zimmermann B. FTIR spectroscopy as a unified method for simultaneous analysis of intra- and extracellular metabolites in high-throughput screening of microbial bioprocesses. Microb Cell Fact. 2017. 10.1186/s12934-017-0817-3. PubMed DOI PMC
McGovern AC, Broadhurst D, Taylor J, Kaderbhai N, Winson MK, Small DA, et al. Monitoring of complex industrial bioprocesses for metabolite concentrations using modern spectroscopies and machine learning: application to gibberellic acid production. Biotechnol Bioeng. 2002;78:527–38. PubMed DOI
Schalk R, Heintz A, Braun F, Iacono G, Radle M, Gretz N, et al. Comparison of Raman and mid-infrared spectroscopy for real-time monitoring of yeast fermentations: a proof-of-concept for multi-channel photometric sensors. Appl Sci. 2019. 10.3390/app9122472. DOI
Dzurendova S, Olsen PM, Byrtusova D, Tafintseva V, Shapaval V, Horn SJ, et al. Raman spectroscopy online monitoring of biomass production, intracellular metabolites and carbon substrates during submerged fermentation of oleaginous and carotenogenic microorganisms. Microb Cell Fact. 2023. 10.1186/s12934-023-02268-y. PubMed DOI PMC
Waldschitz D, Bus Y, Herwig C, Kager J, Spadiut O. Addressing raw material variability: in-line FTIR sugar composition analysis of lignocellulosic process streams. Bioresour Technol. 2024;399:130535. PubMed DOI
Zhu CY, Jiang H, Chen QS. Rapid determination of process parameters during simultaneous saccharification and fermentation (SSF) of cassava based on molecular spectral fusion (MSF) features. Spectrochim Acta A Mol Biomol Spectrosc. 2022. 10.1016/j.saa.2021.120245. PubMed DOI
Classen J, Aupert F, Reardon KF, Solle D, Scheper T. Spectroscopic sensors for in-line bioprocess monitoring in research and pharmaceutical industrial application. Anal Bioanal Chem. 2017;409:651–66. PubMed DOI
Olson ML, Johnson J, Carswell WF, Reyes LH, Senger RS, Kao KC. Characterization of an evolved carotenoids hyper-producer of PubMed DOI
Xu F, Su LH, Gao H, Wang Y, Ben R, Hu KH, et al. Harnessing near-infrared and Raman spectral sensing and artificial intelligence for real-time monitoring and precision control of bioprocess. Bioresour Technol. 2025. 10.1016/j.biortech.2025.132204. PubMed DOI
Esmonde-White KA, Cuellar M, Uerpmann C, Lenain B, Lewis IR. Raman spectroscopy as a process analytical technology for pharmaceutical manufacturing and bioprocessing. Anal Bioanal Chem. 2017;409:637–49. PubMed DOI PMC
De Gussem K, Vandenabeele P, Verbeken A, Moens L. Raman spectroscopic study of PubMed DOI
Cannizzaro C, Rhiel M, Marison I, von Stockar U. On-line monitoring of PubMed DOI
Schalk R, Geoerg D, Staubach J, Raedle M, Methner FJ, Beuermann T. Evaluation of a newly developed mid-infrared sensor for real-time monitoring of yeast fermentations. J Biosci Bioeng. 2017;123:651–7. PubMed DOI
Shapaval V, Afseth NK, Vogt G, Kohler A. Fourier transform infrared spectroscopy for the prediction of fatty acid profiles in mucor fungi grown in media with different carbon sources. Microb Cell Fact. 2014. 10.1186/1475-2859-13-86. PubMed DOI PMC
Shigeto S, Takeshita N. Raman micro-spectroscopy and imaging of filamentous fungi. Microbes Environ. 2022. 10.1264/jsme2.ME22006. PubMed DOI PMC
Magnussen EA, Solheim JH, Blazhko U, Tafintseva V, Tondel K, Liland KH, Dzurendova S, Shapaval V, Sandt C, Borondics F, Kohler A. Deep convolutional neural network recovers pure absorbance spectra from highly scatter-distorted spectra of cells. J Biophotonics. 2020;13. PubMed
Kosa G, Kohler A, Tafintseva V, Zimmermann B, Forfang K, Afseth NK, et al. Microtiter plate cultivation of oleaginous fungi and monitoring of lipogenesis by high-throughput FTIR spectroscopy. Microb Cell Fact. 2017. 10.1186/s12934-017-0716-7. PubMed DOI PMC
Langseter AM, Dzurendova S, Shapaval V, Kohler A, Ekeberg D, Zimmermann B. Evaluation and optimisation of direct transesterification methods for the assessment of lipid accumulation in oleaginous filamentous fungi. Microb Cell Fact. 2021. 10.1186/s12934-021-01542-1. PubMed DOI PMC
Forfang K, Zimmermann B, Kosa G, Kohler A, Shapaval V. FTIR spectroscopy for evaluation and monitoring of lipid extraction efficiency for oleaginous fungi. PLoS One. 2017. 10.1371/journal.pone.0170611. PubMed DOI PMC
Shapaval V, Moretro T, Suso HP, Asli AW, Schmitt J, Lillehaug D, Martens H, Bocker U, Kohler A. A high-throughput microcultivation protocol for FTIR spectroscopic characterization and identification of fungi. J Biophotonics. 2010;3:512–21. PubMed DOI
Magnussen EA, Zimmermann B, Blazhko U, Dzurendova S, Dupuy–Galet B, Byrtusova D, et al. Deep learning-enabled inference of 3D molecular absorption distribution of biological cells from IR spectra. Commun Chem. 2022;5:175. PubMed DOI PMC
Blazhko U, Byrtusová D, Shapaval V, Kohler A, Sandt C, Zimmermann B. Submicron infrared spectroscopy assessment of single-cell phenotypic diversity in microbial lipid production. Microb Cell Fact. 2025;24:171. PubMed DOI PMC
Ratledge C. Microbial oils: an introductory overview of current status and future prospects. OCL. 2013;20:D602. DOI
Losada CB, Slany O, Byrtusová D, Zimmermann B, Horn SJ, Kohler A, et al. Compatible traits of oleaginous mucoromycota fungi for lignocellulose-based simultaneous saccharification and fermentation. Biotechnol Biofuels Bioprod. 2025. 10.1186/s13068-025-02621-w. PubMed DOI PMC
Løhre Johansen G. Lignin first: The Borregaard approach to lignocellulosic sugars and bioethanol. In: EU-India Conference on Advanced Biofuel; New Delhi. 2018: 6–8.
Baur ST, Markussen S, Di Bartolomeo F, Poehlein A, Baker A, Jenkinson ER, et al. Increased butyrate production in PubMed DOI PMC
Losada CB, Di Bartolomeo F, Wentzel A, Markussen S, Dzurendova S, Zimmermann B, et al. Simultaneous production of fatty acids and amino polysaccharides from Norway spruce hydrolysates using oleaginous PubMed DOI PMC
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54. PubMed DOI
Adney B, National Renewable Energy L, Baker JO. Measurement of cellulase activities: laboratory analytical procedure (LAP) : issue date, 08/12/1996 / B. Adney and J. Baker. Golden, Colo: National Renewable Energy Laboratory; 2008.
Kavadia A, Komaitis M, Chevalot I, Blanchard F, Marc I, Aggelis G. Lipid and gamma-linolenic acid accumulation in strains of zygomycetes growing on glucose. J Am Oil Chem Soc. 2001;78:341–6. DOI
Zamani A, Jeihanipour A, Edebo L, Niklasson C, Taherzadeh MJ. Determination of glucosamine and N-acetyl glucosamine in fungal cell walls. J Agric Food Chem. 2008;56:8314–8. PubMed DOI
Aidoo KE, Hendry R, Wood BJB. Estimation of fungal growth in a solid-state fermentation system. Eur J Appl Microbiol Biotechnol. 1981;12:6–9. DOI
Slany O, Klempova T, Shapaval V, Zimmermann B, Kohler A, Certik M. Biotransformation of animal fat-by products into ARA-enriched fermented bioproducts by solid-state fermentation of Mortierella alpina. J Fungi 2020;6. PubMed PMC
Druhmann D, Reinhard S, Schwarz F, Schaaf C, Greisl K, Notzel T. Utilizing Roche cedex bio analyzer for in process monitoring in biotech production. BMC Proc. 2011;5(Suppl 8):P106. PubMed DOI PMC
Lewis T, Nichols PD, McMeekin TA. Evaluation of extraction methods for recovery of fatty acids from lipid-producing microheterotrophs. J Microbiol Methods. 2000;43:107–16. PubMed DOI
Demsar J, Curk T, Erjavec A, Gorup C, Hocevar T, Milutinovic M, Mozina M, Polajnar M, Toplak M, Staric A, et al. Orange: data mining toolbox in python. J Mach Learn Res. 2013;14:2349–53.
Toplak M, Birarda G, Read S, Sandt C, Rosendahl SM, Vaccari L, et al. Infrared orange: connecting hyperspectral data with machine learning. Synchrotron Radiat News. 2017;30:40–5. DOI
Guo SX, Kohler A, Zimmermann B, Heinke R, Stockel S, Rosch P, et al. Extended multiplicative signal correction based model transfer for Raman spectroscopy in biological applications. Anal Chem. 2018;90:9787–95. PubMed DOI
Zimmermann B, Kohler A. Optimizing Savitzky-Golay parameters for improving spectral resolution and quantification in infrared spectroscopy. Appl Spectrosc. 2013;67:892–902. PubMed DOI
Wei H, Wang W, Yarbrough JM, Baker JO, Laurens L, Van Wychen S, et al. Genomic, proteomic, and biochemical analyses of oleaginous PubMed DOI PMC
Papanikolaou S, Aggelis G. Lipids of oleaginous yeasts. Part I: biochemistry of single cell oil production. Eur J Lipid Sci Technol. 2011;113:1031–51. DOI
Pham N, Reijnders M, Suarez-Diez M, Nijsse B, Springer J, Eggink G, Schaap PJ. Genome-scale metabolic modeling underscores the potential of ATCC 20509 as a cell factory for biofuel production. Biotechnol Biofuels. 2021;14. PubMed PMC
Gierlinger N, Keplinger T, Harrington M, Schwanninger M. Raman imaging of lignocellulosic feedstock. In: Van de Ven TJK, editor. Cellulose-biomass conversion. London: IntechOpen; 2013.
Lupoi JS, Gjersing E, Davis MF. Evaluating lignocellulosic biomass, its derivatives, and downstream products with Raman spectroscopy. Front Bioeng Biotechnol 2015;3. PubMed PMC
Lapena D, Kosa G, Hansen LD, Mydland LT, Passoth V, Horn SJ, et al. Production and characterization of yeasts grown on media composed of spruce-derived sugars and protein hydrolysates from chicken by-products. Microb Cell Fact. 2020. 10.1186/s12934-020-1287-6. PubMed DOI PMC
Costa THF, Kadic A, Chylenski P, Varnai A, Bengtsson O, Liden G, et al. Demonstration-scale enzymatic saccharification of sulfite-pulped spruce with addition of hydrogen peroxide for LPMO activation. Biofuels Bioprod Biorefin. 2020;14:734–45. DOI
Reis CER, Zhang JG, Hu B. Lipid accumulation by pelletized culture of PubMed DOI
Popescu CM, Popescu MC, Vasile C. Characterization of fungal degraded lime wood by FT-IR and 2D IR correlation spectroscopy. Microchem J. 2010;95:377–87. DOI
Bağcıoğlu M, Kohler A, Seifert S, Kneipp J, Zimmermann B. Monitoring of plant–environment interactions by high-throughput FTIR spectroscopy of pollen. Methods Ecol Evol. 2017;8(7):870–80. DOI
Magnussen EA, Zimmermann B, Dzurendova S, Slany O, Tafintseva V, Liland KH, Tøndel K, Shapaval V, Kohler A. Calibration for quantitative chemical analysis in IR microscopic imaging. Anal Chem. 2025. PubMed PMC