Application of vibrational spectroscopies as process analytical techniques for monitoring fermentation and the conversion of lignocellulosic biomass by oleaginous filamentous fungi

. 2025 Dec 09 ; 24 (1) : 245. [epub] 20251209

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41366398

Grantová podpora
257622 Norges Forskningsråd
305215 Norges Forskningsråd

Odkazy

PubMed 41366398
PubMed Central PMC12690941
DOI 10.1186/s12934-025-02868-w
PII: 10.1186/s12934-025-02868-w
Knihovny.cz E-zdroje

BACKGROUND: Oleaginous filamentous fungi, such as Mucor circinelloides, are capable of accumulating high levels of single cell oil (SCO), making them attractive candidates for the production of biodiesel and other oleochemicals. Lignocellulosic feedstocks offer an abundant and cost-effective carbon source for SCO production due to their high polysaccharide content. However, most oleaginous microorganisms cannot directly utilize cellulose and hemicellulose polysaccharides, necessitating their conversion into monosaccharides. Lignocellulosic substrates can be saccharified either separately from fermentation (separate hydrolysis and fermentation; SHF) or simultaneously (simultaneous saccharification and fermentation; SSF). This study evaluated SSF using M. circinelloides, as well as SHF cultivations on two types of lignocellulosic hydrolysates, and two control fermentations, with process monitoring via four vibrational spectroscopy techniques: Fourier Transform Infrared (FTIR) spectrometer with fibre optic probe, FTIR microspectrometer, FTIR spectrometer with high throughput setting (HTS), and FT-Raman spectrometer with HTS. RESULTS: Quantitative estimation of glucose in the cultivation media and lipid content in the biomass was achieved using PLSR analysis of FT-Raman measurements from the cell suspension. FT-Raman spectroscopy demonstrated exceptional capability for online and at-line process monitoring among the tested techniques. It enabled direct and rapid analysis of raw cell suspensions (containing growth media, cellulose-rich pulp substrate, and fungal biomass) without the need for sample pre-treatment, purification, or modification. FT-Raman provided comprehensive biochemical profiles, effectively detecting key chemical changes in both the cellulose-rich pulp substrates and the fungal biomass, including lipid accumulation by the oleaginous fungi. FTIR with fiber optics is effective for monitoring glucose in SHF processes, but its accuracy is limited in SSF processes due to the very low glucose concentrations. The study demonstrates that FTIR microspectroscopy is a valuable tool for lab-scale fermentation process development, as well as for investigating the bioconversion of lignocellulosic biomass into fungal biomass and metabolites. CONCLUSIONS: FT-Raman spectroscopy is highlighted as a powerful process analytical technology (PAT) tool for real-time or near-real-time monitoring of SSF processes for intracellular SCO production. Its ability to provide rich chemical information rapidly and without extensive sample preparation holds significant promise for optimizing industrial SCO production from lignocellulosic feedstocks.

Zobrazit více v PubMed

Mhlongo SI, Ezeokoli OT, Roopnarain A, Ndaba B, Sekoai PT, Habimana O, et al. The potential of single-cell oils derived from filamentous fungi as alternative feedstock sources for biodiesel production. Front Microbiol. 2021. 10.3389/fmicb.2021.637381. PubMed DOI PMC

Kosa G, Zimmermann B, Kohler A, Ekeberg D, Afseth NK, Mounier J, et al. High-throughput screening of mucoromycota fungi for production of low- and high-value lipids. Biotechnol Biofuels. 2018. 10.1186/s13068-018-1070-7. PubMed DOI PMC

Dzurendova S, Zimmermann B, Kohler A, Reitzel K, Nielsen UG, Dupuy–Galet BX, et al. Calcium affects polyphosphate and lipid accumulation in mucoromycota fungi. J Fungi. 2021. 10.3390/jof7040300. PubMed DOI PMC

Papanikolaou S, Galiotou-Panayotou M, Fakas S, Komaitis M, Aggelis G. Lipid production by oleaginous mucorales cultivated on renewable carbon sources. Eur J Lipid Sci Technol. 2007;109:1060–70. DOI

Qiao WC, Tao JQ, Luo Y, Tang TH, Miao JH, Yang QW. Microbial oil production from solid-state fermentation by a newly isolated oleaginous fungus, PubMed DOI PMC

Troiano D, Orsat V, Dumont MJ. Status of filamentous fungi in integrated biorefineries. Renew Sustain Energy Rev. 2020. 10.1016/j.rser.2019.109472. DOI

Gaykawad SS, Ramanand SS, Blomqvist J, Zimmermann B, Shapaval V, Kohler A, et al. Submerged fermentation of animal fat by-products by oleaginous filamentous fungi for the production of unsaturated single cell oil. Fermentation. 2021. 10.3390/fermentation7040300. DOI

Certik M, Adamechova Z, Laoteng K. Microbial production of gamma-linolenic acid: submerged versus solid-state fermentations. Food Sci Biotechnol. 2012;21:921–6. DOI

Dheeran P, Khanal S, Kumar S, Taherzadeh M. Fungal Biorefineries. In: Fungal biology. 1st edn. p. 1 online resource (XIV, 246 pages 232 illustrations, 227 illustrations in color. Cham: Springer International Publishing: Imprint: Springer,; 2018: 1 online resource (XIV, 246 pages 232 illustrations, 227 illustrations in color.

Dzurendova S, Shapaval V, Tafintseva V, Kohler A, Byrtusova D, Szotkowski M, et al. Assessment of biotechnologically important filamentous fungal biomass by fourier transform Raman spectroscopy. Int J Mol Sci. 2021. 10.3390/ijms22136710. PubMed DOI PMC

Dzurendova S, Zimmermann B, Kohler A, Tafintseva V, Slany O, Certik M, et al. Microcultivation and FTIR spectroscopy-based screening revealed a nutrient-induced co-production of high-value metabolites in oleaginous mucoromycota fungi. PLoS One. 2020;15:e0234870. PubMed DOI PMC

Dzurendova S, Zimmermann B, Tafintseva V, Kohler A, Ekeberg D, Shapaval V. The influence of phosphorus source and the nature of nitrogen substrate on the biomass production and lipid accumulation in oleaginous mucoromycota fungi. Appl Microbiol Biotechnol. 2020;104:8065–76. PubMed DOI PMC

Dzurendova S, Zimmermann B, Tafintseva V, Kohler A, Horn SJ, Shapaval V. Metal and phosphate ions show remarkable influence on the biomass production and lipid accumulation in oleaginous PubMed DOI PMC

Patel A, Shah AR. Integrated lignocellulosic biorefinery: gateway for production of second generation ethanol and value added products. J Bioresour Bioprod. 2021;6:108–28.

Marđetko N, Trontel A, Novak M, Pavlečić M, Dobrinčić A, Petravić Tominac V, Šantek B. Simultaneous saccharification and fermentation of pretreated corn cobs by mucor indicus for ethanol production. In: Clean Technologies. vol. 72025.

Karimi K, Emtiazi G, Taherzadeh MJ. Ethanol production from dilute-acid pretreated rice straw by simultaneous saccharification and fermentation with DOI

Formenti LR, Norregaard A, Bolic A, Hernandez DQ, Hagemann T, Heins AL, et al. Challenges in industrial fermentation technology research. Biotechnol J. 2014;9:727–38. PubMed DOI

Holzberg TR, Watson V, Brown S, Andar A, Ge XD, Kostov Y, et al. Sensors for biomanufacturing process development: facilitating the shift from batch to continuous manufacturing. Curr Opin Chem Eng. 2018;22:115–27. DOI

Paul A, Carl P, Westad F, Voss JP, Maiwald M. Towards process spectroscopy in complex fermentation samples and mixtures. Chem Ing Tech. 2016;88:756–63. DOI

Lourenco ND, Lopes JA, Almeida CF, Sarraguca MC, Pinheiro HM. Bioreactor monitoring with spectroscopy and chemometrics: a review. Anal Bioanal Chem. 2012;404:1211–37. PubMed DOI

Biechele P, Busse C, Solle D, Scheper T, Reardon K. Sensor systems for bioprocess monitoring. Eng Life Sci. 2015;15:469–88. DOI

Kuhar N, Sil S, Verma T, Umapathy S. Challenges in application of Raman spectroscopy to biology and materials. RSC Adv. 2018;8:25888–908. PubMed DOI PMC

Baker MJ, Trevisan J, Bassan P, Bhargava R, Butler HJ, Dorling KM, et al. Using fourier transform IR spectroscopy to analyze biological materials. Nat Protoc. 2014;9:1771–91. PubMed DOI PMC

Kosa G, Shapaval V, Kohler A, Zimmermann B. FTIR spectroscopy as a unified method for simultaneous analysis of intra- and extracellular metabolites in high-throughput screening of microbial bioprocesses. Microb Cell Fact. 2017. 10.1186/s12934-017-0817-3. PubMed DOI PMC

McGovern AC, Broadhurst D, Taylor J, Kaderbhai N, Winson MK, Small DA, et al. Monitoring of complex industrial bioprocesses for metabolite concentrations using modern spectroscopies and machine learning: application to gibberellic acid production. Biotechnol Bioeng. 2002;78:527–38. PubMed DOI

Schalk R, Heintz A, Braun F, Iacono G, Radle M, Gretz N, et al. Comparison of Raman and mid-infrared spectroscopy for real-time monitoring of yeast fermentations: a proof-of-concept for multi-channel photometric sensors. Appl Sci. 2019. 10.3390/app9122472. DOI

Dzurendova S, Olsen PM, Byrtusova D, Tafintseva V, Shapaval V, Horn SJ, et al. Raman spectroscopy online monitoring of biomass production, intracellular metabolites and carbon substrates during submerged fermentation of oleaginous and carotenogenic microorganisms. Microb Cell Fact. 2023. 10.1186/s12934-023-02268-y. PubMed DOI PMC

Waldschitz D, Bus Y, Herwig C, Kager J, Spadiut O. Addressing raw material variability: in-line FTIR sugar composition analysis of lignocellulosic process streams. Bioresour Technol. 2024;399:130535. PubMed DOI

Zhu CY, Jiang H, Chen QS. Rapid determination of process parameters during simultaneous saccharification and fermentation (SSF) of cassava based on molecular spectral fusion (MSF) features. Spectrochim Acta A Mol Biomol Spectrosc. 2022. 10.1016/j.saa.2021.120245. PubMed DOI

Classen J, Aupert F, Reardon KF, Solle D, Scheper T. Spectroscopic sensors for in-line bioprocess monitoring in research and pharmaceutical industrial application. Anal Bioanal Chem. 2017;409:651–66. PubMed DOI

Olson ML, Johnson J, Carswell WF, Reyes LH, Senger RS, Kao KC. Characterization of an evolved carotenoids hyper-producer of PubMed DOI

Xu F, Su LH, Gao H, Wang Y, Ben R, Hu KH, et al. Harnessing near-infrared and Raman spectral sensing and artificial intelligence for real-time monitoring and precision control of bioprocess. Bioresour Technol. 2025. 10.1016/j.biortech.2025.132204. PubMed DOI

Esmonde-White KA, Cuellar M, Uerpmann C, Lenain B, Lewis IR. Raman spectroscopy as a process analytical technology for pharmaceutical manufacturing and bioprocessing. Anal Bioanal Chem. 2017;409:637–49. PubMed DOI PMC

De Gussem K, Vandenabeele P, Verbeken A, Moens L. Raman spectroscopic study of PubMed DOI

Cannizzaro C, Rhiel M, Marison I, von Stockar U. On-line monitoring of PubMed DOI

Schalk R, Geoerg D, Staubach J, Raedle M, Methner FJ, Beuermann T. Evaluation of a newly developed mid-infrared sensor for real-time monitoring of yeast fermentations. J Biosci Bioeng. 2017;123:651–7. PubMed DOI

Shapaval V, Afseth NK, Vogt G, Kohler A. Fourier transform infrared spectroscopy for the prediction of fatty acid profiles in mucor fungi grown in media with different carbon sources. Microb Cell Fact. 2014. 10.1186/1475-2859-13-86. PubMed DOI PMC

Shigeto S, Takeshita N. Raman micro-spectroscopy and imaging of filamentous fungi. Microbes Environ. 2022. 10.1264/jsme2.ME22006. PubMed DOI PMC

Magnussen EA, Solheim JH, Blazhko U, Tafintseva V, Tondel K, Liland KH, Dzurendova S, Shapaval V, Sandt C, Borondics F, Kohler A. Deep convolutional neural network recovers pure absorbance spectra from highly scatter-distorted spectra of cells. J Biophotonics. 2020;13. PubMed

Kosa G, Kohler A, Tafintseva V, Zimmermann B, Forfang K, Afseth NK, et al. Microtiter plate cultivation of oleaginous fungi and monitoring of lipogenesis by high-throughput FTIR spectroscopy. Microb Cell Fact. 2017. 10.1186/s12934-017-0716-7. PubMed DOI PMC

Langseter AM, Dzurendova S, Shapaval V, Kohler A, Ekeberg D, Zimmermann B. Evaluation and optimisation of direct transesterification methods for the assessment of lipid accumulation in oleaginous filamentous fungi. Microb Cell Fact. 2021. 10.1186/s12934-021-01542-1. PubMed DOI PMC

Forfang K, Zimmermann B, Kosa G, Kohler A, Shapaval V. FTIR spectroscopy for evaluation and monitoring of lipid extraction efficiency for oleaginous fungi. PLoS One. 2017. 10.1371/journal.pone.0170611. PubMed DOI PMC

Shapaval V, Moretro T, Suso HP, Asli AW, Schmitt J, Lillehaug D, Martens H, Bocker U, Kohler A. A high-throughput microcultivation protocol for FTIR spectroscopic characterization and identification of fungi. J Biophotonics. 2010;3:512–21. PubMed DOI

Magnussen EA, Zimmermann B, Blazhko U, Dzurendova S, Dupuy–Galet B, Byrtusova D, et al. Deep learning-enabled inference of 3D molecular absorption distribution of biological cells from IR spectra. Commun Chem. 2022;5:175. PubMed DOI PMC

Blazhko U, Byrtusová D, Shapaval V, Kohler A, Sandt C, Zimmermann B. Submicron infrared spectroscopy assessment of single-cell phenotypic diversity in microbial lipid production. Microb Cell Fact. 2025;24:171. PubMed DOI PMC

Ratledge C. Microbial oils: an introductory overview of current status and future prospects. OCL. 2013;20:D602. DOI

Losada CB, Slany O, Byrtusová D, Zimmermann B, Horn SJ, Kohler A, et al. Compatible traits of oleaginous mucoromycota fungi for lignocellulose-based simultaneous saccharification and fermentation. Biotechnol Biofuels Bioprod. 2025. 10.1186/s13068-025-02621-w. PubMed DOI PMC

Løhre Johansen G. Lignin first: The Borregaard approach to lignocellulosic sugars and bioethanol. In: EU-India Conference on Advanced Biofuel; New Delhi. 2018: 6–8.

Baur ST, Markussen S, Di Bartolomeo F, Poehlein A, Baker A, Jenkinson ER, et al. Increased butyrate production in PubMed DOI PMC

Losada CB, Di Bartolomeo F, Wentzel A, Markussen S, Dzurendova S, Zimmermann B, et al. Simultaneous production of fatty acids and amino polysaccharides from Norway spruce hydrolysates using oleaginous PubMed DOI PMC

Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54. PubMed DOI

Adney B, National Renewable Energy L, Baker JO. Measurement of cellulase activities: laboratory analytical procedure (LAP) : issue date, 08/12/1996 / B. Adney and J. Baker. Golden, Colo: National Renewable Energy Laboratory; 2008.

Kavadia A, Komaitis M, Chevalot I, Blanchard F, Marc I, Aggelis G. Lipid and gamma-linolenic acid accumulation in strains of zygomycetes growing on glucose. J Am Oil Chem Soc. 2001;78:341–6. DOI

Zamani A, Jeihanipour A, Edebo L, Niklasson C, Taherzadeh MJ. Determination of glucosamine and N-acetyl glucosamine in fungal cell walls. J Agric Food Chem. 2008;56:8314–8. PubMed DOI

Aidoo KE, Hendry R, Wood BJB. Estimation of fungal growth in a solid-state fermentation system. Eur J Appl Microbiol Biotechnol. 1981;12:6–9. DOI

Slany O, Klempova T, Shapaval V, Zimmermann B, Kohler A, Certik M. Biotransformation of animal fat-by products into ARA-enriched fermented bioproducts by solid-state fermentation of Mortierella alpina. J Fungi 2020;6. PubMed PMC

Druhmann D, Reinhard S, Schwarz F, Schaaf C, Greisl K, Notzel T. Utilizing Roche cedex bio analyzer for in process monitoring in biotech production. BMC Proc. 2011;5(Suppl 8):P106. PubMed DOI PMC

Lewis T, Nichols PD, McMeekin TA. Evaluation of extraction methods for recovery of fatty acids from lipid-producing microheterotrophs. J Microbiol Methods. 2000;43:107–16. PubMed DOI

Demsar J, Curk T, Erjavec A, Gorup C, Hocevar T, Milutinovic M, Mozina M, Polajnar M, Toplak M, Staric A, et al. Orange: data mining toolbox in python. J Mach Learn Res. 2013;14:2349–53.

Toplak M, Birarda G, Read S, Sandt C, Rosendahl SM, Vaccari L, et al. Infrared orange: connecting hyperspectral data with machine learning. Synchrotron Radiat News. 2017;30:40–5. DOI

Guo SX, Kohler A, Zimmermann B, Heinke R, Stockel S, Rosch P, et al. Extended multiplicative signal correction based model transfer for Raman spectroscopy in biological applications. Anal Chem. 2018;90:9787–95. PubMed DOI

Zimmermann B, Kohler A. Optimizing Savitzky-Golay parameters for improving spectral resolution and quantification in infrared spectroscopy. Appl Spectrosc. 2013;67:892–902. PubMed DOI

Wei H, Wang W, Yarbrough JM, Baker JO, Laurens L, Van Wychen S, et al. Genomic, proteomic, and biochemical analyses of oleaginous PubMed DOI PMC

Papanikolaou S, Aggelis G. Lipids of oleaginous yeasts. Part I: biochemistry of single cell oil production. Eur J Lipid Sci Technol. 2011;113:1031–51. DOI

Pham N, Reijnders M, Suarez-Diez M, Nijsse B, Springer J, Eggink G, Schaap PJ. Genome-scale metabolic modeling underscores the potential of ATCC 20509 as a cell factory for biofuel production. Biotechnol Biofuels. 2021;14. PubMed PMC

Gierlinger N, Keplinger T, Harrington M, Schwanninger M. Raman imaging of lignocellulosic feedstock. In: Van de Ven TJK, editor. Cellulose-biomass conversion. London: IntechOpen; 2013.

Lupoi JS, Gjersing E, Davis MF. Evaluating lignocellulosic biomass, its derivatives, and downstream products with Raman spectroscopy. Front Bioeng Biotechnol 2015;3. PubMed PMC

Lapena D, Kosa G, Hansen LD, Mydland LT, Passoth V, Horn SJ, et al. Production and characterization of yeasts grown on media composed of spruce-derived sugars and protein hydrolysates from chicken by-products. Microb Cell Fact. 2020. 10.1186/s12934-020-1287-6. PubMed DOI PMC

Costa THF, Kadic A, Chylenski P, Varnai A, Bengtsson O, Liden G, et al. Demonstration-scale enzymatic saccharification of sulfite-pulped spruce with addition of hydrogen peroxide for LPMO activation. Biofuels Bioprod Biorefin. 2020;14:734–45. DOI

Reis CER, Zhang JG, Hu B. Lipid accumulation by pelletized culture of PubMed DOI

Popescu CM, Popescu MC, Vasile C. Characterization of fungal degraded lime wood by FT-IR and 2D IR correlation spectroscopy. Microchem J. 2010;95:377–87. DOI

Bağcıoğlu M, Kohler A, Seifert S, Kneipp J, Zimmermann B. Monitoring of plant–environment interactions by high-throughput FTIR spectroscopy of pollen. Methods Ecol Evol. 2017;8(7):870–80. DOI

Magnussen EA, Zimmermann B, Dzurendova S, Slany O, Tafintseva V, Liland KH, Tøndel K, Shapaval V, Kohler A. Calibration for quantitative chemical analysis in IR microscopic imaging. Anal Chem. 2025. PubMed PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...