Simultaneous production of fatty acids and amino polysaccharides from Norway spruce hydrolysates using oleaginous Mucor circinelloides

. 2025 Apr 23 ; 15 (1) : 14106. [epub] 20250423

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40269125

Grantová podpora
257622 Norges Forskningsråd

Odkazy

PubMed 40269125
PubMed Central PMC12019349
DOI 10.1038/s41598-025-98549-0
PII: 10.1038/s41598-025-98549-0
Knihovny.cz E-zdroje

Lignocellulose is an abundant raw material and renewable carbon source for the production of single cell oils which can replace plant-derived oils in food, feed, fuels, and oleochemicals. Mucor circinelloides produces both fatty acids and amino polysaccharides, such as chitin and chitosan. This study evaluates hydrolysates of Norway spruce (Picea abies) as a carbon source for their simultaneous production. Cultivation in spruce hydrolysate media yielded 15.8 g/L of biomass, with fatty acids comprising ~ 50% of the cell dry weight and amino polysaccharides up to 8.5%. The fatty acid methyl ester (FAME) content and fatty acid profile were comparable to glucose fermentation. Optimal harvesting times ranged from 72 to 120 h, depending on desired yields. These findings demonstrate that Norway spruce hydrolysates are a viable and sustainable substrate for microbial lipid and polysaccharide production, supporting their potential use in biotechnology and industrial applications.

Zobrazit více v PubMed

Ratledge, C. Yeasts, moulds, algae and bacteria as sources of lipids. In Technological Advances in Improved and Alternative Sources of Lipids. 235–291. (Springer, 1994).

Meyer, V. et al. Growing a circular economy with fungal biotechnology: a white paper. Fungal Biology Biotechnol.7 (1), 1–23 (2020). PubMed PMC

Dzurendova, S. et al. Mucoromycota fungi as powerful cell factories for modern biorefinery. Appl. Microbiol. Biotechnol.106, 1–15 (2022). PubMed

Kosa, G. et al. High-throughput screening of mucoromycota fungi for production of low-and high-value lipids. Biotechnol. Biofuels. 11 (1), 1–17 (2018). PubMed PMC

Zininga, J. T. et al. Concomitant production of Chitosan and lipids from a newly isolated Mucor circinelloides ZSKP for biodiesel production. Bioresour. Technol.272, 545–551 (2019). PubMed

Satari, B., Karimi, K. & Zamani, A. Oil, Chitosan, and ethanol production by dimorphic fungus Mucor indicus from different lignocelluloses. J. Chem. Technol. Biotechnol.91 (6), 1835–1843 (2016).

Morin-Crini, N., Lichtfouse, E., Torri, G. & Crini, G. Applications of Chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry. Environ. Chem. Lett.17 (4), 1667–1692 (2019).

Crognale, S., Russo, C., Petruccioli, M. & D’annibale, A. Chitosan production by fungi: current state of knowledge, future opportunities and constraints. Fermentation8 (2), 76 (2022).

Subramaniam, R., Dufreche, S., Zappi, M. & Bajpai, R. Microbial lipids from renewable resources: production and characterization. J. Ind. Microbiol. Biotechnol.37 (12), 1271–1287 (2010). PubMed

Dzurendová, S. et al. Assessment of biotechnologically important filamentous fungal biomass by fourier transform Raman spectroscopy. Int. J. Mol. Sci.22 (13), 6710 (2021). PubMed PMC

Dzurendova, S. et al. Metal and phosphate ions show remarkable influence on the biomass production and lipid accumulation in oleaginous Mucor circinelloides. J. Fungi. 6 (4), 260 (2020). PubMed PMC

Dzurendova, S. et al. The influence of phosphorus source and the nature of nitrogen substrate on the biomass production and lipid accumulation in oleaginous mucoromycota fungi. Appl. Microbiol. Biotechnol.104, 8065–8076 (2020). PubMed PMC

Szymański, S. Silviculture of Norway spruce. In Biology and Ecology of Norway Spruce. 295–307 (Springer, 2007).

Østby, H. et al. Enzymatic processing of lignocellulosic biomass: principles, recent advances and perspectives. J. Industrial Microbiol. Biotechnology: Official J. Soc. Industrial Microbiol. Biotechnol.47 (9–10), 623–657 (2020). PubMed PMC

Öhgren, K. et al. A comparison between simultaneous saccharification and fermentation and separate hydrolysis and fermentation using steam-pretreated corn Stover. Process Biochem.42 (5), 834–839 (2007).

Takagi, M. A Method for Production of Alcohol Directly from Cellulose Using Cellulase and Yeast (Chemicals and Microbial Protein, 1977).

Palmqvist, E., Galbe, M. & Hahn-Hägerdal, B. Evaluation of cell recycling in continuous fermentation of enzymatic hydrolysates of Spruce with Saccharomyces cerevisiae and on-line monitoring of glucose and ethanol. Appl. Microbiol. Biotechnol.50 (5), 545–551 (1998). PubMed

Alkasrawi, M., Rudolf, A., Lidén, G. & Zacchi, G. Influence of strain and cultivation procedure on the performance of simultaneous saccharification and fermentation of steam pretreated Spruce. Enzym. Microb. Technol.38 (1–2), 279–286 (2006).

Soudham, V. P. et al. Coupled enzymatic hydrolysis and ethanol fermentation: ionic liquid pretreatment for enhanced yields. Biotechnol. Biofuels. 8 (1), 1–13 (2015). PubMed PMC

Soudham, V. P., Brandberg, T., Mikkola, J. P. & Larsson, C. Detoxification of acid pretreated Spruce hydrolysates with ferrous sulfate and hydrogen peroxide improves enzymatic hydrolysis and fermentation. Bioresour. Technol.166, 559–565 (2014). PubMed

Cavka, A. et al. Ozone detoxification of steam-pretreated Norway Spruce. Biotechnol. Biofuels. 8 (1), 1–10 (2015). PubMed PMC

Rudolf, A., Alkasrawi, M., Zacchi, G. & Lidén, G. A comparison between batch and fed-batch simultaneous saccharification and fermentation of steam pretreated Spruce. Enzym. Microb. Technol.37 (2), 195–204 (2005).

Lapeña, D. et al. Spruce sugars and poultry hydrolysate as growth medium in repeated fed-batch fermentation processes for production of yeast biomass. Bioprocess Biosyst. Eng.43 (4), 723–736 (2020). PubMed PMC

Sharma, S. et al. Microbial protein produced from brown seaweed and Spruce wood as a feed ingredient. J. Agric. Food Chem.66 (31), 8328–8335 (2018). PubMed

Karageorgou, D. et al. Heterotrophic cultivation of the Cyanobacterium Pseudanabaena Sp. on forest biomass hydrolysates toward sustainable biodiesel production. Microorganisms10 (9), 1756 (2022). PubMed PMC

Olsen, P. M. et al. Production of docosahexaenoic acid from Spruce sugars using aurantiochytrium limacinum. Bioresour. Technol.376, 128827 (2023). PubMed

Patel, A. et al. Co-production of DHA and squalene by thraustochytrid from forest biomass. Sci. Rep.10 (1), 1–12 (2020). PubMed PMC

Baur, S. T. et al. Increased butyrate production in Clostridium saccharoperbutylacetonicum from Lignocellulose-Derived sugars. Appl. Environ. Microbiol.88 (7), e02419–e02421 (2022). PubMed PMC

Hazeena, S. H. et al. Bioprocess development of 2, 3-butanediol production using agro-industrial residues. Bioprocess Biosyst. Eng.45 (9), 1527–1537 (2022). PubMed PMC

Guo, X., Cavka, A., Jönsson, L. J. & Hong, F. Comparison of methods for detoxification of Spruce hydrolysate for bacterial cellulose production. Microb. Cell. Fact.12 (1), 1–14 (2013). PubMed PMC

Koller, M. et al. Liquefied wood as inexpensive precursor-feedstock for bio-mediated incorporation of (R)-3-hydroxyvalerate into polyhydroxyalkanoates. Materials8 (9), 6543–6557 (2015). PubMed PMC

Lennartsson, P. R., Niklasson, C. & Taherzadeh, M. J. A pilot study on lignocelluloses to ethanol and fish feed using NMMO pretreatment and cultivation with zygomycetes in an air-lift reactor. Bioresour. Technol.102 (6), 4425–4432 (2011). PubMed

Karimi, K., Edebo, L. & Taherzadeh, M. J. Mucor indicus as a biofilter and fermenting organism in continuous ethanol production from lignocellulosic hydrolyzate. Biochem. Eng. J.39 (2), 383–388 (2008).

Jilani, S. B. & Olson, D. G. Mechanism of furfural toxicity and metabolic strategies to engineer tolerance in microbial strains. Microb. Cell. Fact.22, 221. 10.1186/s12934-023-02223-x (2023). PubMed PMC

Lennartsson, P. K., Karimi, K., Edebo, L. & Taherzadeh, M. J. Effects of different growth forms of Mucor indicus on cultivation on dilute-acid lignocellulosic hydrolyzate, inhibitor tolerance, and cell wall composition. J. Biotechnol.143 (4), 255–261 (2009). PubMed

Palma, M., Guerreiro, J. F., Sá-Correia, M. & I. Adaptive response and tolerance to acetic acid in Saccharomyces cerevisiae and Zygosaccharomyces bailii: A physiological genomics perspective. Front. Microbiol.9. 10.3389/fmicb.2018.00274 (2018). PubMed PMC

Taherzadeh, M. J., Niklasson, C. & Liden, G. On-line control of fed-batch fermentation of dilute-acid hydrolyzates. Biotechnol. Bioeng. https://doi.org/10.1002/1097-0290(20000805)69:3<330::AID-BIT11>3.0.CO;2-Q (2000). PubMed

Guo, X., Cavka, A., Jonsson, L. J. & Hong, F. Comparison of methods for detoxification of Spruce hydrolysate for bacterial cellulose production. Microb. Cell. Fact.54, 224–230 (2000). PubMed PMC

Lübbehüsen, T. L., Nielsen, J. & Mcintyre, M. Aerobic and anaerobic ethanol production by Mucor circinelloides during submerged growth. Appl. Microbiol. Biotechnol.63, 543–548 (2004). PubMed

Shah, A. M. et al. Investigating the effect of alcohol dehydrogenase gene knockout on lipid accumulation in Mucor circinelloides WJ11. J. Fungi (Basel). 8 (9), 917 (2022). PubMed PMC

Abedinifar, S. et al. Ethanol production by Mucor indicus and rhizopus oryzae from rice straw by separate hydrolysis and fermentation. Biomass Bioenerg.33 (5), 828–833 (2009).

McIntyre, M., Breum, J., Arnau, J. & Nielsen, J. Growth physiology and dimorphism of Mucor circinelloides (syn. racemosus) during submerged batch cultivation. Appl. Microbiol. Biotechnol.58 (4), 495–502. 10.1007/s00253-001-0916-1 (2002). Epub 2002 Jan 30. PMID: 11954797. PubMed

Greetham, D. Presence of low concentrations of acetic acid improves fermentations using Saccharomyces cerevisiae. J. Bioprocess. Biotech.5, 192. 10.4172/2155-9821.1000192 (2014).

Adnan, M. et al. Carbon catabolite repression in filamentous Fungi. Int. J. Mol. Sci.19, 48. 10.3390/ijms19010048 (2018). PubMed PMC

Komeda, H., Yamasaki-Yashiki, S., Hoshino, K. & Asano, Y. Identification and characterization of D-xylulokinase from the D-xylose-fermenting fungus, Mucor circinelloides. FEMS Microbiol. Lett.360(1), 51–61 (2014). 10.1111/1574-6968.12589 (Epub 2014 Sep 11). PubMed

Shapaval, V. et al. Multiscale spectroscopic analysis of lipids in dimorphic and oleaginous Mucor circinelloides accommodate sustainable targeted lipid production. Fungal Biol. Biotechnol.10(1), 1–20 (2023). PubMed PMC

Langseter, A. M. et al. Evaluation and optimisation of direct transesterification methods for the assessment of lipid accumulation in oleaginous filamentous fungi. Microb. Cell. Fact.20 (1), 1–15 (2021). PubMed PMC

Pawłowska, J. et al. Carbon assimilation profiles of Mucoralean fungi show their metabolic versatility. Sci. Rep.9 (1), 11864 (2019). PubMed PMC

Slaný, O. et al. Animal fat as a substrate for production of n-6 fatty acids by fungal solid-state fermentation. Microorganisms9 (1), 170 (2021). PubMed PMC

Urs, M. J., Moerschbacher, B. M. & Cord-Landwehr, S. Quantitative enzymatic-mass spectrometric analysis of the chitinous polymers in fungal cell walls. Carbohydr. Polym.301, 120304 (2023). PubMed

Huq, T. et al. Sources, production and commercial applications of fungal Chitosan: A review. J. Bioresources Bioprod.7 (2), 85–98 (2022).

Sreekumar, S. et al. Biotechnologically produced chitosans with nonrandom acetylation patterns differ from conventional chitosans in properties and activities. Nat. Commun.13 (1), 7125 (2022). PubMed PMC

Shapaval, V. et al. Characterization of food spoilage fungi by FTIR spectroscopy. J. Appl. Microbiol.114 (3), 788–796 (2013). PubMed

Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem.72 (1–2), 248–254 (1976). PubMed

Adney, B. & Baker, J. Measurement of Cellulase Activities. NREL/TP-510-42628 (National Renewable Energy Laboratory, 1996).

Sjoede, A., Froelander, A., Lersch, M. & Roedsrud, G. Lignocellulosic Biomass Conversion (B.I. Ltd., Editor, 2009).

Costa, T. H. et al. Demonstration-scale enzymatic saccharification of sulfite‐pulped Spruce with addition of hydrogen peroxide for LPMO activation. Biofuels, Bioprod. Biorefin.14 (4), 734–745 (2020).

Rødsrud, G. Borregaard - The Worlds Most Advanced Biorefinery in Operation – A Peek into Our Secrtes (2020).

Kavadia, A. et al. Lipid and γ-linolenic acid accumulation in strains of zygomycetes growing on glucose. J. Am. Oil Chem. Soc.78 (4), 341–346 (2001).

Kosa, G. et al. Microtiter plate cultivation of oleaginous fungi and monitoring of lipogenesis by high-throughput FTIR spectroscopy. Microb. Cell. Fact.16 (1), 1–12 (2017). PubMed PMC

Druhmann, D. et al. Utilizing Roche Cedex Bio analyzer for in process monitoring in biotech production. in BMC Proceedings. (Springer, 2011). PubMed PMC

Zamani, A. et al. Determination of glucosamine and N-acetyl glucosamine in fungal cell walls. J. Agric. Food Chem.56 (18), 8314–8318 (2008). PubMed

Aidoo, K. E., Hendry, R. & Wood, B. Estimation of fungal growth in a solid state fermentation system. Eur. J. Appl. Microbiol. Biotechnol.12 (1), 6–9 (1981).

Slaný, O. et al. Biotransformation of animal fat-by products into ARA-enriched fermented bioproducts by solid-state fermentation of Mortierella alpina. J. Fungi. 6 (4), 236 (2020). PubMed PMC

Lewis, T., Nichols, P. D. & McMeekin, T. A. Evaluation of extraction methods for recovery of fatty acids from lipid-producing microheterotrophs. J. Microbiol. Methods. 43 (2), 107–116 (2000). PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...