Peptide Analysis by Soft X-ray Atmospheric Pressure Photoionization Mass Spectrometry
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40387875
PubMed Central
PMC12142675
DOI
10.1021/jasms.5c00037
Knihovny.cz E-zdroje
- MeSH
- atmosférický tlak MeSH
- fotony MeSH
- hmotnostní spektrometrie s elektrosprejovou ionizací * metody MeSH
- peptidy * analýza chemie MeSH
- posttranslační úpravy proteinů MeSH
- proteomika metody MeSH
- rentgenové záření MeSH
- tandemová hmotnostní spektrometrie * metody MeSH
- ultrafialové záření MeSH
- vysokoúčinná kapalinová chromatografie metody MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- peptidy * MeSH
Bottom-up proteomics typically involves enzymatic digestion of proteins, generating a complex peptide mixture. These peptides are separated using reversed-phase ultrahigh-performance liquid chromatography (UHPLC) and analyzed using electrospray ionization (ESI) tandem mass spectrometry (MS/MS) in positive ion mode. Despite its widespread use, this approach has limitations, particularly in ionizing highly acidic or hydrophobic peptides and detecting certain post-translational modifications (PTMs). To overcome these challenges, alternative ionization methods, such as vacuum ultraviolet (VUV) atmospheric pressure photoionization (APPI), have been explored. In this study, we propose peptide analysis using a novel prototype APPI source employing soft X-ray photons. Soft X-ray photons possess orders of magnitude higher energy than VUV photons, enabling additional ionization pathways. Here, we present peptide ionization data using soft X-ray and VUV APPI in both positive and negative ion modes. Notably, soft X-ray photons exhibited a remarkable capacity to generate deprotonated peptides and hydrogen-deficient peptide radical anions ([M - 2H]•-), outperforming conventional VUV photons. Furthermore, collision-induced dissociation (CID) of [M - 2H]•- provided unique structural insight, facilitating PTM characterization. Our findings emphasize the significant potential of soft X-ray APPI in advancing peptide analysis and highlight the utility of negative ion mode for proteomic applications.
Zobrazit více v PubMed
Fischer F., Poetsch A.. Protein cleavage strategies for an improved analysis of the membrane proteome. Proteome Sci. 2006;4:2. doi: 10.1186/1477-5956-4-2. PubMed DOI PMC
Siepen J. A., Keevil E. J., Knight D., Hubbard S. J.. Prediction of missed cleavage sites in tryptic peptides aids protein identification in proteomics. J. Proteome Res. 2007;6(1):399–408. doi: 10.1021/pr060507u. PubMed DOI PMC
Benevento M., Di Palma S., Snijder J., Moyer C. L., Reddy V. S., Nemerow G. R., Heck A. J. R.. Adenovirus composition, proteolysis, and disassembly studied by in-depth qualitative and quantitative proteomics. J. Biol. Chem. 2014;289(16):11421–11430. doi: 10.1074/jbc.M113.537498. PubMed DOI PMC
Guo X., Trudgian D. C., Lemoff A., Yadavalli S., Mirzaei H.. Confetti: A multiprotease map of the HeLa proteome for comprehensive proteomics. Mol. Cell Proteomics. 2014;13(6):1573–1584. doi: 10.1074/mcp.M113.035170. PubMed DOI PMC
Aye T. T., Scholten A., Taouatas N., Varro A., Van Veen T. A., Vos M. A., Heck A. J.. Proteome-wide protein concentrations in the human heart. Mol. Biosyst. 2010;6(10):1917–1927. doi: 10.1039/c004495d. PubMed DOI
Biringer R. G., Amato H., Harrington M. G., Fonteh A. N., Riggins J. N., Huhmer A. F.. Enhanced sequence coverage of proteins in human cerebrospinal fluid using multiple enzymatic digestion and linear ion trap LC-MS/MS. Brief Funct Genomic Proteomic. 2006;5(2):144–153. doi: 10.1093/bfgp/ell026. PubMed DOI
Bigwarfe P. M., Wood T. D.. Effect of ionization mode in the analysis of proteolytic protein digests. Int. J. Mass Spectrom. 2004;234(1–3):185–202. doi: 10.1016/j.ijms.2004.02.015. DOI
Penanes P. A., Gorshkov V., Ivanov M. V., Gorshkov M. V., Kjeldsen F.. Potential of negative-ion-mode proteomics: sn mS1-only approach. J. Proteome Res. 2023;22(8):2734–2742. doi: 10.1021/acs.jproteome.3c00307. PubMed DOI PMC
Robinson M. R., Taliaferro J. M., Dalby K. N., Brodbelt J. S.. 193 nm ultraviolet photodissociation mass spectrometry for phosphopeptide characterization in the positive and negative ion modes. J. Proteome Res. 2016;15(8):2739–2748. doi: 10.1021/acs.jproteome.6b00289. PubMed DOI PMC
Hersberger K. E., Hakansson K.. Characterization of O-sulfopeptides by negative ion mode tandem mass spectrometry: superior performance of negative ion electron capture dissociation. Anal. Chem. 2012;84(15):6370–6377. doi: 10.1021/ac301536r. PubMed DOI
Nwosu C. C., Strum J. S., An H. J., Lebrilla C. B.. Enhanced detection and identification of glycopeptides in negative ion mode mass spectrometry. Anal. Chem. 2010;82(23):9654–9662. doi: 10.1021/ac101856r. PubMed DOI PMC
Ewing N. P., Cassady C. J.. Dissociation of multiply charged negative ions for hirudin (54–65), fibrinopeptide B, and insulin A (oxidized) J. Am. Soc. Mass Spectrom. 2001;12(1):105–116. doi: 10.1016/S1044-0305(00)00195-1. PubMed DOI
Bilusich D., Bowie J. H.. Fragmentations of (M-H)- anions of underivatised peptides. Part 2: Characteristic cleavages of Ser and Cys and of disulfides and other post-translational modifications, together with some unusual internal processes. Mass Spectrom Rev. 2009;28(1):20–34. doi: 10.1002/mas.20206. PubMed DOI
Bowie J. H., Brinkworth C. S., Dua S.. Collision-induced fragmentations of the (M-H)- parent anions of underivatized peptides: an aid to structure determination and some unusual negative ion cleavages. Mass Spectrom Rev. 2002;21(2):87–107. doi: 10.1002/mas.10022. PubMed DOI
Waugh R. J., Eckersley M., Bowie J. H., Hayes R. N.. Collision-induced dissociations of deprotonated peptides - dipeptides containing serine or threonine. International Journal of Mass Spectrometry and Ion Processes. 1990;98(2):135–145. doi: 10.1016/0168-1176(90)85013-R. DOI
Waugh R. J., Bowie J. H., Hayes R. N.. Collision-induced dissociations of deprotonated peptides - dipeptides containing aspartic or glutamic acids. Org. Mass Spectrom. 1991;26(4):250–256. doi: 10.1002/oms.1210260413. DOI
Waugh R. J., Bowie J. H., Hayes R. N.. Collision-induced dissociations of deprotonated peptides - dipeptides containing phenylalanine, tyrosine, histidine and tryptophan. International Journal of Mass Spectrometry and Ion Processes. 1991;107(2):333–347. doi: 10.1016/0168-1176(91)80068-X. DOI
Waugh R. J., Bowie J. H., Gross M. L.. Collision-induced dissociations of deprotonated peptides - dipeptides containing Asn, Arg and Lys. Aust. J. Chem. 1993;46(5):693–702. doi: 10.1071/CH9930693. DOI
Waugh R. J., Bowie J. H., Gross M. L.. Collision-induced dissociations of deprotonated peptides - dipeptides containing methionine or cysteine. Rapid Commun. Mass Sp. 1993;7(7):623–625. doi: 10.1002/rcm.1290070714. DOI
Steinborner S. T., Bowie J. H.. The negative ion mass spectra of [M-H](−) ions derived from caeridin and dynastin peptides. Internal backbone cleavages directed through Asp and Asn residues. Rapid Commun. Mass Sp. 1997;11(3):253–258. doi: 10.1002/(SICI)1097-0231(19970215)11:3<253::AID-RCM825>3.0.CO;2-K. DOI
Waugh R. J., Bowie J. H.. A review of the collision-induced dissociations of deprotonated dipeptides and tripeptides - an aid to structure determination. Rapid Commun. Mass Sp. 1994;8(2):169–173. doi: 10.1002/rcm.1290080209. DOI
Pu D., Cassady C. J.. Negative ion dissociation of peptides containing hydroxyl side chains. Rapid Commun. Mass Spectrom. 2008;22(2):91–100. doi: 10.1002/rcm.3337. PubMed DOI
Zuo M. Q., Sun R. X., Fang R. Q., He S. M., Dong M. Q.. Characterization of collision-induced dissociation of deprotonated peptides of 4–16 amino acids using high-resolution mass spectrometry. Int. J. Mass Spectrom. 2019;445:116186. doi: 10.1016/j.ijms.2019.116186. DOI
Halim M. A., Girod M., MacAleese L., Lemoine J., Antoine R., Dugourd P.. 213 nm ultraviolet photodissociation on peptide anions: radical-directed fragmentation patterns. J. Am. Soc. Mass Spectrom. 2016;27(3):474–486. doi: 10.1007/s13361-015-1297-5. PubMed DOI
Borotto N. B., Ileka K. M., Tom C., Martin B. R., Hakansson K.. Free radical initiated peptide sequencing for direct site localization of sulfation and phosphorylation with negative Ion mode mass spectrometry. Anal. Chem. 2018;90(16):9682–9686. doi: 10.1021/acs.analchem.8b02707. PubMed DOI PMC
Kjeldsen F., Silivra O. A., Ivonin I. A., Haselmann K. F., Gorshkov M., Zubarev R. A.. C alpha-C backbone fragmentation dominates in electron detachment dissociation of gas-phase polypeptide polyanions. Chemistry. 2005;11(6):1803–1812. doi: 10.1002/chem.200400806. PubMed DOI
Lam C. N., Chu I. K.. Formation of anionic peptide radicals in vacuo. J. Am. Soc. Mass Spectrom. 2006;17(9):1249–1257. doi: 10.1016/j.jasms.2006.05.008. PubMed DOI
Yoo H. J., Wang N., Zhuang S., Song H., Hakansson K.. Negative-ion electron capture dissociation: radical-driven fragmentation of charge-increased gaseous peptide anions. J. Am. Chem. Soc. 2011;133(42):16790–16793. doi: 10.1021/ja207736y. PubMed DOI
Bilusich D., Bowie J. H.. Determination of disulfide functionality in underivatised peptides using negative ion mass spectrometry: An aid to structure determination. Curr. Anal Chem. 2006;2(4):341–352. doi: 10.2174/157341106778520490. DOI
Xu N. X., Lin Y. H., Hofstadler S. A., Matson D., Call C. J., Smith R. D.. A microfabricated dialysis device for sample cleanup in electrospray ionization mass spectrometry. Anal. Chem. 1998;70(17):3553–3556. doi: 10.1021/ac980233x. PubMed DOI
Bagag A., Jault J. M., Sidahmed-Adrar N., Refregiers M., Giuliani A., Le Naour F.. Characterization of hydrophobic peptides in the presence of detergent by photoionization mass spectrometry. PLoS One. 2013;8(11):e79033. doi: 10.1371/journal.pone.0079033. PubMed DOI PMC
Sedlácková S., Hubálek M., Vrkoslav V., Blechová M., Kozlík P., Cvacka J.. Positive effect of acetylation on proteomic analysis based on liquid chromatography with atmospheric pressure chemical ionization and photoionization mass spectrometry. Molecules. 2023;28(9):3711. doi: 10.3390/molecules28093711. PubMed DOI PMC
Sedlácková S., Hubálek M., Vrkoslav V., Blechová M., Cvacka J.. Utility of atmospheric-pressure chemical ionization and photoionization mass spectrometry in bottom-up proteomics. Separations. 2022;9(2):42. doi: 10.3390/separations9020042. PubMed DOI PMC
Zhou W., Yang S., Wang P. G.. Matrix effects and application of matrix effect factor. Bioanalysis. 2017;9(23):1839–1844. doi: 10.4155/bio-2017-0214. PubMed DOI
Bagag A., Giuliani A., Laprévote O.. Atmospheric pressure photoionization of peptides. Int. J. Mass Spectrom. 2011;299(1):1–4. doi: 10.1016/j.ijms.2010.08.010. PubMed DOI
Kloudova B., Strmen T., Vrkoslav V., Chara Z., Paces O., Cvacka J.. Gas dynamic virtual nozzle sprayer for an introduction of liquid samples in atmospheric pressure ionization mass spectrometry. Anal. Chem. 2023;95(8):4196–4203. doi: 10.1021/acs.analchem.2c05349. PubMed DOI PMC
Tan S., Yin X., Feng L., Wang J., Xue Z., Jiang Y., Dai X., Gong X., Fang X.. Nanoliter atmospheric pressure photoionization-mass spectrometry for direct bioanalysis of polycyclic aromatic hydrocarbons. Analyst. 2023;148(16):3730–3739. doi: 10.1039/D3AN00442B. PubMed DOI
Allegrand J., Touboul D., Giuliani A., Brunelle A., Laprévote O.. Atmospheric pressure photoionization mass spectrometry of guanine using tunable synchrotron VUV radiation. Int. J. Mass Spectrom. 2012;321–322:14–18. doi: 10.1016/j.ijms.2012.05.009. DOI
Zubarev R. A., Kruger N. A., Fridriksson E. K., Lewis M. A., Horn D. M., Carpenter B. K., McLafferty F. W.. Electron capture dissociation of gaseous multiply-charged proteins is favored at disulfide bonds and other sites of high hydrogen atom affinity. J. Am. Chem. Soc. 1999;121(12):2857–2862. doi: 10.1021/ja981948k. DOI
Sawicka A., Skurski P., Hudgins R. R., Simons J.. Model calculations relevant to disulfide bond cleavage via electron capture influenced by positively charged groups. J. Phys. Chem. B. 2003;107(48):13505–13511. doi: 10.1021/jp035675d. DOI
Syrstad E. A., Turecček F.. Toward a general mechanism of electron capture dissociation. J. Am. Soc. Mass Spectrom. 2005;16(2):208–224. doi: 10.1016/j.jasms.2004.11.001. PubMed DOI
Madsen J. A., Cheng R. R., Kaoud T. S., Dalby K. N., Makarov D. E., Brodbelt J. S.. Charge-site-dependent dissociation of hydrogen-rich radical peptide cations upon vacuum UV photoexcitation. Chemistry. 2012;18(17):5374–5383. doi: 10.1002/chem.201103534. PubMed DOI PMC
Fort K. L., Dyachenko A., Potel C. M., Corradini E., Marino F., Barendregt A., Makarov A. A., Scheltema R. A., Heck A. J.. Implementation of ultraviolet photodissociation on a benchtop q exactive mass spectrometer and its application to phosphoproteomics. Anal. Chem. 2016;88(4):2303–2310. doi: 10.1021/acs.analchem.5b04162. PubMed DOI
Brodbelt J. S., Morrison L. J., Santos I.. Ultraviolet photodissociation mass spectrometry for analysis of biological molecules. Chem. Rev. 2020;120(7):3328–3380. doi: 10.1021/acs.chemrev.9b00440. PubMed DOI PMC
Yin H., Chacon A., Porter N. A., Masterson D. S.. Free radical-induced site-specific peptide cleavage in the gas phase: low-energy collision-induced dissociation in ESI- and MALDI mass spectrometry. J. Am. Soc. Mass Spectrom. 2007;18(5):807–816. doi: 10.1016/j.jasms.2007.01.004. PubMed DOI
Moore B., Sun Q., Hsu J. C., Lee A. H., Yoo G. C., Ly T., Julian R. R.. Dissociation chemistry of hydrogen-deficient radical peptide anions. J. Am. Soc. Mass Spectrom. 2012;23(3):460–468. doi: 10.1007/s13361-011-0318-2. PubMed DOI
Hieta J. P., Vesander R., Sipila M., Sarnela N., Kostiainen R.. Soft X-ray atmospheric pressure photoionization in liquid chromatography-mass spectrometry. Anal. Chem. 2021;93(27):9309–9313. doi: 10.1021/acs.analchem.1c01127. PubMed DOI PMC
Chu I. K., Siu C. K., Lau J. K. C., Tang W. K., Mu X. Y., Lai C. K., Guo X. H., Wang X., Li N., Xia Y.. et al. Proposed nomenclature for peptide ion fragmentation. Int. J. Mass Spectrom. 2015;390:24–27. doi: 10.1016/j.ijms.2015.07.021. DOI
Biemann K., Martin S. A.. Mass-spectrometric determination of the amino-acid-sequence of peptides and proteins. Mass Spectrom. Rev. 1987;6:1–76. doi: 10.1002/mas.1280060102. DOI
Robb D. B., Blades M. W.. State-of-the-art in atmospheric pressure photoionization for LC/MS. Anal. Chim. Acta. 2008;627(1):34–49. doi: 10.1016/j.aca.2008.05.077. PubMed DOI
Papayannopoulos I. A.. The interpretation of collision-induced dissociation tandem mass-spectra of peptides. Mass Spectrom. Rev. 1995;14(1):49–73. doi: 10.1002/mas.1280140104. DOI
Biemann K.. Contributions of mass spectrometry to peptide and protein structure. Biomed Environ. Mass Spectrom. 1988;16(1–12):99–111. doi: 10.1002/bms.1200160119. PubMed DOI
Laskin J., Yang Z. B., Lam C., Chu I. K.. Energy and entropy effects in dissociation of peptide radical anions. Int. J. Mass Spectrom. 2012;316–318:251–258. doi: 10.1016/j.ijms.2012.01.006. DOI
Delobel A., Halgand F., Laffranchise-Gosse B., Snijders H., Laprevote O.. Characterization of hydrophobic peptides by atmospheric pressure photoionization-mass spectrometry and tandem mass spectrometry. Anal. Chem. 2003;75(21):5961–5968. doi: 10.1021/ac034532k. PubMed DOI
Méjean M., Giuliani A., Brunelle A., Touboul D.. Exploring the peptide fragmentation mechanisms under atmospheric pressure photoionization using tunable VUV synchrotron radiation. Int. J. Mass Spectrom. 2015;379:80–86. doi: 10.1016/j.ijms.2014.12.011. DOI
Debois D., Giuliani A., Laprévote O.. Fragmentation induced in atmospheric pressure photoionization of peptides. J. Mass Spectrom. 2006;41(12):1554–1560. doi: 10.1002/jms.1122. PubMed DOI
Budnik B. A., Zubarev R. A.. MH2+* ion production from protonated polypeptides by electron impact:: observation and determination of ionization energies and a cross-section. Chem. Phys. Lett. 2000;316(1–2):19–23. doi: 10.1016/S0009-2614(99)01256-7. DOI
Takayama M.. MALDI in-source decay of protein: the mechanism of c-ion formation. Mass Spectrom (Tokyo) 2016;5(1):A0044. doi: 10.5702/massspectrometry.A0044. PubMed DOI PMC
Vrkoslav V., Muck A., Brown J. M., Hubalek M., Cvacka J.. The matrix-assisted laser desorption/ionisation in-source decay of peptides using ion mobility enabled quadrupole-time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2018;32(24):2099–2105. doi: 10.1002/rcm.8284. PubMed DOI
Kauppila T. J., Kotiaho T., Kostiainen R., Bruins A. P.. Negative ion-atmospheric pressure photoionization-mass spectrometry. J. Am. Soc. Mass Spectrom. 2004;15(2):203–211. doi: 10.1016/j.jasms.2003.10.012. PubMed DOI
Dzidic I., Carroll D. I., Stillwell R. N., Horning E. C.. Gas-phase reactions - ionization by proton-transfer to superoxide anions. J. Am. Chem. Soc. 1974;96(16):5258–5259. doi: 10.1021/ja00823a045. DOI
Muftakhov M. V., Shchukin P. V.. Dissociative electron attachment to glycyl-glycine, glycyl-alanine and alanyl-alanine. Phys. Chem. Chem. Phys. 2011;13(10):4600–4606. doi: 10.1039/c0cp00940g. PubMed DOI
Geddes S., Zahardis J., Eisenhauer J., Petrucci G. A.. Low energy photoelectron resonance capture ionization aerosol mass spectrometry of small peptides with cysteine residues: Cys-Gly, γ-Glu-Cys, and glutathione (γ-Glu-Cys-Gly) Int. J. Mass Spectrom. 2009;282(1–2):13–20. doi: 10.1016/j.ijms.2009.01.020. DOI
Vasil’ev Y. V., Figard B. J., Morre J., Deinzer M. L.. Fragmentation of peptide negative molecular ions induced by resonance electron capture. J. Chem. Phys. 2009;131(4):044317. doi: 10.1063/1.3186747. PubMed DOI PMC
Gschliesser D., Vizcaino V., Probst M., Scheier P., Denifl S.. Formation and decay of the dehydrogenated parent anion upon electron attachment to dialanine. Chemistry. 2012;18(15):4613–4619. doi: 10.1002/chem.201102433. PubMed DOI PMC
Sekimoto K., Sakakura M., Kawamukai T., Hike H., Shiota T., Usui F., Bando Y., Takayama M.. Ionization characteristics of amino acids in direct analysis in real time mass spectrometry. Analyst. 2014;139(10):2589–2599. doi: 10.1039/C3AN02193A. PubMed DOI
LeLacheur R. M., Glaze W. H.. Reactions of ozone and hydroxyl radicals with serine. Environ. Sci. Technol. 1996;30(4):1072–1080. doi: 10.1021/es940544z. DOI
Vasil’ev Y. V., Figard B. J., Voinov V. G., Barofsky D. F., Deinzer M. L.. Resonant electron capture by some amino acids and their methyl esters. J. Am. Chem. Soc. 2006;128(16):5506–5515. doi: 10.1021/ja058464q. PubMed DOI
Denifl S., Flosadóttir H. D., Edtbauer A., Ingólfsson O., Märk T. D., Scheier P.. A detailed study on the decomposition pathways of the amino acid valine upon dissociative electron attachment. Eur. Phys. J. D. 2010;60(1):37–44. doi: 10.1140/epjd/e2010-00060-5. DOI
Takahashi H., Sekiya S., Nishikaze T., Kodera K., Iwamoto S., Wada M., Tanaka K.. Hydrogen attachment/abstraction dissociation (HAD) of gas-phase peptide ions for tandem mass spectrometry. Anal. Chem. 2016;88(7):3810–3816. doi: 10.1021/acs.analchem.5b04888. PubMed DOI
Asakawa D., Takahashi H., Sekiya S., Iwamoto S., Tanaka K.. Sequencing of sulfopeptides using negative-ion tandem mass spectrometry with hydrogen attachment/abstraction dissociation. Anal. Chem. 2019;91(16):10549–10556. doi: 10.1021/acs.analchem.9b01568. PubMed DOI
Goshe M. B., Chen Y. H., Anderson V. E.. Identification of the sites of hydroxyl radical reaction with peptides by hydrogen/deuterium exchange: prevalence of reactions with the side chains. Biochemistry. 2000;39(7):1761–1770. doi: 10.1021/bi991569j. PubMed DOI
Shaw J. B., Madsen J. A., Xu H., Brodbelt J. S.. Systematic comparison of ultraviolet photodissociation and electron transfer dissociation for peptide anion characterization. J. Am. Soc. Mass Spectrom. 2012;23(10):1707–1715. doi: 10.1007/s13361-012-0424-9. PubMed DOI PMC
Zubarev R. A., Nielsen M. L., Budnik B. A.. Tandem ionization mass spectrometry of biomolecules. Eur. J. Mass Spectrom. 2000;6(3):235–240. doi: 10.1255/ejms.351. DOI
Brunet C., Antoine R., Allouche A. R., Dugourd P., Canon F., Giuliani A., Nahon L.. Gas phase photo-formation and vacuum UV photofragmentation spectroscopy of tryptophan and tyrosine radical-containing peptides. J. Phys. Chem. A. 2011;115(32):8933–8939. doi: 10.1021/jp205617x. PubMed DOI
Brunet C., Antoine R., Dugourd P., Canon F., Giuliani A., Nahon L.. Formation and fragmentation of radical peptide anions: insights from vacuum ultra violet spectroscopy. J. Am. Soc. Mass Spectrom. 2012;23(2):274–281. doi: 10.1007/s13361-011-0285-7. PubMed DOI
Joly L., Antoine R., Broyer M., Lemoine J., Dugourd P.. Electron photodetachment from gas phase peptide dianions. Relation with optical absorption properties. J. Phys. Chem. A. 2008;112(5):898–903. doi: 10.1021/jp0752365. PubMed DOI
Antoine R., Joly L., Tabarin T., Broyer M., Dugourd P., Lemoine J.. Photo-induced formation of radical anion peptides. Electron photodetachment dissociation experiments. Rapid Commun. Mass Spectrom. 2007;21(2):265–268. doi: 10.1002/rcm.2810. PubMed DOI
Matheis K., Joly L., Antoine R., Lepine F., Bordas C., Ehrler O. T., Allouche A. R., Kappes M. M., Dugourd P.. Photoelectron spectroscopy of gramicidin polyanions: competition between delayed and direct emission. J. Am. Chem. Soc. 2008;130(47):15903–15906. doi: 10.1021/ja803758w. PubMed DOI
Dixon D. A., Lipscomb W. N.. Electronic structure and bonding of the amino acids containing first row atoms. J. Biol. Chem. 1976;251(19):5992–5600. doi: 10.1016/S0021-9258(17)33049-1. PubMed DOI
Wood G. P., Moran D., Jacob R., Radom L.. Bond dissociation energies and radical stabilization energies associated with model peptide-backbone radicals. J. Phys. Chem. A. 2005;109(28):6318–6325. doi: 10.1021/jp051860a. PubMed DOI
Anusiewicz I., Jasionowski M., Skurski P., Simons J.. Backbone and side-chain cleavages in electron detachment dissociation (EDD) J. Phys. Chem. A. 2005;109(49):11332–11337. doi: 10.1021/jp055018g. PubMed DOI