Positive Effect of Acetylation on Proteomic Analysis Based on Liquid Chromatography with Atmospheric Pressure Chemical Ionization and Photoionization Mass Spectrometry

. 2023 Apr 25 ; 28 (9) : . [epub] 20230425

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37175121

Grantová podpora
20-09126S Czech Science Foundation
SVV Charles University in Prague

A typical bottom-up proteomic workflow comprises sample digestion with trypsin, separation of the hydrolysate using reversed-phase HPLC, and detection of peptides via electrospray ionization (ESI) tandem mass spectrometry. Despite the advantages and wide usage of protein identification and quantification, the procedure has limitations. Some domains or parts of the proteins may remain inadequately described due to inefficient detection of certain peptides. This study presents an alternative approach based on sample acetylation and mass spectrometry with atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI). These ionizations allowed for improved detection of acetylated peptides obtained via chymotrypsin or glutamyl peptidase I (Glu-C) digestion. APCI and APPI spectra of acetylated peptides often provided sequence information already at the full scan level, while fragmentation spectra of protonated molecules and sodium adducts were easy to interpret. As demonstrated for bovine serum albumin, acetylation improved proteomic analysis. Compared to ESI, gas-phase ionizations APCI and APPI made it possible to detect more peptides and provide better sequence coverages in most cases. Importantly, APCI and APPI detected many peptides which passed unnoticed in the ESI source. Therefore, analytical methods based on chymotrypsin or Glu-C digestion, acetylation, and APPI or APCI provide data complementary to classical bottom-up proteomics.

Zobrazit více v PubMed

Link A.J., Eng J., Schieltz D.M., Carmack E., Mize G.J., Morris D.R., Garvik B.M., Yates J.R. Direct Analysis of Protein Complexes Using Mass Spectrometry. Nat. Biotechnol. 1999;17:676–682. doi: 10.1038/10890. PubMed DOI

Gygi S.P., Rist B., Gerber S.A., Turecek F., Gelb M.H., Aebersold R. Quantitative Analysis of Complex Protein Mixtures Using Isotope-Coded Affinity Tags. Nat. Biotechnol. 1999;17:994–999. doi: 10.1038/13690. PubMed DOI

Vit O., Petrak J. Integral Membrane Proteins in Proteomics. How to Break Open the Black Box? J. Proteom. 2017;153:8–20. doi: 10.1016/j.jprot.2016.08.006. PubMed DOI

Dupree E.J., Jayathirtha M., Yorkey H., Mihasan M., Petre B.A., Darie C.C. A Critical Review of Bottom-Up Proteomics: The Good, the Bad, and the Future of This Field. Proteomes. 2020;8:14. doi: 10.3390/proteomes8030014. PubMed DOI PMC

Feist P., Hummon A.B. Proteomic Challenges: Sample Preparation Techniques for Microgram-Quantity Protein Analysis from Biological Samples. Int. J. Mol. Sci. 2015;16:3537–3563. doi: 10.3390/ijms16023537. PubMed DOI PMC

Fischer F., Poetsch A. Protein Cleavage Strategies for an Improved Analysis of the Membrane Proteome. Proteome Sci. 2006;4:2. doi: 10.1186/1477-5956-4-2. PubMed DOI PMC

Lei J., Chen D.A., Regnier F.E. Rapid Verification of Disulfide Linkages in Recombinant Human Growth Hormone by Tandem Column Tryptic Mapping. J. Chromatogr. A. 1998;808:121–131. doi: 10.1016/S0021-9673(98)00098-3. PubMed DOI

Julka S., Regnier F.E. Benzoyl Derivatization as a Method to Improve Retention of Hydrophilic Peptides in Tryptic Peptide Mapping. Anal. Chem. 2004;76:5799–5806. doi: 10.1021/ac049688e. PubMed DOI

Trufelli H., Palma P., Famiglini G., Cappiello A. An Overview of Matrix Effects in Liquid Chrmatography-Mass Spectrometry. Mass Spectrom. 2010;30:491–509. doi: 10.1002/mas.20298. PubMed DOI

Loo R.R.O., Dales N., Andrews P.C. Surfactant Effects on Protein Structure Examined by Electrospray Ionization Mass Spectrometry. Protein Sci. 1994;3:1975–1983. doi: 10.1002/pro.5560031109. PubMed DOI PMC

Conrads T.P., Yu L., Terunuma A., Janini G.M., Issaq H.J., Vogel J.C., Veenstra T.D. A Detergent- and Cyanogen Bromide-Free Method for Integral Membrane Proteomics: Application to Halobacterium Purple Membranes and The Human Epidermal Membrane Proteome. Proteomics. 2004;4:31–45. doi: 10.1002/pmic.200300543. PubMed DOI

Xu T., Wang H., Wu M., Wang W., Tan Q., Zhao F., Zhou F., Hu T., Jiang Z., Liu Z., et al. Disulfide-Containing Detergents (DCDs) for the Structural Biology of Membrane Proteins Dongxiang. Chemistry. 2019;25:11635–11640. doi: 10.1002/chem.201903190. PubMed DOI

Donoghue P.M., Hughes C., Vissers J.P.C., Langridge J.I., Dunn M.J. Nonionic Detergent Phase Extraction for the Proteomic Analysis of Heart Membrane Proteins Using Label-Free LC-MS. Proteomics. 2008;8:3895–3905. doi: 10.1002/pmic.200800116. PubMed DOI

Breyton C., Pucci B., Popot J. Amphiols and Fluorinated Surfactants: Two Alternatives to Detergents for Studying Membrane Proteins In Vitro. In: Mus-Vetau I., editor. Heterologous Expression of Membrane Proteins: Methods in Molecular Biology. Volume 601. Humana Press; Totowa, NJ, USA: 2010. pp. 219–245. PubMed

Wehbie M., Onyia K.K., Mahler F., Le Roy A., Deletraz A., Bouchemal I., Vargas C., Babalola J.O., Breyton C., Ebel C., et al. Maltose-Based Fluorinated Surfactants for Membrane-Protein Extraction and Stabilization. Langmuir. 2021;37:2111–2122. doi: 10.1021/acs.langmuir.0c03214. PubMed DOI

Gilmore J.M., Kettenbach A.N., Gerber S.A. Increasing Phosphoproteomic Coverage through Sequential Digestion by Complementary Proteases. Anal. Bioanal. Chem. 2012;402:711–720. doi: 10.1007/s00216-011-5466-5. PubMed DOI PMC

Rietschel B., Bornemann S., Arrey T.N., Baeumlisberger D., Karas M., Meyer B. Membrane Protein Analysis Using an Improved Peptic In-Solution Digestion Protocol. Proteomics. 2009;9:5553–5557. doi: 10.1002/pmic.200900532. PubMed DOI

Wu C.C., MacCoss M.J., Howell K.E., Yates J.R. A Method for the Comprehensive Proteomic Analysis of Membrane Proteins. Nat. Biotechnol. 2003;21:532–538. doi: 10.1038/nbt819. PubMed DOI

Yu D., Wang Z., Cupp-Sutton K.A., Liu X., Wu S. Deep Intact Proteoform Characterization in Human Cell Lysate Using High-PH and Low-PH Reversed-Phase Liquid Chromatography. J. Am. Soc. Mass Spectrom. 2019;30:2502–2513. doi: 10.1007/s13361-019-02315-2. PubMed DOI PMC

Petritis K., Brussaux S., Guenu S., Elfakir C., Dreux M. Ion-Pair Reversed-Phase Liquid Chromatography-Electrospray Mass Spectrometry for the Analysis of Underivatized Small Peptides. J. Chromatogr. A. 2002;957:173–185. doi: 10.1016/S0021-9673(02)00372-2. PubMed DOI

Kalghatgi K., Horvath C. Rapid Peptide Mapping by High-Performance Liquid Chromatography. J. Chromatogr. 1988;443:343–354. doi: 10.1016/S0021-9673(00)94806-4. PubMed DOI

Gustavsson S.Å., Samskog J., Markides K.E., Långström B. Studies of Signal Suppression in Liquid Chromatography-Electrospray Ionization Mass Spectrometry Using Volatile Ion-Pairing Reagents. J. Chromatogr. A. 2001;937:41–47. doi: 10.1016/S0021-9673(01)01328-0. PubMed DOI

Bonmatin J.M., Moineau I., Charvet R., Fleche C., Colin M.E., Bengsch E.R. A LC/APCI-MS/MS Method for Analysis of Imidacloprid in Soils, in Plants, and in Pollens. Anal. Chem. 2003;75:2027–2033. doi: 10.1021/ac020600b. PubMed DOI

Rosenberg E. The Potential of Organic (Electrospray- and Atmospheric Pressure Chemical Ionisation) Mass Spectrometric Techniques Coupled to Liquid-Phase Separation for Speciation Analysis. J. Chromatogr. A. 2003;1000:841–889. doi: 10.1016/S0021-9673(03)00603-4. PubMed DOI

Raffaelli A., Saba A. Atmospheric Pressure Photoionization Mass Spectrometry. Mass Spectrom. Rev. 2003;22:318–331. doi: 10.1002/mas.10060. PubMed DOI

Cristoni S., Bernardi L.R., Biunno I., Guidugli F. Analysis of Peptides Using Partial (No Discharge) Atmospheric Pressure Chemical Ionization Conditions with Ion Trap Mass Spectrometry. Rapid Commun. Mass Spectrom. 2002;16:1686–1691. doi: 10.1002/rcm.772. PubMed DOI

Robb D.B., Blades M.W. State-of-the-Art in Atmospheric Pressure Photoionization for LC/MS. Anal. Chim. Acta. 2008;627:34–49. doi: 10.1016/j.aca.2008.05.077. PubMed DOI

Delobel A., Halgand F., Laffranchise-Gosse B., Snijders H., Laprévote O. Characterization of Hydrophobic Peptides by Atmospheric Pressure Photoionization-Mass Spectrometry and Tandem Mass Spectrometry. Anal. Chem. 2003;75:5961–5968. doi: 10.1021/ac034532k. PubMed DOI

Debois D., Giuliani A., Laprévote O. Fragmentation Induced in Atmospheric Pressure Photoionization of Peptides. J. Mass Spectrom. 2006;41:1554–1560. doi: 10.1002/jms.1122. PubMed DOI

Matuszewski B.K., Constanzer M.L., Chavez-Eng C.M. Matrix Effect in Quantitative LC/MS/MS Analyses of Biological Fluids: A Method for Determination of Finasteride in Human Plasma at Picogram Per Milliliter Concentrations. Anal. Chem. 1998;70:882–889. doi: 10.1021/ac971078+. PubMed DOI

Hsieh Y., Chintala M., Mei H., Agans J., Brisson J.M., Ng K., Korfmacher W.A. Quantitative Screening and Matrix Effect Studies of Drug Discovery Compounds in Monkey Plasma Using Fastgradient Liquid Chromatography/Tandem Mass Spectrometry. Rapid Commun. Mass Spectrom. 2001;15:2481–2487. doi: 10.1002/rcm.479. PubMed DOI

McCulloch R.D., Robb D.B. Field-Free Atmospheric Pressure Photoionization-Liquid Chromatography-Mass Spectrometry for the Analysis of Steroids within Complex Biological Matrices. Anal. Chem. 2017;89:4169–4176. doi: 10.1021/acs.analchem.7b00157. PubMed DOI

Shen Y., Han C., Chen J., Wang X. Analysis of Cyclic Peptides in Pseudostellaria Heterophylla (Miq.) Pax by HPLC-APCI-MS. Chromatographia. 2007;66:319–323. doi: 10.1365/s10337-007-0333-4. DOI

Bose U., Hodson M., Shaw P., Fuerst J., Hewavitharana A. Two Peptides, Cycloaspeptide A and Nazumamide A from a Sponge Associated Marine Actinobacterium Salinispora Sp. Nat. Prod. Commun. 2014;9:545–546. doi: 10.1177/1934578X1400900431. PubMed DOI

Bagag A., Jault J.M., Sidahmed-Adrar N., Réfrégiers M., Giuliani A., Le Naour F. Characterization of Hydrophobic Peptides in the Presence of Detergent by Photoionization Mass Spectrometry. PLoS ONE. 2013;8:e79033. doi: 10.1371/journal.pone.0079033. PubMed DOI PMC

Bagag A., Giuliani A., Laprévote O. Atmospheric Pressure Photoionization of Peptides. Int. J. Mass Spectrom. 2011;299:1–4. doi: 10.1016/j.ijms.2010.08.010. PubMed DOI

Bagag A., Giuliani A., Réfrégiers M., Le Naour F. Atmospheric Pressure Photoionization Study of Post-Translational Modifications: The Case of Palmitoylation. Int. J. Mass Spectrom. 2012;328–329:23–27. doi: 10.1016/j.ijms.2012.07.021. DOI

Giuliani A., Giorgetta J.L., Ricaud J.P., Jamme F., Rouam V., Wien F., Laprévote O., Réfrégiers M. Atmospheric Pressure Photoionization Using Tunable VUV Synchrotron Radiation. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 2012;279:114–117. doi: 10.1016/j.nimb.2011.10.038. DOI

Sedláčková S., Hubálek M., Vrkoslav V., Blechová M., Cvačka J. Utility of Atmospheric-Pressure Chemical Ionization and Photoionization Mass Spectrometry in Bottom-Up Proteomics. Separations. 2022;9:42. doi: 10.3390/separations9020042. PubMed DOI PMC

Qiao X., Qin X., She D., Wang R., Zhang X., Zhang L., Zhang Y. Mass Spectrometry-Based Tag and Its Application to High Efficient Peptide Analysis—A Review. Talanta. 2014;126:91–102. doi: 10.1016/j.talanta.2014.03.012. PubMed DOI

Leitner A., Lindner W. Chemistry Meets Proteomics: The Use of Chemical Tagging Reactions for MS-Based Proteomics. Proteomics. 2006;6:5418–5434. doi: 10.1002/pmic.200600255. PubMed DOI

Leitner A., Lindner W. Current Chemical Tagging Strategies for Proteome Analysis by Mass Spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2004;813:1–26. doi: 10.1016/j.jchromb.2004.09.057. PubMed DOI

Miyagi M., Nakao M., Nakazawa T., Kato I., Tsunasawa S. A Novel Derivatization Method with 5-Bromo-Nicotinic Acid N-Hydroxysuccinimide for Determination of the Amino Acid Sequences of Peptides. Rapid Commun. Mass Spectrom. 1998;12:603–608. doi: 10.1002/(SICI)1097-0231(19980529)12:10<603::AID-RCM204>3.0.CO;2-0. PubMed DOI

An M., Zou X., Wang Q., Zhao X., Wu J., Xu M., Shen H., Xiao X., He D., Ji J., et al. High-Confidence De Novo Peptide Sequencing Using Positive Charge Derivatization and Tandem MS Spectra Merging. Anal. Chem. 2013;85:4530–4537. doi: 10.1021/ac4001699. PubMed DOI

Yu Q., Shi X., Feng Y., Kent K.C., Li L. Improving Data Quality and Preserving HCD-Generated Reporter Ions with EThcD for Isobaric Tag-Based Quantitative Proteomics and Proteome-Wide PTM Studies. Anal. Chim. Acta. 2017;968:40–49. doi: 10.1016/j.aca.2017.03.003. PubMed DOI PMC

Wu Y., Wang F., Liu Z., Qin H., Song C., Huang J., Bian Y., Wei X., Donga J., Zou H. Five-Plex Isotope Dimethyl Labeling for Quantitative Proteomics. Chem. Commun. 2014;50:1708–1710. doi: 10.1039/c3cc47998f. PubMed DOI

Oldekop M.L., Herodes K., Rebane R. Comparison of Amino Acid Derivatization Reagents for Liquid Chromatography Atmospheric Pressure Chemical Ionization Mass Spectrometric Analysis of Seven Amino Acids in Tea Extract. Int. J. Mass Spectrom. 2017;421:189–195. doi: 10.1016/j.ijms.2017.07.004. DOI

Rebane R., Rodima T., Kütt A., Herodes K. Development of Amino Acid Derivatization Reagents for Liquid Chromatography Electrospray Ionization Mass Spectrometric Analysis and Ionization Efficiency Measurements. J. Chromatogr. A. 2015;1390:62–70. doi: 10.1016/j.chroma.2015.02.050. PubMed DOI

Pohlentz G., Schlemm S., Klima B., Egge H. Fast Atom Bombardment Mass Spectrometry of N-Acetylated Neoglycolipids of the 1-Deoxy-1-Phosphatidylethanolaminolactitol-Type. Chem. Phys. Lipids. 1994;70:83–94. doi: 10.1016/0009-3084(94)90050-7. PubMed DOI

Tsai P.K., Dell A., Ballou C.E. Characterization of Acetylated and Acetolyzed Glycoprotein High-Mannose Core Oligosaccharides by Fast-Atom-Bombardment Mass Spectroscopy. Proc. Natl. Acad. Sci. USA. 1986;83:4119–4123. doi: 10.1073/pnas.83.12.4119. PubMed DOI PMC

Claeys M., Claereboudt J., Uia A. Fast Atom Bombardment Ionization in Mass Spectrometry. 3rd ed. Elsevier Ltd.; Amsterdam, The Netherlands: 2017.

Yang H.-J., Hu X.-Y., Chen Y.-Z. Amino Acid Identification and Sequence Analysis of Peptides by Reaction Mass Spectrometry. Chin. J. Chem. 1993;11:540–549. doi: 10.1002/cjoc.19930110608. DOI

Paulson J., Lindberg C. Increasing Thermospray Response for Cortisol by Derivatization. J. Chromatogr. A. 1991;554:149–154. doi: 10.1016/S0021-9673(01)88445-4. PubMed DOI

Cho K., Kang W., Choi Y., Kim W., Pyo K. Effects of Peptide Acetylation and Dimethylation on Electrospray Ionization Efficiency. J. Mass Spectrom. 2016;51:105–110. doi: 10.1002/jms.3723. PubMed DOI

Zappacosta F., Wagner C.D., Della Pietra A., Gerhart S.V., Keenan K., Korenchuck S., Quinn C.J., Barbash O., McCabe M.T., Annan R.S. A Chemical Acetylation-Based Mass Spectrometry Platform for Histone Methylation Profiling. Mol. Cell. Proteomics. 2021;20:100067. doi: 10.1016/j.mcpro.2021.100067. PubMed DOI PMC

Kuchibhotla B., Kola S.R., Medicherla J.V., Cherukuvada S.V., Dhople V.M., Nalam M.R. Combinatorial Labeling Method for Improving Peptide Fragmentation in Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2017;28:1216–1226. doi: 10.1007/s13361-017-1606-2. PubMed DOI

Samgina T.Y., Kovalev S.V., Gorshkov V.A., Artemenko K.A., Poljakov N.B., Lebedev A.T. N-Terminal Tagging Strategy for De Novo Sequencing of Short Peptides by ESI-MS/MS and MALDI-MS/MS. J. Am. Soc. Mass Spectrom. 2010;21:104–111. doi: 10.1016/j.jasms.2009.09.008. PubMed DOI

Straube E., Dekant W., Völkel W. Enhanced Sensitivity for the Determination of Ambiphilic Polyaromatic Amines by LC-MS/MS after Acetylation. J. Chromatogr. A. 2005;1067:181–190. doi: 10.1016/j.chroma.2005.01.012. PubMed DOI

Sugahara K., Jianying Z., Kodama H. Liquid Chromatographic-Mass Spectrometric Analysis of N-Acetylamino Acids in Human Urine. J. Chromatogr. B. 1994;657:15–21. doi: 10.1016/0378-4347(94)80064-2. PubMed DOI

Chandra D., Gayathri P., Vats M., Nagaraj R., Ray M.K. Mass Spectral Analysis of Acetylated Peptides: Implications in Proteomics. Eur. J. Mass Spectrom. 2019;26:36–45. doi: 10.1177/1469066719857564. PubMed DOI

Harrison A.G., Young A.B., Bleiholder C. Scrambling of Sequence Information in Collision-Induced Dissociation of Peptides. J. Am. Chem. Soc. 2006;128:10364–10365. doi: 10.1021/ja062440h. PubMed DOI

Harrison A.G. To b or Not to b: The Ongoing Saga of Peptide b Ions. Mass Spectrom. Rev. 2009;28:640–654. doi: 10.1002/mas.20228. PubMed DOI

Yaqüe J., Paradela A., Ramos M., Ogueta S., Marina A., Barahona F., López de Castro J.A., Vázquez J. Peptide Rearrangement during Quadrupole Ion Trap Fragmentation: Added Complexity to MS/MS Spectra. Anal. Chem. 2003;75:1524–1535. doi: 10.1021/ac026280d. PubMed DOI

Harrison A.G. Peptide Sequence Scrambling Through Cyclization of B5 Ions. J. Am. Soc. Mass Spectrom. 2008;19:1776–1780. doi: 10.1016/j.jasms.2008.06.025. PubMed DOI

O’Hair R.A.J., Reid G.E. Derivatization of Protonated Peptides via Gas Phase Ion-Molecule Reactions with Acetone. J. Am. Soc. Mass Spectrom. 2000;11:244–256. doi: 10.1016/S1044-0305(99)00142-7. PubMed DOI

Medzihradszky K.F., Chalkley R.J. Lessons in De Novo Peptide Sequencing by Tandem Mass Spectrometry. Mass Spectrom. Rev. 2015;34:43–63. doi: 10.1002/mas.21406. PubMed DOI PMC

Hiserodt R.D., Brown S.M., Swijter D.F.H., Hawkins N., Mussinan C.J. A Study of B1+H2O and B1-Ions in the Product Ion Spectra of Dipeptides Containing N-Terminal Basic Amino Acid Residues. J. Am. Soc. Mass Spectrom. 2007;18:1414–1422. doi: 10.1016/j.jasms.2007.04.018. PubMed DOI

Li S., Dabir A., Misal S.A., Tang H., Radivojac P., Reilly J.P. The Impact of Amidination on Peptide Fragmentation and Identification in Shotgun Proteomics. J. Proteome Res. 2016;15:3656–3665. doi: 10.1021/acs.jproteome.6b00468. PubMed DOI PMC

Thorne G.C., Gaskell S.J., Gross M.L. Elucidation of Some Fragmentations of Small Peptides Using Sequential Mass Spectrometry on a Hybrid Instrument. Rapid Commun. Mass Spectrom. 1989;3:217–221. doi: 10.1002/rcm.1290030704. PubMed DOI

Thorne G.C., Ballard K.D., Gaskell S.J. Metastable Decomposition of Peptide [M + H]+ Ions via Rearrangement Involving Loss of the C-Terminal Amino Acid Residue. J. Am. Soc. Mass Spectrom. 1990;1:249–257. doi: 10.1016/1044-0305(90)85042-K. DOI

Newton K.A., McLuckey S.A. Generation and Manipulation of Sodium Cationized Peptides in the Gas Phase. J. Am. Soc. Mass Spectrom. 2004;15:607–615. doi: 10.1016/j.jasms.2003.12.014. PubMed DOI

Biemann K., Martin S.A. Mass Spectrometric Determination of the Amino Acid Sequence of Peptides and Proteins. Mass Spectrom. Rev. 1987;6:1–75. doi: 10.1002/mas.1280060102. DOI

Hunter E.P.L., Lias S.G. Evaluate Gas Phase Basicities and Proton Affinity of Molecules: An Update. J. Phys. Chem. Ref. Data. 1998;27:413–656. doi: 10.1063/1.556018. DOI

Schneider R.P., Lynch M.J., Ericson J.F., Fouda H.G. Electrospray Ionization Mass Spectrometry of Semduramicin and Other Polyether Ionophores. Anal. Chem. 1991;63:1789–1794. doi: 10.1021/ac00017a024. PubMed DOI

Gao S., Zhang Z.P., Karnes H.T. Sensitivity Enhancement in Liquid Chromatography/Atmospheric Pressure Ionization Mass Spectrometry Using Derivatization and Mobile Phase Additives. J. Chromatogr. B. 2005;825:98–110. doi: 10.1016/j.jchromb.2005.04.021. PubMed DOI

Fenn J.B. Ion Formation from Charged Droplets: Roles of Geometry, Energy, and Time. J. Am. Soc. Mass Spectrom. 1993;4:524–535. doi: 10.1016/1044-0305(93)85014-O. PubMed DOI

Iribarne J.V., Dziedzic P.J., Thomson B.A. Atmospheric Pressure Ion Evaporation-Mass Spectrometry. Int. J. Mass Spectrom. Ion Phys. 1983;50:331–347. doi: 10.1016/0020-7381(83)87009-0. DOI

Cech N.B., Enke C.G. Practical Implications of Some Recent Studies in Electrospray Ionization Fundamentals. Mass Spectrom. Rev. 2001;20:362–387. doi: 10.1002/mas.10008. PubMed DOI

Sun B., Liu Z., Liu J., Zhao S., Wang L., Wang F. The Utility of Proteases in Proteomics, from Sequence Profiling to Structure and Function Analysis. Proteomics. 2022;23:2200132. doi: 10.1002/pmic.202200132. PubMed DOI

Kloudová B., Strmeň T., Vrkoslav V., Chára Z., Pačes O., Cvačka J. Gas Dynamic Virtual Nozzle Sprayer for an Introduction of Liquid Samples in Atmospheric Pressure Ionization Mass Spectrometry. Anal. Chem. 2022;95:4196–4203. doi: 10.1021/acs.analchem.2c05349. PubMed DOI PMC

Strmeň T., Vrkoslav V., Bosáková Z., Cvačka J. Atmospheric Pressure Chemical Ionization Mass Spectrometry at Low Flow Rates: Importance of Ion Source Housing. Rapid Commun. Mass Spectrom. 2020;34:e8722. doi: 10.1002/rcm.8722. PubMed DOI

Vrkoslav V., Rumlová B., Strmeň T., Nekvasilová P., Šulc M., Cvačka J. Applicability of Low-Flow Atmospheric Pressure Chemical Ionization and Photoionization Mass Spectrometry with a Microfabricated Nebulizer for Neutral Lipids. Rapid Commun. Mass Spectrom. 2018;32:639–648. doi: 10.1002/rcm.8086. PubMed DOI

Strmeň T., Vrkoslav V., Pačes O., Cvačka J. Evaluation of an Ion Source with a Tubular Nebulizer for Microflow Atmospheric Pressure Chemical Ionization. Mon. Für Chem. 2018;149:987–994. doi: 10.1007/s00706-018-2172-4. DOI

Erde J., Loo R.R.O., Loo J.A. Improving Proteome Coverage and Sample Recovery with Enhanced FASP (EFASP) for Quantitative Proteomic Experiments. Methods Mol. Biol. 2017;1550:11–18. doi: 10.1007/978-1-4939-6747-6_2. PubMed DOI PMC

Gostian A.O., Hüttenbrink K.B., Luers J.C., Anagiotos A., Beutner D. Probability-Based Protein Identification by Searching Sequence Databases Using Mass Spectrometry Data. Electrophoresis. 1999;20:3551–3567. doi: 10.1002/(SICI)1522-2683(19991201)20:183.0.CO;2-2. PubMed DOI

Bian Y., Gao C., Kuster B. On the Potential of Micro-Flow LC-MS/MS in Proteomics. Expert Rev. Proteom. 2022;19:153–164. doi: 10.1080/14789450.2022.2134780. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...