Atmospheric pressure chemical ionization mass spectrometry at low flow rates: Importance of ion source housing

. 2020 May 30 ; 34 (10) : e8722.

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31912928

Grantová podpora
Project SVV260440 Charles University in Prague
16-01639S Czech Science Foundation

RATIONALE: Hyphenation of atmospheric pressure chemical ionization (APCI) mass spectrometry with capillary and micro high-performance liquid chromatography (HPLC) is attractive for many applications, but reliable ion sources dedicated to these conditions are still missing. There are a number of aspects to consider when designing such an ion source, including the susceptibility of the ionization processes to ambient conditions. Here we discuss the importance of ion source housing for APCI at low flow rates. METHODS: Selected compounds dissolved in various solvents were used to study ionization reactions at 10 μL/min flow rate. APCI spectra were generated using the Ion Max-S source (Thermo Fisher Scientific) operated with or without the ion source housing. RESULTS: The APCI spectra of most compounds measured in the open and enclosed ion sources were markedly different. The differences were explained by water and oxygen molecules that entered the plasma region of the open ion source. Water tended to suppress charge transfer processes while oxygen diminished electron capture reactions and prevented the formation of acetonitrile-related radical cations useful for localizing double bonds in lipids. The effects associated with the ion source housing were significantly less important for compounds that are easy to protonate or deprotonate. CONCLUSIONS: The use of ion source housing prevented alternative ionization channels leading to unwanted or unexpected ions. Compared with the conventional flow rate mode (1 mL/min), the effects of ambient air components were significantly higher at 10 μL/min, emphasizing the need for ion source housing in APCI sources dedicated to low flow rates.

Zobrazit více v PubMed

Saito Y, Jinno K, Greibrokk T. Capillary columns in liquid chromatography: Between conventional columns and microchips. J Sep Sci. 2004;27(17-18):1379-1390. https://doi.org/10.1002/jssc.200401902

Chetwynd AJ, David A. A review of nanoscale LC-ESI for metabolomics and its potential to enhance the metabolome coverage. Talanta. 2018;182:380-390. https://doi.org/10.1016/j.talanta.2018.01.084

Moriwaki H. Electrospray ionization mass spectrometric detection of low polar compounds by adding NaAuCl4. J Mass Spectrom. 2016;51(11):1096-1102. https://doi.org/10.1002/jms.3822

Tang K, Page JS, Smith RD. Charge competition and the linear dynamic range of detection in electrospray ionization mass spectrometry. J Am Soc Mass Spectrom. 2004;15(10):1416-1423. https://doi.org/10.1016/j.jasms.2004.04.034

Schuhmacher J, Zimmer D, Tesche F, Pickard V. Matrix effects during analysis of plasma samples by electrospray and atmospheric pressure chemical ionization mass spectrometry: Practical approaches to their elimination. Rapid Commun Mass Spectrom. 2003;17(17):1950-1957. https://doi.org/10.1002/rcm.1139

Klee S, Derpmann V, Wißdorf W, et al. Are clusters important in understanding the mechanisms in atmospheric pressure ionization? Part 1: Reagent ion generation and chemical control of ion populations. J Am Soc Mass Spectrom. 2014;25(8):1310-1321. https://doi.org/10.1007/s13361-014-0891-2

Shahin MM. Ionic reactions in corona discharges of atmospheric gases. Adv. Chem. Series: Chem. React. Electr Discharges. 1969;80:48-58. https://doi.org/10.1021/ba-1969-0080.ch004

Siegel MW, Fite WL. Terminal ions in weak atmospheric pressure plasmas. Applications of atmospheric pressure ionization to trace impurity analysis in gases. J Phys Chem. 1976;80(26):2871-2881. https://doi.org/10.1021/j100567a013

Kostiainen R, Kauppila TJ. Effect of eluent on the ionization process in liquid chromatography-mass spectrometry. J Chromatogr A. 2009;1216(4):685-699. https://doi.org/10.1016/j.chroma.2008.08.095

Terrier P, Desmazières B, Tortajada J, Buchmann W. APCI/APPI for synthetic polymer analysis. Mass Spectrom Rev. 2011;30(5):854-874. https://doi.org/10.1002/mas.20302

Ervin KM, Anusiewicz I, Skurski P, Simons J, Lineberger WC. The only stable state of O2- is the X2Πg ground state and it (still!) has an adiabatic electron detachment energy of 0.45 eV. J Phys Chem AJ. Phys. Chem. A. 2003;107(41):8521-8529. https://doi.org/10.1021/jp0357323

Carroll DI, Dzidic I, Horning EC, Stillwell RN. Atmospheric pressure ionization mass spectrometry. Appl Spectrosc Rev. 1981;17(3):337-406. https://doi.org/10.1080/05704928108060409

McEwen CN, Larsen BS. Ionization mechanisms related to negative ion APPI, APCI, and DART. J Am Soc Mass Spectrom. 2009;20(8):1518-1521. https://doi.org/10.1016/j.jasms.2009.04.010

Song Y, Cooks RG. Atmospheric pressure ion/molecule reactions for the selective detection of nitroaromatic explosives using acetonitrile and air as reagents. Rapid Commun Mass Spectrom. 2006;20(20):3130-3138. https://doi.org/10.1002/rcm.2714

Gao J, Owen BC, Borton DJ II, Jin Z, Kenttämaa HI. HPLC/APCI mass spectrometry of saturated and unsaturated hydrocarbons by using hydrocarbon solvents as the APCI reagent and HPLC mobile phase. J Am Soc Mass Spectrom. 2012;23(5):816-822. https://doi.org/10.1007/s13361-012-0347-5

Perazzolli C, Mancini I, Graziano G. Benzene-assisted atmospheric-pressure chemical ionization: A new liquid chromatography/mass spectrometry approach to the analysis of selected hydrophobic compounds. Rapid Commun Mass Spectrom. 2005;19(4):461-469. https://doi.org/10.1002/rcm.1807

Nyholm LM, Sjöberg PJR, Markides KE. High-temperature open tubular liquid chromatography coupled to atmospheric pressure chemical ionisation mass spectrometry. J Chromatogr A. 1996;755(2):153-164. https://doi.org/10.1016/S0021-9673(96)00609-7

Takeda S, Tanaka Y, Yamane M, et al. Ionization of dichlorophenols for their analysis by capillary electrophoresis-mass spectrometry. J Chromatogr A. 2001;924(1-2):415-420. https://doi.org/10.1016/S0021-9673(01)00899-8

Tanaka Y, Otsuka K, Terabe S. Evaluation of an atmospheric pressure chemical ionization interface for capillary electrophoresis-mass spectrometry. J Pharm Biomed. 2003;30(6):1889-1895. https://doi.org/10.1016/S0731-7085(02)00532-0

Östman P, Marttila SJ, Kotiaho T, Franssila S, Kostiainen R. Microchip atmospheric pressure chemical ionization source for mass spectrometry. Anal Chem. 2004;76(22):6659-6664. https://doi.org/10.1021/ac049345g

Vrkoslav V, Rumlová B, Strmeň T, Nekvasilová P, Šulc M, Cvačka J. Applicability of low-flow atmospheric pressure chemical ionization and photoionization mass spectrometry with a microfabricated nebulizer for neutral lipids. Rapid Commun Mass Spectrom. 2018;32(8):639-648. https://doi.org/10.1002/rcm.8086

Strmeň T, Vrkoslav V, Pačes O, Cvačka J. Evaluation of an ion source with a tubular nebulizer for microflow atmospheric pressure chemical ionization. Monatsh Chem. 2018;149(6):987-994. https://doi.org/10.1007/s00706-018-2172-4

Takáts Z, Wiseman JM, Gologan B, Cooks RG. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science. 2004;306(5695):471-473. https://doi.org/10.1126/science.1104404

Haapala M, Pol J, Saarela V, et al. Desorption atmospheric pressure photoionization. Anal Chem. 2007;79(20):7867-7872. https://doi.org/10.1021/ac071152g

Takats Z, Cotte-Rodriguez I, Talaty N, Chen H, Cooks RG. Direct, trace level detection of explosives on ambient surfaces by desorption electrospray ionization mass spectrometry. Chem Commun. 2005;15:1950-1952. https://doi.org/10.1039/b418697d

Thermo Fisher Scientific Inc., Ion Max and Ion Max-S API Source, Hardware Manual, 97055-97044 Revision D. November 2008, p. 60

Marvin CH, Smith RW, Bryant DW, McCarry BE. Analysis of high-molecular-mass polycyclic aromatic hydrocarbons in environmental samples using liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. J Chromatogr A. 1999;863(1):13-24. https://doi.org/10.1016/S0021-9673(99)00955-3

Covey TR, Thomson BA, Schneider BB. Atmospheric pressure ion sources. Mass Spectrom Rev. 2009;28(6):870-897. https://doi.org/10.1002/mas.20246

Kolakowski BM, Grossert JS, Ramaley L. Studies on the positive-ion mass spectra from atmospheric pressure chemical ionization of gases and solvents used in liquid chromatography and direct liquid injection. J Am Soc Mass Spectrom. 2004;15(3):311-324. https://doi.org/10.1016/j.jasms.2003.10.019

Linstrom PJ, Mallard WG, eds. NIST Chemistry WebBook, NIST Standard Reference Database Number 69, December 2018, National Institute of Standards and Technology, Gaithersburg MD, 20899 (http://webbook.nist.gov)

Holmgren E, Carlsson H, Goede P, Crescenzi C. Determination and characterization of organic explosives using porous graphitic carbon and liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. J Chromatogr AJ. Chromatogr. A. 2005;1099(1-2):127-135. https://doi.org/10.1016/j.chroma.2005.08.088

Astratov M, Preiß A, Levsen K, Wünsch G. Identification of pollutants in ammunition hazardous waste sites by thermospray HPLC/MS. Int J Mass Spectrom Ion Processes. 1997;167/168:481-502. https://doi.org/10.1016/S0168-1176(97)00089-X

Karthick T, Balachandran V, Perumal S, Nataraj A. Spectroscopic studies, HOMO-LUMO and NBO calculations on monomer and dimer conformer of 5-nitrosalicylic acid. J Mol Struct. 2011;1005(1-3):192-201. https://doi.org/10.1016/j.molstruc.2011.08.050

Xu B, Wu X, Li H, Tong H, Wang L. Selective detection of TNT and picric acid by conjugated polymer film sensors with donor-acceptor architecture. Macromolecules. 2011;44(13):5089-5092. https://doi.org/10.1021/ma201003f

Horning EC, Carroll DI, Dzidic I, Lin S-N, Stillwell RN, Thenot J-T. Atmospheric pressure ionization mass spectrometry: Studies of negative ion formation for detection and quantification purposes. J Chromatogr. 1977;142(NOV):481-495. https://doi.org/10.1016/S0021-9673(01)92061-8

Hayen H, Jachmann N, Vogel M, Karst U. LC-electron capture-APCI(2)-MS determination of nitrobenzoxadiazole derivatives. Analyst. 2003;128(11):1365-1372. https://doi.org/10.1039/b308752b

Dzidic I, Carroll DI, Stillwell RN, Horning EC. Gas phase reactions. Ionization by proton transfer to superoxide anions. J Am Chem Soc. 1974;96(16):5258-5259. https://doi.org/10.1021/ja00823a045

Hassan I, Pavlov J, Errabelli R, Attygalle AB. Oxidative ionization under certain negative-ion mass spectrometric conditions. J Am Soc Mass Spectrom. 2017;28(2):270-277. https://doi.org/10.1007/s13361-016-1527-5

Kauppila TJ, Kotiaho T, Kostiainen R, Bruins AP. Negative ion-atmospheric pressure photoionization-mass spectrometry. J Am Soc Mass Spectrom. 2004;15(2):203-211. https://doi.org/10.1016/j.jasms.2003.10.012

Hintermann L, Labonne A. Catalytic hydration of alkynes and its application in synthesis. Synthesis. 2007;8(8):1121-1150. https://doi.org/10.1055/s-2007-966002

Xu Y, Brenna TJ. Atmospheric pressure covalent adduct chemical ionization tandem mass spectrometry for double bond localization in monoene- and diene-containing triacylglycerols. Anal Chem. 2007;79(6):2525-2536. https://doi.org/10.1021/ac062055a

Vrkoslav V, Háková M, Pecková K, Urbanová K, Cvačka J. Localization of double bonds in wax esters by high-performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry utilizing the fragmentation of acetonitrile-related adducts. Anal Chem. 2011;83(8):2978-2986. https://doi.org/10.1021/ac1030682

Vrkoslav V, Cvačka J. Identification of the double-bond position in fatty acid methyl esters by liquid chromatography/atmospheric pressure chemical ionisation mass spectrometry. J Chromatogr A. 2012;1259:244-250. https://doi.org/10.1016/j.chroma.2012.04.055

Háková E, Vrkoslav V, Míková R, Schwarzová-Pecková K, Bosáková Z, Cvačka J. Localization of double bonds in triacylglycerols using high-performance liquid chromatography/atmospheric pressure chemical ionization ion-trap mass spectrometry. Anal Bioanal Chem. 2015;407(17):5175-5188. https://doi.org/10.1007/s00216-015-8537-1

Holčapek M, Jandera P, Zderadička P, Hrubá L. Characterization of triacylglycerol and diacylglycerol composition of plant oils using high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. J Chromatogr A. 2003;1010(2):195-215. https://doi.org/10.1016/S0021-9673(03)01030-6

Byrdwell WC. Qualitative and quantitative analysis of triacylglycerols by atmospheric pressure ionization (APCI and ESI) mass spectrometry techniques. In: Byrdwell WC, ed. Modern Methods for Lipid Analysis by Liquid Chromatography/Mass Spectrometry and Related Techniques 1. New York, NY: AOCS Press; 2005:298-412.

Cvačka J, Hovorka O, Jiroš P, Kindl J, Stránský K, Valterová I. Analysis of triacylglycerols in fat body of bumblebees by chromatographic methods. J Chromatogr A. 2006;1101(1-2):226-237. https://doi.org/10.1016/j.chroma.2005.10.001

Kalužíková A, Vrkoslav V, Harazim E, et al. Cholesteryl esters of ω-(O-acyl)-hydroxy fatty acids in vernix caseosa. J Lipid Res. 2017;58(8):1579-1590. https://doi.org/10.1194/jlr.M075333

Jahangiri S, Timerghazin QK, Jiang H, Peslherbe GH, English AM. Dramatic C-C bond activation on protonation of the persistent nitroxyl radical TEMPO•. Int J Mass Spectrom. 2018;429(SI):182-188. https://doi.org/10.1016/j.ijms.2017.08.007

Chen HW, Zheng J, Zhang X, Luo MB, Wang ZC, Qiao XL. Surface desorption atmospheric pressure chemical ionization mass spectrometry for direct ambient sample analysis without toxic chemical contamination. J Mass Spectrom. 2007;42(8):1045-1056. https://doi.org/10.1002/jms.1235

Corso G, D'Apolito O, Garofalo D, Paglia G, Dello RA. Profiling of acylcarnitines and sterols from dried blood or plasma spot by atmospheric pressure thermal desorption chemical ionization (APTDCI) tandem mass spectrometry. Biochim Biophys Acta Mol Cell Biol Lipids. 2011;1811(11):669-679. https://doi.org/10.1016/j.bbalip.2011.05.009

Coon JJ, McHale KJ, Harrison WW. Atmospheric pressure laser desorption/chemical ionization mass spectrometry: A new ionization method based on existing themes. Rapid Commun Mass Spectrom. 2002;16(7):681-685. https://doi.org/10.1002/rcm.626

Silwal IKC, Rasaiah RC, Szulejko JE, Solouki T. Proton transfer reactions of halogenated compounds: Using gas chromatography/Fourier transform ion cyclotron resonance mass spectrometry (GC/FT-ICR MS) and ab initio calculations. Int J Mass Spectrom. 2010;293(1-3):1-11. https://doi.org/10.1016/j.ijms.2010.03.003

Vaikkinen A, Kauppila TJ, Kostiainen R. Charge exchange reaction in dopant-assisted atmospheric pressure chemical ionization and atmospheric pressure photoionization. J Am Soc Mass Spectrom. 2016;27(8):1291-1300. https://doi.org/10.1007/s13361-016-1399-8

Morishima I, Yoshikawa K, Yonezawa T, Matsumoto H. Photoelectron spectra studies of organic free radicals. The nitroxide radical. Chem Phys Lett. 1972;16(2):336-339. https://doi.org/10.1016/0009-2614(72)80287-2

Dávalos JZ, Gonzáles J, Ramos R, Guerrero A, Lago AF. Intrinsic (gas-phase) acidity and basicity of paracetamol. ARKIVOC. 2014;2014(2):150-160. https://doi.org/10.3998/ark.5550190.p008.249

Stoica I, Angheluta E, Ivan M, Farcas A, Dorohoi DO. Electro-optical and morphological characterization of PVA foils with sulfathiazole. Dig J Nanomater Biostruct. 2011;6(4):1667-1674. http://www.chalcogen.ro/1667_Stoica.pdf Accessed September 4, 2019

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...