Silver Ion High-Performance Liquid Chromatography-Atmospheric Pressure Chemical Ionization Mass Spectrometry: A Tool for Analyzing Cuticular Hydrocarbons
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
P206/12/1093
Czech Science Foundation
SVV
Charles University in Prague
PubMed
37175204
PubMed Central
PMC10179885
DOI
10.3390/molecules28093794
PII: molecules28093794
Knihovny.cz E-zdroje
- Klíčová slova
- Neobellieria bullata, Periplaneta americana, double bonds, hydrocarbons, mass spectrometry, semiochemicals,
- MeSH
- atmosférický tlak MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice MeSH
- stříbro * chemie MeSH
- uhlovodíky * MeSH
- vysokoúčinná kapalinová chromatografie metody MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- stříbro * MeSH
- uhlovodíky * MeSH
Aliphatic hydrocarbons (HCs) are usually analyzed by gas chromatography (GC) or matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. However, analyzing long-chain HCs by GC is difficult because of their low volatility and the risk of decomposition at high temperatures. MALDI cannot distinguish between isomeric HCs. An alternative approach based on silver ion high-performance liquid chromatography (Ag-HPLC) is shown here. The separation of HC standards and cuticular HCs was accomplished using two ChromSpher Lipids columns connected in series. A gradient elution of the analytes was optimized using mobile phases prepared from hexane (or isooctane) and acetonitrile, 2-propanol, or toluene. HCs were detected by atmospheric pressure chemical ionization mass spectrometry (APCI-MS). Good separation of the analytes according to the number of double bonds, cis/trans geometry, and position of double bonds was achieved. The retention times increased with the number of double bonds, and trans isomers eluted ahead of cis isomers. The mobile phase significantly affected the mass spectra of HCs. Depending on the mobile phase composition, deprotonated molecules, molecular ions, protonated molecules, and various solvent-related adducts of HCs were observed. The optimized Ag-HPLC/APCI-MS was applied for characterizing cuticular HCs from a flesh fly, Neobellieria bullata, and cockroach, Periplaneta americana. The method made it possible to detect a significantly higher number of HCs than previously reported for GC or MALDI-MS. Unsaturated HCs were frequently detected as isomers differing by double-bond position(s). Minor HCs with trans double bonds were found beside the prevailing cis isomers. Ag-HPLC/APCI-MS has great potential to become a new tool in chemical ecology for studying cuticular HCs.
Zobrazit více v PubMed
Kunst L., Samuels A.L. Biosynthesis and secretion of plant cuticular wax. Prog. Lipid Res. 2003;42:51–80. doi: 10.1016/s0163-7827(02)00045-0. PubMed DOI
Blomquist G.J., Bagneres A.G. Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology. Cambridge University Press; Cambridge, UK: 2010. Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology; pp. 1–492. DOI
Howard R.W., Blomquist G.J. Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu. Rev. Entomol. 2005;50:371–393. doi: 10.1146/annurev.ento.50.071803.130359. PubMed DOI
Monnin T. Chemical recognition of reproductive status in social insects. Ann. Zool. Fenn. 2006;43:515–530.
Fu W.J., Chi Z., Ma Z.C., Zhou H.X., Liu G.L., Lee C.F., Chi Z.M. Hydrocarbons, the advanced biofuels produced by different organisms, the evidence that alkanes in petroleum can be renewable. Appl. Microbiol. Biotechnol. 2015;99:7481–7494. doi: 10.1007/s00253-015-6840-6. PubMed DOI
Sutton P.A., Rowland S.J. High temperature gas chromatography-time-of-flight-mass spectrometry (HTGC-ToF-MS) for high-boiling compounds. J. Chromatogr. A. 2012;1243:69–80. doi: 10.1016/j.chroma.2012.04.044. PubMed DOI
Sutton P.A., Wilde M.J., Martin S.J., Cvačka J., Vrkoslav V., Rowland S.J. Studies of long chain lipids in insects by high temperature gas chromatography and high temperature gas chromatography-mass spectrometry. J. Chromatogr. A. 2013;1297:236–240. doi: 10.1016/j.chroma.2013.05.006. PubMed DOI
Ludanyi K., Dallos A., Kuhn Z., Vekey K. Mass spectrometry of very large saturated hydrocarbons. J. Mass Spectrom. 1999;34:264–267. doi: 10.1002/(SICI)1096-9888(199904)34:4<264::AID-JMS749>3.0.CO;2-Q. DOI
Amirav A., Gordin A., Hagooly Y., Rozen S., Belgorodsky B., Seemann B., Marom H., Gozin M., Fialkov A.B. Measurement and optimization of organic chemical reaction yields by GC-MS with supersonic molecular beams. Tetrahedron. 2012;68:5793–5799. doi: 10.1016/j.tet.2012.05.031. DOI
Fialkov A.B., Gordin A., Amirav A. Hydrocarbons and fuels analyses with the supersonic gas chromatography mass spectrometry—The novel concept of isomer abundance analysis. J. Chromatogr. A. 2008;1195:127–135. doi: 10.1016/j.chroma.2008.04.074. PubMed DOI
Ryska M., Kuras M., Mostecky J. Phenomenology of adsorption processes on emitters in field-ionization of hydrocarbon mixtures. Int. J. Mass Spectrom. 1975;16:257–267. doi: 10.1016/0020-7381(75)87024-0. DOI
Gross J.H., Vekey K., Dallos A. Field desorption mass spectrometry of large multiply branched saturated Hydrocarbons. J. Mass Spectrom. 2001;36:522–528. doi: 10.1002/jms.151. PubMed DOI
Schaub T.M., Hendrickson C.L., Quinn J.P., Rodgers R.P., Marshall A.G. Instrumentation and method for ultrahigh resolution field desorption ionization Fourier transform ion cyclotron resonance mass spectrometry of nonpolar species. Anal. Chem. 2005;77:1317–1324. doi: 10.1021/ac048766v. PubMed DOI
Jin C.F., Viidanoja J., Li M.Z., Zhang Y.Y., Ikonen E., Root A., Romanczyk M., Manheim J., Dziekonski E., Kenttamaa H.I. Comparison of Atmospheric Pressure Chemical Ionization and Field Ionization Mass Spectrometry for the Analysis of Large Saturated Hydrocarbons. Anal. Chem. 2016;88:10592–10598. doi: 10.1021/acs.analchem.6b02789. PubMed DOI
Zhou X., Shi Q., Zhang Y., Zhao S., Zhang R., Chung K.H., Xu C. Analysis of Saturated Hydrocarbons by Redox Reaction with Negative-Ion Electrospray Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Anal. Chem. 2012;84:3192–3199. doi: 10.1021/ac203035k. PubMed DOI
Campbell J.L., Crawford K.E., Kenttamaa H.I. Analysis of saturated hydrocarbons by using chemical ionization combined with laser-induced acoustic desorption/Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 2004;76:959–963. doi: 10.1021/ac0350716. PubMed DOI
Nyadong L., Quinn J.P., Hsu C.S., Hendrickson C.L., Rodgers R.P., Marshall A.G. Atmospheric Pressure Laser-Induced Acoustic Desorption Chemical Ionization Mass Spectrometry for Analysis of Saturated Hydrocarbons. Anal. Chem. 2012;84:7131–7137. doi: 10.1021/ac301307p. PubMed DOI
Chen R., Yalcin T., Wallace W.E., Guttman C.M., Li L. Laser desorption ionization and MALDI time-of-flight mass spectrometry for low molecular mass polyethylene analysis. J. Am. Soc. Mass Spectrom. 2001;12:1186–1192. doi: 10.1016/S1044-0305(01)00308-7. PubMed DOI
Yalcin T., Schriemer D.C., Li L. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry for the analysis of polydienes. J. Am. Soc. Mass Spectrom. 1997;8:1220–1229. doi: 10.1016/S1044-0305(97)00192-X. DOI
Cvačka J., Svatoš A. Matrix-assisted laser desorption/ionization analysis of lipids and high molecular weight hydrocarbons with lithium 2,5-dihydroxybenzoate matrix. Rapid Commun. Mass Spectrom. 2003;17:2203–2207. doi: 10.1002/rcm.1178. PubMed DOI
Vrkoslav V., Muck A., Cvačka J., Svatoš A. MALDI Imaging of Neutral Cuticular Lipids in Insects and Plants. J. Am. Soc. Mass Spectrom. 2010;21:220–231. doi: 10.1016/j.jasms.2009.10.003. PubMed DOI
Lorente E., Berrueco C., Herod A.A., Millan M., Kandiyoti R. The detection of high-mass aliphatics in petroleum by matrix-assisted laser desorption/ionisation mass spectrometry. Rapid Commun. Mass Spectrom. 2012;26:1581–1590. doi: 10.1002/rcm.6261. PubMed DOI
Cvačka J., Jiroš P., Šobotník J., Hanus R., Svatoš A. Analysis of insect cuticular hydrocarbons using matrix-assisted laser desorption/ionization mass spectrometry. J. Chem. Ecol. 2006;32:409–434. doi: 10.1007/s10886-005-9008-5. PubMed DOI
Golian M., Bien T., Schmelzle S., Esparza-Mora M.A., McMahon D.P., Dreisewerd K., Buellesbach J. Neglected Very Long-Chain Hydrocarbons and the Incorporation of Body Surface Area Metrics Reveal Novel Perspectives for Cuticular Profile Analysis in Insects. Insects. 2022;13:83. doi: 10.3390/insects13010083. PubMed DOI PMC
Yew J.Y., Cody R.B., Kravitz E.A. Cuticular hydrocarbon analysis of an awake behaving fly using direct analysis in real-time time-of-flight mass spectrometry. Proc. Natl. Acad. Sci. USA. 2008;105:7135–7140. doi: 10.1073/pnas.0802692105. PubMed DOI PMC
Cody R.B., Dane A.J. Soft Ionization of Saturated Hydrocarbons, Alcohols and Nonpolar Compounds by Negative-Ion Direct Analysis in Real-Time Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2013;24:329–334. doi: 10.1007/s13361-012-0569-6. PubMed DOI
Yang Z.H., Attygalle A.B. Aliphatic Hydrocarbon Spectra by Helium Ionization Mass Spectrometry (HIMS) on a Modified Atmospheric-Pressure Source Designed for Electrospray Ionization. J. Am. Soc. Mass Spectrom. 2011;22:1395–1402. doi: 10.1007/s13361-011-0149-1. PubMed DOI
Kaminski M., Kartanowicz R., Gilgenast E., Namiesnik J. High-performance liquid chromatography in group-type separation and technical or process analytics of petroleum products. Crit. Rev. Anal. Chem. 2005;35:193–216. doi: 10.1080/10408340500304024. DOI
Hayes P.C., Anderson S.D. The analysis of hydrocarbon distillates for group types using HPLC with dielectric-constant detection—A review. J. Chromatogr. Sci. 1988;26:210–216. doi: 10.1093/chromsci/26.5.210. DOI
Benson G.A., Lennon M. Indirect photometric detection of straight chain hydrocarbons separated by reverse phase HPLC. J. High Resolut. Chromatogr. 1987;10:109–110. doi: 10.1002/jhrc.1240100216. DOI
Hayes P.C., Anderson S.D. Hydrocarbon group type analyzer system for the rapid determination of saturates, olefins, and aromatics in hydrocarbon distillate products. Anal. Chem. 1986;58:2384–2388. doi: 10.1021/ac00125a008. DOI
Bartelt N.C., Einstein T.L., Roelofs L.D. Transfer-matrix approach to estimating coverage discontinuities and multicritical-point positions in two-dimensional lattice-gas phase diagrams. Phys. Rev. B. 1986;34:1616–1623. doi: 10.1103/PhysRevB.34.1616. PubMed DOI
Lam S., Grushka E. Silver loaded aluminosilicate as a stationary phase for liquid-chromatographic separation of unsaturated compounds. J. Chromatogr. Sci. 1977;15:234–238. doi: 10.1093/chromsci/15.7.234. DOI
Dobson G., Christie W.W., Nikolovadamyanova B. Silver ion chromatography of lipids and fatty acids. J. Chromatogr. B. 1995;671:197–222. doi: 10.1016/0378-4347(95)00157-E. PubMed DOI
Nikolova-Damyanova B. Retention of lipids in silver ion high-performance liquid chromatography: Facts and assumptions. J. Chromatogr. A. 2009;1216:1815–1824. doi: 10.1016/j.chroma.2008.10.097. PubMed DOI
Adlof R. Analysis of triacylglycerol and fatty acid isomers by low-temperature silver-ion high performance liquid chromatography with acetonitrile in hexane as solvent: Limitations of the methodology. J. Chromatogr. A. 2007;1148:256–259. doi: 10.1016/j.chroma.2007.03.070. PubMed DOI
Sehat N., Rickert R., Mossoba M.M., Kramer J.K.G., Yurawecz M.P., Roach J.A.G., Adlof R.O., Morehouse K.M., Fritsche J., Eulitz K.D., et al. Improved separation of conjugated fatty acid methyl esters by silver ion-high-performance liquid chromatography. Lipids. 1999;34:407–413. doi: 10.1007/s11745-999-0379-3. PubMed DOI
Adlof R.O. Separation of cis and trans unsaturated fatty acid methyl esters by silver ion high-performance liquid chromatography. J. Chromatogr. A. 1994;659:95–99. doi: 10.1016/0021-9673(94)85010-0. PubMed DOI
Nikolovadamyanova B., Herslof B.G., Christie W.W. Silver ion high-performance liquid-chromatography of derivatives of isomeric fatty acids. J. Chromatogr. A. 1992;609:133–140. doi: 10.1016/0021-9673(92)80156-O. DOI
Nikolova-Damyanova B., Christie W.W., Herslof B. Silver ion high-performance liquid chromatography of esters of isomeric octadecenoic fatty acids with short-chain monounsaturated alcohols. J. Chromatogr. A. 1995;693:235–239. doi: 10.1016/0021-9673(94)01201-O. DOI
Momchilova S.M., Nikolova-Damyanova B.M. Advances in Silver Ion Chromatography for the Analysis of Fatty Acids and Triacylglycerols—2001 to 2011. Anal. Sci. 2012;28:837–844. doi: 10.2116/analsci.28.837. PubMed DOI
Cvačka J., Hovorka O., Jiroš P., Kindl J., Stránský K., Valterová I. Analysis of triacylglycerols in fat body of bumblebees by chromatographic methods. J. Chromatogr. A. 2006;1101:226–237. doi: 10.1016/j.chroma.2005.10.001. PubMed DOI
Lisa M., Velinska H., Holcapek M. Regioisomeric Characterization of Triacylglycerols Using Silver-Ion HPLC/MS and Randomization Synthesis of Standards. Anal. Chem. 2009;81:3903–3910. doi: 10.1021/ac900150j. PubMed DOI
Lisa M., Netusilova K., Franek L., Dvorakova H., Vrkoslav V., Holcapek M. Characterization of fatty acid and triacylglycerol composition in animal fats using silver-ion and non-aqueous reversed-phase high-performance liquid chromatography/mass spectrometry and gas chromatography/flame ionization detection. J. Chromatogr. A. 2011;1218:7499–7510. doi: 10.1016/j.chroma.2011.07.032. PubMed DOI
Nordback J., Lundberg E. High resolution separation of nonpolar lipid classes by HPLC-ELSD using alumina as stationary phase. J. High Resolut. Chromatog. 1999;22:483–486. doi: 10.1002/(SICI)1521-4168(19990901)22:9<483::AID-JHRC483>3.0.CO;2-O. DOI
Gao J.S., Owen B.C., Borton D.J., Jin Z.C., Kenttamaa H.I. HPLC/APCI Mass Spectrometry of Saturated and Unsaturated Hydrocarbons by Using Hydrocarbon Solvents as the APCI Reagent and HPLC Mobile Phase. J. Am. Soc. Mass Spectrom. 2012;23:816–822. doi: 10.1007/s13361-012-0347-5. PubMed DOI
Tose L.V., Cardoso F.M.R., Fleming F.P., Vicente M.A., Silva S.R.C., Aquije G., Vaz B.G., Romao W. Analyzes of hydrocarbons by atmosphere pressure chemical ionization FT-ICR mass spectrometry using isooctane as ionizing reagent. Fuel. 2015;153:346–354. doi: 10.1016/j.fuel.2015.03.004. DOI
Hourani N., Kuhnert N. High molecular weight nonpolar hydrocarbons as pure model substances and in motor oil samples can be ionized without fragmentation by atmospheric pressure chemical ionization mass spectrometry. Rapid Commun. Mass Spectrom. 2012;26:2365–2371. doi: 10.1002/rcm.6338. PubMed DOI
Tose L.V., Silva S.K.C., Barros E.V., Souza L.M., Pinto F.E., Palomino D.K., Freitas J.C.C., Thompson C.J., Vaz B.G., Lacerda V., et al. APCI(+)FT-ICR MS Analysis of Hydrocarbons Using Isooctane as Ionizing Reagent—A Comparison with HTGC-FID, GCxGC-MS and NMR. J. Braz. Chem. Soc. 2019;30:997–1009. doi: 10.21577/0103-5053.20180249. DOI
Manheim J.M., Milton J.R., Zhang Y., Kenttämaa H.I. Fragmentation of Saturated Hydrocarbons upon Atmospheric Pressure Chemical Ionization Is Caused by Proton-Transfer Reactions. Anal. Chem. 2020;92:8883–8892. doi: 10.1021/acs.analchem.0c00681. PubMed DOI
Strmeň T., Vrkoslav V., Bosáková Z., Cvačka J. Atmospheric pressure chemical ionization mass spectrometry at low flow rates: Importance of ion source housing. Rapid Commun. Mass Spectrom. 2020;34:e8722. doi: 10.1002/rcm.8722. PubMed DOI
Owen B.C., Gao J., Borton D.J., II, Amundson L.M., Archibold E.F., Tan X., Azyat K., Tykwinski R., Gray M., Kenttaemaa H.I. Carbon disulfide reagent allows the characterization of nonpolar analytes by atmospheric pressure chemical ionization mass spectrometry. Rapid Commun. Mass Spectrom. 2011;25:1924–1928. doi: 10.1002/rcm.5063. PubMed DOI
Kim Y.H., Kim S. Improved Abundance Sensitivity of Molecular Ions in Positive-Ion APCI MS Analysis of Petroleum in Toluene. J. Am. Soc. Mass Spectrom. 2010;21:386–392. doi: 10.1016/j.jasms.2009.11.001. PubMed DOI
Jackson L.L., Armold M.T., Regnier F.E. Cuticular lipids of adult fleshflies, Sarcophaga bullata. Insect Biochem. 1974;4:369–379. doi: 10.1016/0020-1790(74)90074-2. DOI
Armold M.T., Regnier F.E. Developmental-study of cuticular hydrocarbons of Sarcophaga bullata. J. Insect Physiol. 1975;21:1827–1833. doi: 10.1016/0022-1910(75)90249-8. PubMed DOI
Vrkoslav V., Urbanová K., Haková M., Cvačka J. Analysis of wax esters by silver-ion high-performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A. 2013;1302:105–110. doi: 10.1016/j.chroma.2013.06.031. PubMed DOI
Jeffrey B.S.J. Silver-complexation liquid-chromatography for fast, high-resolution separations of triacylglycerols. J. Am. Oil Che. Soc. 1991;68:289–293. doi: 10.1007/BF02657678. DOI
Adlof R., List G. Analysis of triglyceride isomers by silver-ion high-performance liquid chromatography—Effect of column temperature on retention times. J. Chromatogr. A. 2004;1046:109–113. doi: 10.1016/j.chroma.2004.06.012. PubMed DOI
Vrkoslav V., Urbanová K., Cvačka J. Analysis of wax ester molecular species by high performance liquid chromatography/atmospheric pressure chemical ionisation mass spectrometry. J. Chromatogr. A. 2010;1217:4184–4194. doi: 10.1016/j.chroma.2009.12.048. PubMed DOI
Holčapek M., Lísa M., Jandera P., Kabátová N. Quantitation of triacylglycerols in plant oils using HPLC with APCI-MS, evaporative light-scattering, and UV detection. J. Sep. Sci. 2005;28:1315–1333. doi: 10.1002/jssc.200500088. PubMed DOI
Marotta E., Paradisi C. A Mass Spectrometry Study of Alkanes in Air Plasma at Atmospheric Pressure. J. Am. Soc. Mass Spectrom. 2009;20:697–707. doi: 10.1016/j.jasms.2008.12.005. PubMed DOI
Vrkoslav V., Cvačka J. Identification of the double-bond position in fatty acid methyl esters by liquid chromatography/atmospheric pressure chemical ionisation mass spectrometry. J. Chromatogr. A. 2012;1259:244–250. doi: 10.1016/j.chroma.2012.04.055. PubMed DOI
Gilby A.R., Cox M.E. The cuticular lipids of the cockroach, Periplaneta americana (L.) J. Insect Physiol. 1963;9:671–681. doi: 10.1016/0022-1910(63)90010-6. DOI
Jackson L.L. Cuticular lipids of insects. 4. Hydrocarbons of cockroaches Periplaneta japonica and Periplaneta americana compared to other cockroach hydrocarbons. Comp. Biochem. Physiol. 1972;41:331–336. doi: 10.1016/0305-0491(72)90035-1. DOI
Said I., Costagliola G., Leoncini I., Rivault C. Cuticular hydrocarbon profiles and aggregation in four Periplaneta species (Insecta: Dictyoptera) J. Insect Physiol. 2005;51:995–1003. doi: 10.1016/j.jinsphys.2005.04.017. PubMed DOI