Gas Dynamic Virtual Nozzle Sprayer for an Introduction of Liquid Samples in Atmospheric Pressure Ionization Mass Spectrometry

. 2023 Feb 28 ; 95 (8) : 4196-4203. [epub] 20230217

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36800482

Electrospray may exhibit inadequate ionization efficiency in some applications. In such cases, atmospheric-pressure chemical ionization (APCI) and photoionization (APPI) can be used. Despite a wide application potential, no APCI and APPI sources dedicated to very low sample flow rates exist on the market. Since the ion source performance depends on the transfer of analytes from the liquid to the gas phase, a nebulizer is a critical component of an ion source. Here, we report on the nebulizer with a gas dynamic virtual nozzle (GDVN) and its applicability in APCI at microliter-per-minute flow rates. Nebulizers differing by geometrical parameters were fabricated and characterized regarding the jet breakup regime, droplet size, droplet velocity, and spray angle for liquid flow rates of 0.75-15.0 μL/min. A micro-APCI source with the GDVN nebulizer behaved as a mass-flow-sensitive detector and provided stable and intense analyte signals. Compared to a classical APCI source, an order of magnitude lower detection limit for verapamil was achieved. Mass spectra recorded with the nebulizer in dripping and jetting modes were almost identical and did not differ from normal APCI spectra. Clogging never occurred during the experiments, indicating the high robustness of the nebulizer. Low-flow-rate APCI and APPI sources with a GDVN sprayer promise new applications for low- and medium-polar analytes.

Zobrazit více v PubMed

De Hoffmann E.; Stroobant V.. Mass Spectrometry: Principles and Applications; Wiley: Chichester, England, 2011; Vol. 3.reprinted

Horning E. C.; Carroll D. I.; Dzidic I.; Haegele K. D.; Horning M. G.; Stillwell R. N. Atmospheric Pressure Ionization (API) Mass Spectrometry. Solvent-Mediated Ionization of Samples Introduced in Solution and in a Liquid Chromatograph Effluent Stream. J. Chromatogr. Sci. 1974, 12, 725–729. 10.1093/chromsci/12.11.725. PubMed DOI

Covey T.; Thomson B.; Schneider B. Atmospheric pressure ion sources. Mass Spectrom. Rev. 2009, 28, 870–897. 10.1002/mas.20246. PubMed DOI

Kauppila T. J.; Syage J. A.; Benter T. Recent developments in atmospheric pressure photoionization-mass spectrometry. Mass Spectrom. Rev. 2017, 36, 423–449. 10.1002/mas.21477. PubMed DOI

Garcia-Ac A.; Segura P. A.; Viglino L.; Gagnon C.; Sauvé S. Comparison of APPI, APCI and ESI for the LC-MS/MS analysis of bezafibrate, cyclophosphamide, enalapril, methotrexate and orlistat in municipal wastewater. J. Mass Spectrom. 2011, 46, 383–390. 10.1002/jms.1904. PubMed DOI

Byrdwell W. C. Atmospheric pressure chemical ionization mass spectrometry for analysis of lipids. Lipids 2001, 36, 327–346. 10.1007/s11745-001-0725-5. PubMed DOI

Olmo-García L.; Kessler N.; Neuweger H.; Wendt K.; Olmo-Peinado J. M.; Fernández-Gutiérrez A.; Baessmann C.; Carrasco-Pancorbo A. Unravelling the Distribution of Secondary Metabolites in Olea europaea L.: Exhaustive Characterization of Eight Olive-Tree Derived Matrices by Complementary Platforms (LC-ESI/APCI-MS and GC-APCI-MS). Molecules 2018, 23, 2419.10.3390/molecules23102419. PubMed DOI PMC

Vinci G.; Piccolo A.; Bridoux M. Complementary ESI and APPI high resolution mass spectrometry unravel the molecular complexity of a soil humeome. Anal. Chim. Acta 2022, 1194, 339398.10.1016/j.aca.2021.339398. PubMed DOI

Hebra T.; Eparvier V.; Touboul D. Atmospheric pressure photoionization versus electrospray for the dereplication of highly conjugated natural products using molecular networks. J. Chromatogr. A 2020, 1630, 461533.10.1016/j.chroma.2020.461533. PubMed DOI

Antonelli M.; Holčapek M.; Wolrab D. Ultrahigh-performance supercritical fluid chromatography - mass spectrometry for the qualitative analysis of metabolites covering a large polarity range. J. Chromatogr. A 2022, 1665, 462832.10.1016/j.chroma.2022.462832. PubMed DOI

Horning E. C.; Horning M. G.; Carroll D. I.; Dzidic I.; Stillwell R. N. New picogram detection system based on a mass spectrometer with an external ionization source at atmospheric pressure. Anal. Chem. 1973, 45, 936–943. 10.1021/ac60328a035. DOI

Carroll D. I.; Dzidic I.; Stillwell R. N.; Haegele K. D.; Horning E. C. Atmospheric pressure ionization mass spectrometry. Corona discharge ion source for use in a liquid chromatograph-mass spectrometer-computer analytical system. Anal. Chem. 1975, 47, 2369–2373. 10.1021/ac60364a031. DOI

Henion J. D.; Thomson B. A.; Dawson P. H. Determination of sulfa drugs in biological fluids by liquid chromatography/mass spectrometry/mass spectrometry. Anal. Chem. 1982, 54, 451–456. 10.1021/ac00240a023. PubMed DOI

Thomson B. A. Atmospheric pressure ionization and liquid chromatography/mass spectrometry-together at last. J. Am. Soc. Mass Spectrom. 1998, 9, 187–193. 10.1016/S1044-0305(97)00285-7. DOI

API 4000 System. https://sciex.com/products/mass-spectrometers/triple-quad-systems/api-4000-system.html (accessed Aug 10, 2022).

Fundamental Guide to LCMS: SHIMADZU (Shimadzu Corporation). https://www.shimadzu.com/an/literature/lcms/jpo118059.html (accessed Aug 10, 2022).

Östman P.; Marttila S. J.; Kotiaho T.; Franssila S.; Kostiainen R. Microchip Atmospheric Pressure Chemical Ionization Source for Mass Spectrometry. Anal. Chem. 2004, 76, 6659–6664. 10.1021/ac049345g. PubMed DOI

Urban P. L. Clarifying Misconceptions about Mass and Concentration Sensitivity. J. Chem. Educ. 2016, 93, 984–987. 10.1021/acs.jchemed.5b00986. DOI

Takeda S.; Tanaka Y.; Yamane M.; Siroma Z.; Wakida S.; Otsuka K.; Terabe S. J. Chromatogr. A 2001, 924, 415–420. 10.1016/S0021-9673(01)00899-8. PubMed DOI

Nyholm L. M.; Sjöberg P. J. R.; Markides K. E. High-temperature open tubular liquid chromatography coupled to atmospheric pressure chemical ionisation mass spectrometry. J. Chromatogr. A 1996, 755, 153–164. 10.1016/S0021-9673(96)00609-7. DOI

Vrkoslav V.; Rumlová B.; Strmeň T.; Nekvasilová P.; Šulc M.; Cvačka J. Applicability of low-flow atmospheric pressure chemical ionization and photoionization mass spectrometry with a microfabricated nebulizer for neutral lipids. Rapid Commun. Mass Spectrom. 2018, 32, 639–648. 10.1002/rcm.8086. PubMed DOI

Strmeň T.; Vrkoslav V.; Pačes O.; Cvačka J. Evaluation of an ion source with a tubular nebulizer for microflow atmospheric pressure chemical ionization. Monatsh. Chem. 2018, 149, 987–994. 10.1007/s00706-018-2172-4. DOI

Li F.-A.; Huang J.-L.; Shen S.-Y.; Wang C.-W.; Her G.-R. Development of a Liquid-Junction/Low-Flow Interface for Phosphate Buffer Capillary Electrophoresis Mass Spectrometry. Anal. Chem. 2009, 81, 2810–2814. 10.1021/ac802491y. PubMed DOI

Tanaka Y.; Otsuka K.; Terabe S. Evaluation of an atmospheric pressure chemical ionization interface for capillary electrophoresis-mass spectrometry. J. Pharm. Biomed. Anal. 2003, 30, 1889–1895. 10.1016/S0731-7085(02)00532-0. PubMed DOI

Östman P.; Jäntti S.; Grigoras K.; Saarela V.; Ketola R. A.; Franssila S.; Kotiaho T.; Kostiainen R. Capillary liquid chromatography-microchip atmospheric pressure chemical ionization-mass spectrometry. Lab Chip 2006, 6, 948–953. 10.1039/B601290F. PubMed DOI

Saarela V.; Haapala M.; Kostiainen R.; Kotiaho T.; Franssila S. Glass microfabricated nebulizer chip for mass spectrometry. Lab Chip 2007, 7, 644–646. 10.1039/B700101K. PubMed DOI

Rayleigh L. On The Instability Of Jets. Proc. Lond. Math. Soc. 1878, s1–10, 4–13. 10.1112/plms/s1-10.1.4. DOI

DePonte D. P.; Weierstall U.; Schmidt K.; Warner J.; Starodub D.; Spence J. C. H.; Doak R. B. Gas dynamic virtual nozzle for generation of microscopic droplet streams. J. Phys. Appl. Phys. 2008, 41, 195505.10.1088/0022-3727/41/19/195505. DOI

Gañán-Calvo A. M. Generation of Steady Liquid Microthreads and Micron-Sized Monodisperse Sprays in Gas Streams. Phys. Rev. Lett. 1998, 80, 285–288. 10.1103/PhysRevLett.80.285. DOI

Chapman H. N.; Fromme P.; Barty A.; et al. Femtosecond X-ray protein nanocrystallography. Nature 2011, 470, 73–77. 10.1038/nature09750. PubMed DOI PMC

Clanet C.; Lasheras J. C. Transition from dripping to jetting. J. Fluid Mech. 1999, 383, 307–326. 10.1017/S0022112098004066. DOI

Ambravaneswaran B.; Subramani H. J.; Phillips S. D.; Basaran O. A. Dripping–Jetting Transitions in a Dripping Faucet. Phys. Rev. Lett. 2004, 93, 034501.10.1103/PhysRevLett.93.034501. PubMed DOI

Lin S. P.Breakup of Liquid Sheets and Jets; Cambridge University Press: Cambridge, 2003.

Shaw R.The Dripping Faucet as a Model Chaotic System; Aerial Press: Santa Cruz, CA, 1984.

Teng H.; Kinoshita C. M.; Masutani S. M. Prediction of droplet size from the breakup of cylindrical liquid jets. Int. J. Multiphas. Flow 1995, 21, 129–136. 10.1016/0301-9322(94)00053-M. DOI

Funfschilling D.; Debas H.; Li H.-Z.; Mason T. G. Flow-field dynamics during droplet formation by dripping in hydrodynamic-focusing microfluidics. Phys. Rev. E 2009, 80, 015301.10.1103/PhysRevE.80.015301. PubMed DOI

Erb R. M.; Obrist D.; Chen P. W.; Studer J.; Studart A. R. Predicting sizes of droplets made by microfluidic flow-induced dripping. Soft Matter 2011, 7, 8757–8761. 10.1039/C1SM06231J. DOI

Yobas L.; Martens S.; Ong W.-L.; Ranganathan N. High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets. Lab Chip 2006, 6, 1073–1079. 10.1039/B602240E. PubMed DOI

Yergey A. L.; Edmonds C. G.; Lewis I. A. S.; Vestal M. L.. Thermospray. In Liquid Chromatography/Mass Spectrometry: Techniques and Applications; Yergey A. L., Edmonds C. G., Lewis I. A. S., Vestal M. L., Eds.; Modern Analytical Chemistry; Springer US: Boston, MA, 1990; pp 31–85.

Wortmann A.; Kistler-Momotova A.; Zenobi R.; Heine M. C.; Wilhelm O.; Pratsinis S. E. Shrinking droplets in electrospray ionization and their influence on chemical equilibria. J. Am. Soc. Mass Spectrom. 2007, 18, 385–393. 10.1016/j.jasms.2006.10.010. PubMed DOI

Nemes P.; Marginean I.; Vertes A. Spraying Mode Effect on Droplet Formation and Ion Chemistry in Electrosprays. Anal. Chem. 2007, 79, 3105–3116. 10.1021/ac062382i. PubMed DOI

Marsh B. M.; Iyer K.; Cooks R. G. Reaction Acceleration in Electrospray Droplets: Size, Distance, and Surfactant Effects. J. Am. Soc. Mass Spectrom. 2019, 30, 2022–2030. 10.1007/s13361-019-02264-w. PubMed DOI

Zahoor R.; Bajt S.; Šarler B. Influence of Gas Dynamic Virtual Nozzle Geometry on Micro-Jet Characteristics. Int. J. Multiphas. Flow 2018, 104, 152–165. 10.1016/j.ijmultiphaseflow.2018.03.003. DOI

Kumar R.; Kuloor N. K.. The Formation of Bubbles and Drops; Drew T. B., Cokelet G. R., Hoopes J. W., Vermeulen T., Eds.; Advances in Chemical Engineering; Academic Press, 1970; Vol. 8, pp 255–368.

Gan Y.; Jiang Z.; Li H.; Luo Y.; Chen X.; Shi Y.; Yan Y.; Yan Y. A comparative study on droplet characteristics and specific charge of ethanol in two small-scale electrospray systems. Sci. Rep. 2019, 9, 18791.10.1038/s41598-019-55223-6. PubMed DOI PMC

Valério J.Structure of Complex Fluids under Shear Flows; Doctoral dissertation, University of Hamburg: Germany, 2018.

Nazari R.; Zaare S.; Alvarez R. C.; Karpos K.; Engelman T.; Madsen C.; Nelson G.; Spence J. C. H.; Weierstall U.; Adrian R. J.; Kirian R. A. 3D printing of gas-dynamic virtual nozzles and optical characterization of high-speed microjets. Opt. Express 2020, 28, 21749.10.1364/OE.390131. PubMed DOI PMC

Kauppila T. J.; Östman P.; Marttila S.; Ketola R. A.; Kotiaho T.; Franssila S.; Kostiainen R. Atmospheric Pressure Photoionization-Mass Spectrometry with a Microchip Heated Nebulizer. Anal. Chem. 2004, 76, 6797–6801. 10.1021/ac049058c. PubMed DOI

Vrkoslav V.; Rumlová B.; Strmeň T.; Cvačka J. Temperature-programmed capillary high-performance liquid chromatography with atmospheric pressure chemical ionization mass spectrometry for analysis of fatty acid methyl esters. J. Sep. Sci. 2020, 43, 2579–2588. 10.1002/jssc.201901235. PubMed DOI

Strmeň T.; Vrkoslav V.; Bosáková Z.; Cvačka J. Atmospheric pressure chemical ionization mass spectrometry at low flow rates: Importance of ion source housing. Rapid Commun. Mass Spectrom. 2020, 34, e872210.1002/rcm.8722. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...