Temperature-programmed capillary high-performance liquid chromatography with atmospheric pressure chemical ionization mass spectrometry for analysis of fatty acid methyl esters
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
16-01639S
Czech Science Foundation
SVV
Charles University in Prague
CZ.02.1.01/0.0/0.0/16_019/0000729
European Regional Development Fund
PubMed
32277790
DOI
10.1002/jssc.201901235
Knihovny.cz E-zdroje
- Klíčová slova
- double bonds, high-performance liquid chromatography, lipidomics, lipids, temperature programming,
- Publikační typ
- časopisecké články MeSH
A new capillary high-performance liquid chromatography method with atmospheric pressure chemical ionization mass spectrometry was developed for the analysis of fatty acid methyl esters and long-chain alcohols. The chromatographic separation was achieved using a Zorbax SB-C18 HPLC column (0.3 × 150 mm, 3.5 μm) with a mobile phase composed of acetonitrile and formic acid and delivered isocratically at a flow rate of 10 μL/min. The column temperature was programmed simply, using a common column oven. Good reproducibility of the temperature profile and retention times were achieved. The temperature programming during the isocratic high-performance liquid chromatography run had a similar effect as a solvent gradient; it reduced retention times of later eluting analytes and improved their detection limits. Two atmospheric pressure chemical ionization sources of the mass spectrometry detector were compared: an enclosed conventional ion source and an in-house made ion source with a glass microchip nebulizer. The enclosed source provided better detectability of saturated fatty acid methyl esters and made it possible to determine the double bond positions using acetonitrile-related adducts, while the open chip-based source provided better analytical figures of merit for unsaturated fatty acid methyl esters. Temperature-programmed capillary high-performance liquid chromatography is a promising method for analyzing neutral lipids in lipidomics and other applications.
Zobrazit více v PubMed
Teutenberg T., High-Temperature Liquid Chromatography: A User's Guide for Method Development. Royal Soc Chemistry, Cambridge, UK 2010.
Tran J. V., Molander P., Greibrokk T., Lundanes E., Temperature effects on retention in reversed phase liquid chromatography. J. Sep. Sci. 2001, 24, 930-940.
Sander L. C., Wise S. A., The influence of column temperature on selectivity in reversed-phase liquid chromatography for shape-constrained solutes. J. Sep. Sci. 2001, 24, 910-920.
Hazotte A., Libong D., Chaminade P., High-temperature micro liquid chromatography for lipid molecular species analysis with evaporative light scattering detection. J. Chromatogr. A 2007, 1140, 131-139.
Hesse G., Engelhardt H., Temperaturprogrammierung bei der adsorptionschromatographie von lösungen. J. Chromatogr. A 1966, 21, 228-238.
Chen M. H., Horvath C., Temperature programming and gradient elution in reversed-phase chromatography with packed capillary columns. J. Chromatogr. A 1997, 788, 51-61.
Teutenberg T., Potential of high temperature liquid chromatography for the improvement of separation efficiency-A review. Anal. Chim. Acta 2009, 643, 1-12.
Vanhoenacker G., Sandra P., High temperature and temperature programmed HPLC: possibilities and limitations. Anal. Bioanal. Chem. 2008, 390, 245-248.
Trones R., Andersen T., Greibrokk T., Hegna D. R., Hindered amine stabilizers investigated by the use of packed capillary temperature-programmed liquid chromatography I. Poly((6-((1,1,3,3-tetramethylbutyl)-amino)-1,3,5-triazine-2,4-diyl)(2,2, 6,6-tetramethyl-4-piperidyl)imino)-1,6-hexanediyl ((2,2,6,6-tetramethyl-4-piperidyl)imino)). J. Chromatogr. A 2000, 874, 65-71.
Molander P., Thomassen A., Kristoffersen L., Greibrokk T., Lundanes E., Simultaneous determination of citalopram, fluoxetine, paroxetine and their metabolites in plasma by temperature-programmed packed capillary liquid chromatography with on-column focusing of large injection volumes. J. Chromatogr. B 2002, 766, 77-87.
Yoo J. S., Watson J. T., McGuffin V. L., Temperature-programmed microcolumn liquid chromatography/mass spectrometry. J. Microcolumn Sep. 1992, 4, 349-362.
Teutenberg T., Goetze H. J., Tuerk J., Ploeger J., Kiffmeyer T. K., Schmidt K. G., Kohorst W. G., Rohe T., Jansen H. D., Weber H., Development and application of a specially designed heating system for temperature-programmed high-performance liquid chromatography using subcritical water as the mobile phase. J. Chromatogr. A 2006, 1114, 89-96.
https://sunchrom.de/column-oven-2/ (last time accessed: March 31, 2020).
https://sim-gmbh.de/en/products/liquid-chromatography/736-ht-hplc-200-column-oven.html (last time accessed: March 31, 2020).
Urban J., Current trends in the development of porous polymer monoliths for the separation of small molecules. J. Sep. Sci. 2016, 39, 51-68.
Zajickova Z., Advances in the development and applications of organic-silica hybrid monoliths. J. Sep. Sci. 2017, 40, 25-48.
Čajka T., Fiehn O., Comprehensive analysis of lipids in biological systems by liquid chromatography-mass spectrometry. TrAC-Trends Anal. Chem. 2014, 61, 192-206.
Han X., Lipidomics: Comprehensive Mass Spectrometry of Lipids. John Wiley & Sons Inc, Hoboken 2016.
Ion Max and Ion Max-S API Source, Hardware Manual, 97055-97044 Revision D, Thermo Fisher Scientific 2008.
Nyholm L. M., Sjoberg P. J. R., Markides K. E., High-temperature open tubular liquid chromatography coupled to atmospheric pressure chemical ionisation mass spectrometry. J. Chromatogr. A 1996, 755, 153-164.
Strmeň T., Vrkoslav V., Pačes O., Cvačka J., Evaluation of an ion source with a tubular nebulizer for microflow atmospheric pressure chemical ionization. Mon. Chem. 2018, 149, 987-994.
Takeda S., Tanaka Y., Yamane M., Siroma Z., Wakida S., Otsuka K., Terabe S., Ionization of dichlorophenols for their analysis by capillary electrophoresis-mass spectrometry. J. Chromatogr. A 2001, 924, 415-420.
Ostman P., Marttila S. J., Kotiaho T., Franssila S., Kostiainen R., Microchip atmospheric pressure chemical ionization source for mass spectrometry. Anal. Chem. 2004, 76, 6659-6664.
Ostman P., Jantti S., Grigoras K., Saarela V., Ketola R. A., Franssila S., Kotiaho T., Kostiainen R., Capillary liquid chromatography-microchip atmospheric pressure chemical ionization-mass spectrometry. Lab Chip 2006, 6, 948-953.
Vrkoslav V., Rumlová B., Strmeň T., Nekvasilová P., Šulc M., Cvačka J., Applicability of low-flow atmospheric pressure chemical ionization and photoionization mass spectrometry with a microfabricated nebulizer for neutral lipids. Rapid Commun. Mass Spectrom. 2018, 32, 639-648.
Kromidas S., Gradient HPLC for Practitioners: RP, LC-MS, Ion Analytics, Biochromatography, SFC, HILIC. Wiley-VCH, Weinheim 2019.
Böhm V., Use of column temperature to optimize carotenoid isomer separation by C30 high performance liquid chromatography. J. Sep. Sci. 2001, 24, 955-959.
Sander L. C., Craft N. E., Device for subambient temperature control in liquid chromatography. Anal. Chem. 1990, 62, 1545-1547.
Řezanka T., Analysis of very long chain polyunsaturated fatty acids using high-performance liquid chromatography - atmospheric pressure chemical ionization mass spectrometry. Biochem. Syst. Ecol. 2000, 28, 847-856.
Vrkoslav V., Cvačka J., Identification of the double-bond position in fatty acid methyl esters by liquid chromatography/atmospheric pressure chemical ionisation mass spectrometry. J. Chromatogr. A 2012, 1259, 244-250.
Nikolova-Damyanova B., Christie W. W., Herslof B., Silver ion high-performance liquid chromatography of esters of isomeric octadecenoic fatty acids with short-chain monounsaturated alcohols. J. Chromatogr. A 1995, 693, 235-239.
Sehat N., Rickert R., Mossoba M. M., Kramer J. K. G., Yurawecz M. P., Roach J. A. G., Adlof R. O., Morehouse K. M., Fritsche J., Eulitz K. D., Steinhart H., Ku Y., Improved separation of conjugated fatty acid methyl esters by silver ion-high-performance liquid chromatography. Lipids 1999, 34, 407-413.
Kuhnt K., Degen C., Jahreis G., 2-Propanol in the mobile phase reduces the time of analysis of CLA isomers by silver ion-HPLC. J.Chromatogr. B 2010, 878, 88-91.
Vrkoslav V., Háková M., Pecková K., Urbanová K., Cvačka J., Localization of double bonds in wax esters by high-performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry utilizing the fragmentation of acetonitrile-related adducts. Anal. Chem. 2011, 83, 2978-2986.
Šubčiková L., Hoskovec M., Vrkoslav V., Čmelíková T., Háková E., Míková R., Coufal P., Doležal A., Plavka R., Cvačka J., Analysis of 1,2-diol diesters in vernix caseosa by high-performance liquid chromatography - atmospheric pressure chemical ionization mass spectrometry. J. Chromatogr. A 2015, 1378, 8-18.
Háková E., Vrkoslav V., Miková R., Schwarzová-Pecková K., Bosáková Z., Cvačka J., Localization of double bonds in triacylglycerols using high-performance liquid chromatography/atmospheric pressure chemical ionization ion-trap mass spectrometry. Anal. Bioanal. Chem. 2015, 407, 5175-5188.
Vacek M., Zarevúcka M., Wimmer Z., Stranský K., Koutek B., Macková M., Demnerová K., Lipase-mediated hydrolysis of blackcurrant oil. Enzyme Microb. Technol. 2000, 27, 531-536.
Vrkoslav V., Urbanová K., Cvačka J., Analysis of wax ester molecular species by high performance liquid chromatography/atmospheric pressure chemical ionisation mass spectrometry. J. Chromatogr. A 2010, 1217, 4184-4194.
Stranský K., Jursik T., Simple quantitative transesterification of lipids .1. Introduction. Fett-Lipid 1996, 98, 65-71.
Kruve A., Haapala M., Saarela V., Franssila S., Kostiainen R., Kotiaho T., Ketola R. A., Feasibility of capillary liquid chromatography-microchip-atmospheric pressure photoionization-mass spectrometry for pesticide analysis in tomato. Anal. Chim. Acta 2011, 696, 77-83.
Holčapek M., Lísa M., Jandera P., Kabátová N., Quantitation of triacylglycerols in plant oils using HPLC with APCI-MS, evaporative light-scattering, and UV detection. J. Sep. Sci. 2005, 28, 1315-1333.
Konstantinova O. V., Antonchick A. P., Oldham N. J., Zhabinskii V. N., Khripach V. A., Schneider B., Analysis of underivatized brassinosteroids by HPLC/APCI-MS. Occurrence of 3-epibrassinolide in Arabidopsis thaliana. Collect. Czech. Chem. Commun. 2001, 66, 1729-1734.
Kolakowski B. A., Grossert J. S., Ramaley L., Studies on the positive-ion mass spectra from atmospheric pressure chemical ionization of gases and solvents used in liquid chromatography and direct liquid injection. J. Am. Soc. Mass Spectrom 2004, 15, 311-324.
Strmeň T., Vrkoslav V., Bosáková Z., Cvačka J., Atmospheric pressure chemical ionization mass spectrometry at low flow rates: Importance of ion source housing. Rapid Commun. Mass Spectrom. https://doi.org/10.1002/rcm.8722
Vrkoslav V., Rumlová B., Cvačka J., Temperature-programed micro-HPLC analysis of fatty acid methyl esters with APCI-MS detection. In: 15th International Interdisciplinary Meeting on Bioanalysis. Foret F., Křenková J., Drobníková I., Klepárník K., Přikryl J. (Eds.), Institute of Analytical Chemistry of the CAS, v. v. i., Brno 2018, pp. 320-324. http://www.ce-ce.org/user_uploads/program/CECE%202018%20Proceedings_WOS.pdf (last time accessed: March 31, 2020).
Medvedovici A., Lazou K., d'Oosterlinck A., Zhao Y., Sandra P., Analysis of jojoba oil by LC-coordination ion spray-MS (LC-CIS-MS). J. Sep. Sci. 2002, 25, 173-178.