Calibration for Quantitative Chemical Analysis in IR Microscopic Imaging
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
41050996
PubMed Central
PMC12529472
DOI
10.1021/acs.analchem.5c03049
Knihovny.cz E-zdroje
- MeSH
- chromatografie plynová MeSH
- kalibrace MeSH
- lipidy * analýza MeSH
- mikroskopie * MeSH
- spektrofotometrie infračervená metody MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- lipidy * MeSH
Infrared spectroscopy of macroscopic samples can be calibrated against reference analysis, such as lipid profiles acquired by gas chromatography, and serve as a fast, low-cost, quantitative analytical method. Calibration of infrared microspectroscopic images against reference data is in general not feasible, and thus spatially resolved quantitative analysis from infrared spectral data has not been possible so far. In this work, we present a deep learning-based calibration transfer method to adapt regression models established for macroscopic infrared spectroscopic data to apply to microscopic pixel spectra of hyperspectral IR images. The calibration transfer is accomplished by transferring microspectroscopic infrared spectra to the domain of macroscopic spectra, which enables the use of models obtained for bulk measurements. This allows us to perform quantitative chemical analysis in the imaging domain based on infrared microspectroscopic measurements. We validate the suggested microcalibration approach on microspectroscopic data of oleaginous filamentous fungi, which is calibrated toward lipid profiles obtained by gas chromatography and measurements of glucosamine content to perform quantitative infrared microspectroscopy.
Faculty of Chemistry Brno University of Technology Brno 60190 South Moravia Czech Republic
Faculty of Science and Technology Norwegian University of Life Sciences Ås Akershus 1432 Norway
Zobrazit více v PubMed
Wetzel D. L., Reffner J.. Using spatially resolved Fourier transform infrared microbeam spectroscopy to examine the microstructure of wheat kernels. Cereal Foods World. 1993;38:9–20.
Wetzel D. L., Levine S. M.. Imaging Molecular Chemistry with Infrared Microscopy. Science. 1999;285:1224–1225. doi: 10.1126/science.285.5431.1224. PubMed DOI
Baker M.. et al. Using Fourier transform IR spectroscopy to analyze biological materials. Nature protocols. 2014;9:1771–1791. doi: 10.1038/nprot.2014.110. PubMed DOI PMC
Tielmann P., Boese M., Luft M., Reetz M. T.. A Practical High-Throughput Screening System for Enantioselectivity by Using FTIR Spectroscopy. Chem.Eur. J. 2003;9:3882–3887. doi: 10.1002/chem.200304885. PubMed DOI
Wubshet S. G.. et al. FTIR as a rapid tool for monitoring molecular weight distribution during enzymatic protein hydrolysis of food processing by-products. Analytical Methods. 2017;9:4247–4254. doi: 10.1039/C7AY00865A. DOI
Måge I., Böcker U., Wubshet S. G., Lindberg D., Afseth N. K.. Fourier-transform infrared (FTIR) fingerprinting for quality assessment of protein hydrolysates. LWT. 2021;152:112339. doi: 10.1016/j.lwt.2021.112339. DOI
Rodriguez-Saona L., Allendorf M.. Use of FTIR for Rapid Authentication and Detection of Adulteration of Food. Annual Review of Food Science and Technology. 2011;2:467–483. doi: 10.1146/annurev-food-022510-133750. PubMed DOI
Soyeurt H.. et al. Mid-infrared prediction of bovine milk fatty acids across multiple breeds, production systems, and countries. Journal of Dairy Science. 2011;94:1657–1667. doi: 10.3168/jds.2010-3408. PubMed DOI
Soriano-Disla J. M., Janik L. J., Viscarra Rossel R. A., Macdonald L. M., McLaughlin M. J.. The Performance of Visible, Near-, and Mid-Infrared Reflectance Spectroscopy for Prediction of Soil Physical, Chemical, and Biological Properties. Appl. Spectrosc. Rev. 2014;49:139–186. doi: 10.1080/05704928.2013.811081. DOI
Xu P.. Research and application of near-infrared spectroscopy in rapid detection of water pollution. Desalination and Water Treatment. 2018;122:1–4. doi: 10.5004/dwt.2018.22559. DOI
Barth A.. Infrared spectroscopy of proteins. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2007;1767:1073–1101. doi: 10.1016/j.bbabio.2007.06.004. PubMed DOI
Shapaval V., Brandenburg J., Blomqvist J., Tafintseva V., Passoth V., Sandgren M., Kohler A.. et al. Biochemical profiling, prediction of total lipid content and fatty acid profile in oleaginous yeasts by FTIR spectroscopy. Biotechnol. Biofuels. 2019;12:140. doi: 10.1186/s13068-019-1481-0. PubMed DOI PMC
Kosa G., Shapaval V., Kohler A., Zimmermann B.. FTIR spectroscopy as a unified method for simultaneous analysis of intra- and extracellular metabolites in high-throughput screening of microbial bioprocesses. Microb. Cell Fact. 2017;16:195. doi: 10.1186/s12934-017-0817-3. PubMed DOI PMC
Fjær K., Shapaval V., Dzurendová S., Bolaño Losada C., Dupuy-Galet B. X.. Mucoromycota fungi as powerful cell factories for modern biorefinery. Appl. Microbiol. Biotechnol. 2022;106:101. doi: 10.1007/s00253-021-11720-1. PubMed DOI
Dzurendova S., Zimmermann B., Kohler A., Reitzel K., Nielsen U. G., Dupuy-Galet B. X., Leivers S., Horn S. J., Shapaval V.. Calcium Affects Polyphosphate and Lipid Accumulation in Mucoromycota Fungi. J. Fungi. 2021;7:300. doi: 10.3390/jof7040300. PubMed DOI PMC
Küpper C.. et al. Label-free classification of colon cancer grading using infrared spectral histopathology. Faraday Discuss. 2015;187:105. doi: 10.1039/C5FD00157A. PubMed DOI
Dowling L. M., Roach P., Magnussen E. A., Kohler A., Pillai S., van Pittius D. G., Yousef I., Sulé-Suso J., Chalmers J.. et al. Fourier Transform Infrared microspectroscopy identifies single cancer cells in blood. A feasibility study towards liquid biopsy. PLoS One. 2023;18:e0289824. doi: 10.1371/journal.pone.0289824. PubMed DOI PMC
Lin H., Falahkheirkhah K., Kindratenko V., Bhargava R.. INSTRAS: INfrared Spectroscopic imaging-based TRAnsformers for medical image Segmentation. Machine Learning with Applications. 2024;16:100549. doi: 10.1016/j.mlwa.2024.100549. PubMed DOI PMC
Liu Y., Cai W., Shao X.. Standardization of near infrared spectra measured on multi-instrument. Anal. Chim. Acta. 2014;836:18–23. doi: 10.1016/j.aca.2014.05.036. PubMed DOI
Mishra P., Passos D.. Deep calibration transfer: Transferring deep learning models between infrared spectroscopy instruments. Infrared Physics Technology. 2021;117:103863. doi: 10.1016/j.infrared.2021.103863. DOI
Panchuk V., Kirsanov D., Oleneva E., Semenov V., Legin A.. Calibration transfer between different analytical methods. Talanta. 2017;170:457–463. doi: 10.1016/j.talanta.2017.04.039. PubMed DOI
Workman J. J.. A Review of Calibration Transfer Practices and Instrument Differences in Spectroscopy. Appl. Spectrosc. 2018;72:340–365. doi: 10.1177/0003702817736064. PubMed DOI
Mohlenhoff B., Romeo M., Diem M., Wood B.. Mie-Type Scattering and Non-Beer-Lambert Absorption Behavior of Human Cells in Infrared Microspectroscopy. Biophysical journal. 2005;88:3635–3640. doi: 10.1529/biophysj.104.057950. PubMed DOI PMC
Magnussen E. A., Solheim J. H., Blazhko U., Tafintseva V., Tøndel K., Liland K. H., Dzurendova S., Shapaval V., Sandt C., Borondics F., Kohler A.. et al. Deep Convolutional Neural Network Recovers Pure Absorbance Spectra from Highly Scatter-distorted Spectra of Cells. J. Biophotonics. 2020;13:e202000204. doi: 10.1002/jbio.202000204. PubMed DOI
Magnussen E. A., Zimmermann B., Blazhko U., Dzurendova S., Dupuy–Galet B., Byrtusova D., Muthreich F., Tafintseva V., Liland K. H., Tøndel K., Shapaval V., Kohler A.. et al. Deep learning-enabled Inference of 3D molecular absorption distribution of biological cells from IR spectra. Commun. Chem. 2022;5:175. doi: 10.1038/s42004-022-00792-3. PubMed DOI PMC
Muthreich F.. et al. Analytical and experimental solutions for Fourier transform infrared microspectroscopy measurements of microparticles: A case study on Quercus pollen. Anal. Chim. Acta. 2025;1351:343879. doi: 10.1016/j.aca.2025.343879. PubMed DOI
Aidoo K. E., Hendry R., Wood B. J. B.. Estimation of fungal growth in a solid state fermentation system. European journal of applied microbiology and biotechnology. 1981;12:6–9. doi: 10.1007/BF00508111. DOI
Slaný O.. et al. Animal Fat as a Substrate for Production of n-6 Fatty Acids by Fungal Solid-State Fermentation. Microorganisms. 2021;9:170. doi: 10.3390/microorganisms9010170. PubMed DOI PMC
Solheim J. H., Brandsrud M. A., Kong B., Banyasz A., Borondics F., Micouin G., Lossius S., Sulé-Suso J., Blümel R., Kohler A.. et al. Domes and semi-capsules as model systems for infrared microspectroscopy of biological cells. Sci. Rep. 2023;13:4675. doi: 10.1038/s41598-023-30130-z. PubMed DOI PMC
Davis B., Carney P., Bhargava R.. Theory of Midinfrared Absorption Microspectroscopy: I. Homogeneous Samples. Analytical chemistry. 2010;82:3474–3486. doi: 10.1021/ac902067p. PubMed DOI
Davis B., Carney P., Bhargava R.. Theory of Mid-infrared Absorption Microspectroscopy: II. Heterogeneous Samples. Analytical chemistry. 2010;82:3487–3499. doi: 10.1021/ac902068e. PubMed DOI
Bohren, C. F. ; Huffman, D. R. , Absorption and Scattering of Light by Small Particles; John Wiley & Sons, 1998.
Bello, I. ; Zoph, B. ; Vaswani, A. ; Shlens, J. ; Le, Q. V. . Attention Augmented Convolutional Networks. arXiv, 1904.09925 (2020).
Dzurendová S.. et al. Assessment of Biotechnologically Important Filamentous Fungal Biomass by Fourier Transform Raman Spectroscopy. Int. J. Mol. Sci. 2021;22:6710. doi: 10.3390/ijms22136710. PubMed DOI PMC