Application of spectroscopic methods for direct characterization of photosynthetic pigments and inert intracellular components in the model purple non sulfur bacterium Rhodospirillum rubrum

. 2025 Dec 14 ; 24 (1) : 248. [epub] 20251214

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41392311

Grantová podpora
SNSF 205321L_197275/1 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
GACR 21-15958L Grantová Agentura České Republiky

Odkazy

PubMed 41392311
PubMed Central PMC12723893
DOI 10.1186/s12934-025-02876-w
PII: 10.1186/s12934-025-02876-w
Knihovny.cz E-zdroje

BACKGROUND: Non-invasive spectroscopic methods are increasingly valued in life sciences, where preserving the native state of biomolecules is essential for accurate interpretation. Traditional analyses of microbial compounds typically involve solvent-based extraction and chromatographic separation processes, which are time consuming, damaging to samples, and can alter biomolecular structures of complexes. To overcome these limitations, we developed a novel spectroscopic workflow for direct metabolite monitoring in microbial cells. RESULTS: In this study, we established a combined spectroscopic methodology that allows direct pigment and polyhydroxyalkanoates (PHAs) analysis in complex biological samples without requiring chemical extraction procedures. The UV-Vis spectroscopy technique using an integrating sphere enables direct monitoring of pigments even in turbid whole cell suspensions, providing detailed fingerprints of bacteriochlorophyll a and carotenoids in their natural environment. Together, these techniques provide consistent information about cellular composition. Using the photosynthetic bacterium Rhodospirillum rubrum as a model organism, we demonstrate that our combined spectroscopic approach can resolve pigment states, reveal intracellular PHA content and crystallinity, and measure carotenoids and bacteriochlorophylls directly in native whole cell suspensions. Furthermore, advanced data processing provided an improved interpretation of pigment and PHA states in different cellular forms. CONCLUSIONS: This innovative combination of spectroscopic techniques reduces sample manipulation, preserves cellular integrity and provides rapid, precise, and environmentally friendly analysis of microbial metabolites in their natural physiological conditions. The demonstrated workflow is broadly applicable to biological samples where maintaining biomolecular integrity is crucial, and it has strong potential for applications in process analytical technology and industrial biotechnology.

Zobrazit více v PubMed

Bryant DA, Frigaard NU. Prokaryotic photosynthesis and phototrophy illuminated. Trends Microbiol. 2006;14:488–96. PubMed DOI

Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E. The prokaryotes. 3rd ed. New York: Springer; 2006.

Montiel-Corona V, Buitrón G. Polyhydroxyalkanoates from organic waste streams using purple non-sulfur bacteria. Bioresour Technol. 2021;323:124610. PubMed DOI

Najafpour GD, Younesi H. Bioconversion of synthesis gas to hydrogen using a light-dependent photosynthetic bacterium, DOI

Dahiya S, Chatterjee S, Sarkar O, Mohan SV. Renewable hydrogen production by dark-fermentation: current status, challenges and perspectives. Bioresour Technol. 2021;321:124354. PubMed DOI

Yen HW, Chiu CH. The influences of aerobic-dark and anaerobic-light cultivation on CoQ10 production by DOI

Wang GS, Grammel H, Abou-Aisha K, Sägesser R, Ghosh R. High-level production of the industrial product lycopene by the photosynthetic bacterium PubMed DOI PMC

Shabbir U, Zahra I, Liaqat A, Arshad A, Nawaz S, Betenbaugh M, et al. Polyhydroxyalkanoate production by PubMed DOI

Koller M, Maršálek L, de Sousa Dias MM, Braunegg G. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. N Biotechnol. 2017;37:24–38. PubMed DOI

Sudesh K, Abe H, Doi Y. Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci. 2000;25:1503–55. DOI

Obruca S, Sedlacek P, Slaninova E, Fritz I, Daffert C, Meixner K, et al. Novel unexpected functions of PHA granules. Appl Microbiol Biotechnol. 2020;104:4795–810. PubMed DOI

Duvigneau S, Kettner A, Carius L, Griehl C, Findeisen R, Kienle A. Fast, inexpensive, and reliable HPLC method to determine monomer fractions in poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Appl Microbiol Biotechnol. 2021;105:4743–9. PubMed DOI PMC

Satoh H, Sakamoto T, Kuroki Y, Kudo Y, Mino T. Application of the alkaline-digestion-HPLC method to the rapid determination of polyhydroxyalkanoate in activated sludge. J Water Environ Technol. 2016;14:411–21. DOI

Khang TU, Kim MJ, Yoo JI, Sohn YJ, Jeon SG, Park SJ, et al. Rapid analysis of polyhydroxyalkanoate contents and its monomer compositions by pyrolysis-gas chromatography combined with mass spectrometry (Py-GC/MS). Int J Biol Macromol. 2021;174:449–56. PubMed DOI

Lichtenthaler HK, Buschmann C. Chlorophylls and carotenoids: measurement and characterization by UV-Vis spectroscopy. Curr Protoc Food Anal Chem. 2001; 1.1:F4.3.1–8.

Riis V, Mai W. Gas chromatographic determination of poly-β-hydroxybutyric acid in microbial biomass after hydrochloric acid propanolysis. J Chromatogr. 1998;A 445:285–9.

Kerby RL, Ludden PW, Roberts GP. Carbon monoxide-dependent growth of PubMed DOI PMC

Braunegg G, Sonnleitner B, Lafferty RM. A rapid gas chromatographic method for the determination of poly-β-hydroxybutyric acid in microbial biomass. Eur J Appl Microbiol Biotechnol. 1978;6:29–37. DOI

Zavřel T, Sinetova MA, Červený J. Measurement of chlorophyll DOI

Ritchie RJ. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth Res. 2006;89:27–41. PubMed DOI

Wellburn AR. The spectral determination of chlorophylls DOI

Slaninova E, Sedlacek P, Mravec F, Mullerova L, Samek O, Koller M, et al. Light scattering on PHA granules protects bacterial cells against the harmful effects of UV radiation. Appl Microbiol Biotechnol. 2018;102:1923–31. PubMed DOI

Mlynarikova K, Samek O, Bernatova S, Ruzicka F, Jezek J, Haronikova A, et al. Influence of culture media on microbial fingerprints using Raman spectroscopy. Sensors. 2015;15:29635–47. PubMed DOI PMC

Samek O, Obruca S, Siler M, Sedlacek P, Benesova P, Kucera D, et al. Quantitative Raman spectroscopy analysis of polyhydroxyalkanoates produced by PubMed DOI PMC

Chandarana C, Suthar J, Goyal A. Spectrophotometric techniques: A versatile tool for bioprocess monitoring. Curr Biotechnol. 2021;10:7–12. DOI

Schultz JE, Weaver PF. Fermentation and anaerobic respiration by PubMed DOI PMC

Zeiger L, Grammel H. Model-Based high cell density cultivation of PubMed DOI

Godoy MS, Verdu I, de Miguel SR, Jimenez JD, Prieto MA. Exploring PubMed DOI PMC

Tang M, Zhen X, Zhao G, Wu S, Hua W, Qiang J, et al. The metabolic pathways of carbon assimilation and polyhydroxyalkanoate production by PubMed DOI PMC

Rodríguez A, Hernández-Herreros N, García JL, Prieto MA. Enhancement of biohydrogen production rate in PubMed DOI PMC

Keister DL, Minton NJ. Energy-linked reactions in photosynthetic bacteria. III. Further studies on energy-linked nicotinamide-adenine dinucleotide reduction by PubMed DOI

Liu J, Zhao Y, Diao M, Wang W, Hua W, Wu S, et al. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production by

Segura PC, Wattiez R, Wouwer AV, Leroy B, Dewasme L. Dynamic modeling of PubMed DOI

Kaplan PD, Dinsmore AD, Yodh AG, Pine DJ. Diffuse-transmission spectroscopy: A structural probe of opaque colloidal mixtures. Phys Rev E. 1994;50:6:4827. DOI

Ritchie RJ, Sma-Air S. Using integrating sphere spectrophotometry in unicellular algal research. J Appl Phycol. 2020;32:2947–58. DOI

Ritchie RJ, Sma-Air S. Solvent-free chlorophyll spectrometry in unicellular algal research. J Appl Phycol. 2020;32:2711–23. DOI

Meixner K, Daffert C, Dalnodar D, Mrazova K, Hrubanova K, Krzyzanek V, et al. Glycogen, poly(3-hydroxybutyrate) and pigment accumulation in three PubMed DOI PMC

Tani K, Kanno R, Ji XC, Hall M, Yu LJ, Kimura Y, et al. Cryo-EM structure of the photosynthetic LH1-RC complex from DOI

Chang MC, Callahan PM, Parkes-Loach PS, Cotton TM, Loach PA, Chang MC, et al. Spectroscopic characterization of the light-harvesting complex of PubMed DOI

Fiedor L, Akahane J, Koyama Y. Carotenoid-induced cooperative formation of bacterial photosynthetic LH1 complex. Biochemistry. 2004;43:16487–96. PubMed DOI

Gouterman M. Spectra of porphyrins. J Mol Spectrosc. 1961;6:138–63. DOI

Llansola-Portoles MJ, Pascal AA, Robert B. Electronic and vibrational properties of carotenoids: from PubMed DOI PMC

Hempel J, Schädle CN, Leptihn S, Carle R, Schweiggert RM. Structure related aggregation behavior of carotenoids and carotenoid esters. J Photochem Photobiol Chem. 2016;317:161–74. DOI

Wang C, Berg CJ, Hsu CC, Merrill BA, Tauber MJ. Characterization of carotenoid aggregates by steady-state optical spectroscopy. J Phys Chem B. 2012;116:10617–30. PubMed DOI

Ritchie RJ. Measurement of chlorophylls DOI

Drieschner T, Ostertag E, Boldrini B, Lorenz A, Brecht M, Rebner K. Direct optical detection of cell density and viability of mammalian cells by means of UV/VIS spectroscopy. Anal Bioanal Chem. 2020;412:3359–71. PubMed DOI

Mototake YI, Igarashi Y, Takenaka H, Nagata K, Okada M. Spectral deconvolution through bayesian LARS-OLS. J Phys Soc Japan. 2018;87:11:114004. DOI

Paiva EM, Hyttinen E, Dönsberg T, Barth D. Biological contaminants analysis in microalgae culture by UV–Vis spectroscopy and machine learning. Spectrochim Acta Mol Biomol Spectrosc. 2025;330:125690. DOI

Zhang Q, Wang J, Li C, Zheng M, He Z, Zou Y, et al. Characterization and bioactive potential of carotenoid lutein from PubMed DOI PMC

Mal SA, Ibrahim GS, Al Khalaf MI, Al-Hejin AM, Bataweel NM, Abu-Zaid M. Production and partial characterization of yellow pigment produced by

Quijano-Ortega N, Fuenmayor CA, Zuluaga-Dominguez C, Diaz-Moreno C, Ortiz-Grisales S, García-Mahecha M, et al. FTIR-ATR spectroscopy combined with multivariate regression modeling as a preliminary approach for carotenoids determination in DOI

Christensen M, Chiciudean I, Jablonski P, Tanase AM, Shapaval V, Hansen H. Towards high-throughput screening (HTS) of polyhydroxyalkanoate (PHA) production via Fourier transform infrared (FTIR) spectroscopy of DOI

Sedlacek P, Slaninova E, Enev V, Koller M, Nebesarova J, Marova I, et al. What keeps polyhydroxyalkanoates in bacterial cells amorphous? A derivation from stress exposure experiments. Appl Microbiol Biotechnol. 2019;103:1905–17. PubMed DOI

Quintelas C, Ferreira EC, Lopes JA, Sousa C. An overview of the evolution of infrared spectroscopy applied to bacterial typing. Biotechnol J. 2018;13(1):1700449. DOI

Tarantilis PA, Beljebbar A, Manfait M, Polissiou M. FT-IR, FT-Raman spectroscopic study of carotenoids from saffron ( DOI

Nivens DE, Palmer RJ, White DC. Continuous nondestructive monitoring of microbial biofilms: A review of analytical techniques. J Ind Microbiol. 1995;15:263–76. DOI

Lorand T, Deli J, Molnar P, Toth G. FT-IR study of some carotenoids. Helv Chim Acta. 2002;85:1691–7. DOI

Holt SC, Marr AG. Location of chlorophyll in PubMed DOI PMC

Fotiadis D, Qian P, Philippsen A, Bullough PA, Engel A, Hunter CN. Structural analysis of the reaction center light-harvesting complex I photosynthetic core complex of PubMed DOI

Saito S, Tasumi M. Normal-coordinate analysis of retinal isomers and assignments of Raman and infrared bands. J Raman Spectrosc. 1983;14:236–45. DOI

Picorel R, Holt RE, Cotton TM, Seibert M. Surface-enhanced resonance Raman scattering spectroscopy of bacterial photosynthetic membranes. The carotenoid of PubMed DOI

Robert B, Lutz M. Structures of antenna complexes of several DOI

Saito S, Tasumi M. Normal-coordinate analysis of β-carotene isomers and assignments of the Raman and infrared bands. J Raman Spectros. 1983;14:310–21. DOI

Hayashi H, Hamaguchi H, Tasumi M. Resonance Raman spectra of light-harvesting bacteriochlorophyll DOI

Kharcheva A, Zhiltsova, Emelyantsev AP, Lunina O, Krasnova E, Voronov D et al. Spectrophotometric quantification of chlorosomal bacteriochlorophyll in intact cells of green sulphur bacteria: Monocultures and natural water. EARSeL eProceedings. 2018;17:7–15.

Arcos-Hernandez MV, Gurieff N, Pratt S, Magnusson P, Werker A, Vargas A, et al. Rapid quantification of intracellular PHA using infrared spectroscopy: An application in mixed cultures. J Biotechnol. 2010;150:372–9. PubMed DOI

Naumann D, Helm D, Labischinski H. Microbiological characterizations by FT-IR spectroscopy. Nature. 1991;351:81–2. PubMed DOI

Shao Y, Gu W, Jiang L, Zhu Y. Study on the visualization of pigment in PubMed DOI PMC

Classen J, Langer M, Jockwer A, Traenkle J. Larger-scale, stirred-tank bioreactors. BioProcess Int. 2022;20:34–8.

Dzurendova S, Olsen PM, Byrtusova D, Tafintseva V, Shapaval V, Horn SJ et al. Raman spectroscopy online monitoring of biomass production, intracellular metabolites and carbon substrates during submerged fermentation of oleaginous and carotenogenic microorganisms. Microb Cell Fact. 2023;22:261. PubMed DOI PMC

Neumann B. Quantitative UV/VIS-spectroscopy on turbid samples. Analytik News; 2022. https://analytik.news/en/papers/2023/2.html

Taylor JL. Integrating sphere functionality: The scatter transmission measurement. PerkinElmer Tech Note; 2013.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...