Raman Spectroscopy-A Novel Method for Identification and Characterization of Microbes on a Single-Cell Level in Clinical Settings
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
35531343
PubMed Central
PMC9072635
DOI
10.3389/fcimb.2022.866463
Knihovny.cz E-zdroje
- Klíčová slova
- Raman spectroscopy, Raman tweezers, antimicrobial resistance, diagnostics, identification of microorganisms, magnetic beads, microfluidic devices,
- MeSH
- analýza jednotlivých buněk MeSH
- antiinfekční látky * MeSH
- faktory virulence MeSH
- lidé MeSH
- Ramanova spektroskopie * metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- antiinfekční látky * MeSH
- faktory virulence MeSH
Rapid and accurate identification of pathogens causing infections is one of the biggest challenges in medicine. Timely identification of causative agents and their antimicrobial resistance profile can significantly improve the management of infection, lower costs for healthcare, mitigate ever-growing antimicrobial resistance and in many cases, save lives. Raman spectroscopy was shown to be a useful-quick, non-invasive, and non-destructive -tool for identifying microbes from solid and liquid media. Modifications of Raman spectroscopy and/or pretreatment of samples allow single-cell analyses and identification of microbes from various samples. It was shown that those non-culture-based approaches could also detect antimicrobial resistance. Moreover, recent studies suggest that a combination of Raman spectroscopy with optical tweezers has the potential to identify microbes directly from human body fluids. This review aims to summarize recent advances in non-culture-based approaches of identification of microbes and their virulence factors, including antimicrobial resistance, using methods based on Raman spectroscopy in the context of possible use in the future point-of-care diagnostic process.
Zobrazit více v PubMed
Almarashi J. F. M., Kapel N., Wilkinson T. S., Telle H. H. (2012). Raman Spectroscopy of Bacterial Species and Strains Cultivated Under Reproducible Conditions. Spectroscopy: Int. J. 27, 361–365. doi: 10.1155/2012/540490 DOI
Amann R., Fuchs B. M. (2008). Single-Cell Identification in Microbial Communities by Improved Fluorescence in Situ Hybridization Techniques. Nat. Rev. Microbiol. 6 (5), 339–348. doi: 10.1038/nrmicro1888 PubMed DOI
Ashkin A. (1997). Optical Trapping and Manipulation of Neutral Particles Using Lasers. Proc. Natl. Acad. Sci. 94 (10), 4853–4860. doi: 10.1073/pnas.94.10.4853 PubMed DOI PMC
Athamneh A. I. M., Alajlouni R. A., Wallace R. S., Seleem M. N., Senger R. S. (2014). Phenotypic Profiling of Antibiotic Response Signatures in Escherichia Coli Using Raman Spectroscopy. Antimicrob. Agents Chemother. 58 (3), 1302–1314. doi: 10.1128/AAC.02098-13 PubMed DOI PMC
Auner G. W., Koya S. K., Huang C., Broadbent B., Trexler M., Auner Z., et al. . (2018). Applications of Raman Spectroscopy in Cancer Diagnosis. Cancer Metastasis Rev. 37 (4), 691–717. doi: 10.1007/s10555-018-9770-9 PubMed DOI PMC
Avci E., Kaya N. S., Ucankus G., Culha M. (2015). Discrimination of Urinary Tract Infection Pathogens by Means of Their Growth Profiles Using Surface Enhanced Raman Scattering. Anal. Bioanal. Chem. 407 (27), 8233–8241. doi: 10.1007/s00216-015-8950-5 PubMed DOI
Bader O., Weig M., Taverne-Ghadwal L., Lugert R., Groß U., Kuhns M. (2011). Improved Clinical Laboratory Identification of Human Pathogenic Yeasts by Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry. Clin. Microbiol. Infect. 17 (9), 1359–1365. doi: 10.1111/j.1469-0691.2010.03398.x PubMed DOI
Balloux F., van Dorp L. (2017). Q&a: What are Pathogens, and What Have They Done to and for Us? BMC Biol. 15 (1), 91. doi: 10.1186/s12915-017-0433-z PubMed DOI PMC
Berensmeier S. (2006). Magnetic Particles for the Separation and Purification of Nucleic Acids. Appl. Microbiol. Biotechnol. 73 (3), 495–504. doi: 10.1007/s00253-006-0675-0 PubMed DOI PMC
Bergholt M. S., Hassing S. (2009). Quantification of C-Reactive Protein in Human Blood Plasma Using Near-Infrared Raman Spectroscopy. Analyst 134 (10), 2123. doi: 10.1039/b903089a PubMed DOI
Bernatová S., Rebrošová K., Pilát Z., Šerý M., Gjevik A., Samek O., et al. . (2013). Following the Mechanisms of Bacteriostatic Versus Bactericidal Action Using Raman Spectroscopy. Molecules 18 (11), 13188–13199. doi: 10.3390/molecules181113188 PubMed DOI PMC
Bernatova S., Samek O., Pilát Z., Šerý M., Ježek J., Jákl P., et al. . (2014). “Raman Tweezers on Bacteria: Following the Mechanisms of Bacteriostatic Versus Bactericidal Action,” in Spie Photonics Europe. Ed. Popp J., et al.. (Brussels, Belgium: SPIE), 91291Y. doi: 10.1117/12.2052538 PubMed DOI
Bernatová S., Samek O., Pilat Z., Sery M., Jezek J., Jakl P., et al. . (2021). Rapid Detection of Antibiotic Sensitivity of Staphylococcus Aureus by Raman Tweezers. Eur. Phys. J. Plus 136 (2), 233. doi: 10.1140/epjp/s13360-021-01152-1 DOI
Boers S. A., Jansen R., Hays J. P. (2019). Understanding and Overcoming the Pitfalls and Biases of Next-Generation Sequencing (NGS) Methods for Use in the Routine Clinical Microbiological Diagnostic Laboratory. Eur. J. Clin. Microbiol. Infect. Dis. 38 (6), 1059–1070. doi: 10.1007/s10096-019-03520-3 PubMed DOI PMC
Brock T. D., et al. . (2003). ‘Brock Biology of Microorganisms’, in. Upper Saddle River NJ: Prentice hall (10) p, 1019.
Burckhardt I., Zimmermann S. (2018). Susceptibility Testing of Bacteria Using Maldi-Tof Mass Spectrometry. Front. Microbiol. 9. doi: 10.3389/fmicb.2018.01744 PubMed DOI PMC
Butler H. J., Ashton L., Bird B., Cinque G., Curtis K., Dorney J., et al. . (2016). Using Raman Spectroscopy to Characterize Biological Materials. Nat. Protoc. 11 (4), 664–687. doi: 10.1038/nprot.2016.036 PubMed DOI
Cardinale M., Kaiser D., Lueders T., Schnell S., Egert M. (2017). Microbiome Analysis and Confocal Microscopy of Used Kitchen Sponges Reveal Massive Colonization by Acinetobacter, Moraxella and Chryseobacterium Species. Sci. Rep. 7 (1), 5791. doi: 10.1038/s41598-017-06055-9 PubMed DOI PMC
Chan J. W., Taylor D. S., Lane S. M., Zwerdling T., Tuscano J., Huser T. (2008). Nondestructive Identification of Individual Leukemia Cells by Laser Trapping Raman Spectroscopy. Anal. Chem. 80 (6), 2180–2187. doi: 10.1021/ac7022348 PubMed DOI
Chen D., Chen T.-Y., Lu R.-J., Wu H.-W. (2009). Laser Tweezers Raman Spectroscopy Potential for Studies of Complex Dynamic Cellular Processes: Single Cell Bacterial Lysis. Anal. Chem. 81 (9), 3227–3238. doi: 10.1021/ac8023476 PubMed DOI
Chen X., Liang Z., Li D., Xiong Y., Xiong P., Guan Y., et al. . (2018). Microfluidic Dielectrophoresis Device for Trapping, Counting and Detecting Shewanella Oneidensis at the Cell Level. Biosensors Bioelectronics 99, 416–423. doi: 10.1016/j.bios.2017.08.017 PubMed DOI
Cheng I.-F., Chen T.-Y., Lu R.-J., Wu H.-W. (2014). Rapid Identification of Bacteria Utilizing Amplified Dielectrophoretic Force-Assisted Nanoparticle-Induced Surface-Enhanced Raman Spectroscopy. Nanoscale Res. Lett. 9 (1), 324. doi: 10.1186/1556-276X-9-324 PubMed DOI PMC
Chen Y., Premasiri W. R., Ziegler L. D. (2018). Surface Enhanced Raman Spectroscopy of Chlamydia Trachomatis and Neisseria Gonorrhoeae for Diagnostics, and Extra-Cellular Metabolomics and Biochemical Monitoring. Sci. Rep. 8 (1), 5163. doi: 10.1038/s41598-018-23562-5 PubMed DOI PMC
Choo-Smith L.-P., Maquelin K., van Vreeswijk T., Bruining H. A., Puppels G. J., Thi N. A. N., et al. . (2001). Investigating Microbial (Micro)Colony Heterogeneity by Vibrational Spectroscopy. Appl. Environ. Microbiol. 67 (4), 1461–1469. doi: 10.1128/AEM.67.4.1461-1469.2001 PubMed DOI PMC
Cui L., Li H.-Z., Yang K., Zhu L.-J., Xu F., Zhu Y.-G. (2021). Raman Biosensor and Molecular Tools for Integrated Monitoring of Pathogens and Antimicrobial Resistance in Wastewater. TrAC Trends Analy. Chem. 143, 116415. doi: 10.1016/j.trac.2021.116415 DOI
Das R. S., Agrawal Y. K. (2011). Raman Spectroscopy: Recent Advancements, Techniques and Applications. Vibrational Spectrosc. 57 (2), 163–176. doi: 10.1016/j.vibspec.2011.08.003 DOI
Dekter H. E., Orelio C. C., Morsink M. C., Tektas S., Vis B., te Witt R., et al. . (2017). Antimicrobial Susceptibility Testing of Gram-Positive and -Negative Bacterial Isolates Directly From Spiked Blood Culture Media With Raman Spectroscopy. Eur. J. Clin. Microbiol. Infect. Dis. 36 (1), 81–89. doi: 10.1007/s10096-016-2773-y PubMed DOI
de Siqueira e Oliveira F. S., da Silva A. M., Pacheco M. T. T., Giana H. E., Silveira L. (2021). Biochemical Characterization of Pathogenic Bacterial Species Using Raman Spectroscopy and Discrimination Model Based on Selected Spectral Features. Lasers Med. Sci. 36 (2), 289–302. doi: 10.1007/s10103-020-03028-9 PubMed DOI
Dochow S., Beleites C., Henkel T., Mayer G., Albert J., Clement J., et al. . (2013). Quartz Microfluidic Chip for Tumour Cell Identification by Raman Spectroscopy in Combination With Optical Traps. Anal. Bioanal. Chem. 405 (8), 2743–2746. doi: 10.1007/s00216-013-6726-3 PubMed DOI
Drancourt M. (2010). Detection of Microorganisms in Blood Specimens Using Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry: A Review. Clin. Microbiol. Infect. 16 (11), 1620–1625. doi: 10.1111/j.1469-0691.2010.03290.x PubMed DOI
Ember K. J. I., Hoeve M. A., McAughtrie S. L., Bergholt M. S., Dwyer B. J., Stevens M. M., et al. . (2017). Raman Spectroscopy and Regenerative Medicine: A Review. NPJ Regenerative Med. 2 (1), 12. doi: 10.1038/s41536-017-0014-3 PubMed DOI PMC
Escoriza M. F., VanBriesen J. M., Stewart S., Maier J., Treado P. J. (2006). Raman Spectroscopy and Chemical Imaging for Quantification of Filtered Waterborne Bacteria. J. Microbiol. Methods 66 (1), 63–72. doi: 10.1016/j.mimet.2005.10.013 PubMed DOI
Fernandez R. E., Rohani A., Farmehini V., Swami N. S. (2017). Review: Microbial Analysis in Dielectrophoretic Microfluidic Systems. Analytica Chimica Acta 966, 11–33. doi: 10.1016/j.aca.2017.02.024 PubMed DOI PMC
Fierz W. (2003). “Basic Problems of Serological Laboratory Diagnosis,” in Molecular Diagnosis of Infectious Diseases. Eds. Decker J., Reischl U. (New Jersey: Humana Press; ), 393–428. doi: 10.1385/1-59259-679-7:393 PubMed DOI
Florio W., Baldeschi L., Rizzato C., Tavanti A., Ghelardi E., Lupetti A. (2020). Detection of Antibiotic-Resistance by MALDI-TOF Mass Spectrometry: An Expanding Area. Front. Cell. Infect. Microbiol. 10. doi: 10.3389/fcimb.2020.572909 PubMed DOI PMC
Franco-Duarte R., Černáková L., Kadam S., S. Kaushik K., Salehi B., Bevilacqua A., et al. . (2019). Advances in Chemical and Biological Methods to Identify Microorganisms—From Past to Present. Microorganisms 7 (5), 130. doi: 10.3390/microorganisms7050130 PubMed DOI PMC
Harvey T. J., Faria E. C., Henderson A., Gazi E., Ward A. D., Clarke N. W., et al. . (2008). Spectral Discrimination of Live Prostate and Bladder Cancer Cell Lines Using Raman Optical Tweezers. J. Biomed. Optics 13 (6), 064004. doi: 10.1117/1.2999609 PubMed DOI
Hendrickx M., Goffinet J.-S., Swinne D., Detandt M. (2011). Screening of Strains of the Candida Parapsilosis Group of the BCCM/IHEM Collection by MALDI-TOF MS. Diagn. Microbiol. Infect. Dis. 70 (4), 544–548. doi: 10.1016/j.diagmicrobio.2011.04.006 PubMed DOI
Hoyos-Mallecot Y., Riazzo C., Miranda-Casas C., Rojo-Martín M. D., Gutiérrez-Fernández J., Navarro-Marí J. M. (2014). Rapid Detection and Identification of Strains Carrying Carbapenemases Directly From Positive Blood Cultures Using MALDI-TOF MS. J. Microbiol. Methods 105, 98–101. doi: 10.1016/j.mimet.2014.07.016 PubMed DOI
Hrubanova K., Krzyzanek V., Nebesarova J., Ruzicka F., Pilat Z., Samek O. (2018). Monitoring Candida Parapsilosis and Staphylococcus Epidermidis Biofilms by a Combination of Scanning Electron Microscopy and Raman Spectroscopy. Sensors 18 (12), 4089. doi: 10.3390/s18124089 PubMed DOI PMC
Huang S., Chen D., Pelczar P. L., Vepachedu V. R., Setlow P., Li Y. (2007). Levels of Ca2+-Dipicolinic Acid in Individual Bacillus Spores Determined Using Microfluidic Raman Tweezers. J. Bacteriol. 189 (13), 4681–4687. doi: 10.1128/JB.00282-07 PubMed DOI PMC
Hu S., Kang H., Gu F., Wang C., Cheng S., Gong W., et al. . (2021). Rapid Detection Method for Pathogenic Candida Captured by Magnetic Nanoparticles and Identified Using SERS via Agnps+’. Int. J. Nanomed. 16, 941–950. doi: 10.2147/IJN.S285339 PubMed DOI PMC
Hwang M. J., Jang A. S., Lim D.-K. (2021). Comparative Study of Fluorescence and Surface-Enhanced Raman Scattering With Magnetic Microparticle-Based Assay for Target Bacterial DNA Detection. Sensors Actuators B: Chem. 329, 129134. doi: 10.1016/j.snb.2020.129134 DOI
Idelevich E. A., Schüle I., Grünastel B., Wüllenweber J., Peters G., Becker K. (2014). Rapid Identification of Microorganisms From Positive Blood Cultures by MALDI-TOF Mass Spectrometry Subsequent to Very Short-Term Incubation on Solid Medium. Clin. Microbiol. Infect. 20 (10), 1001–1006. doi: 10.1111/1469-0691.12640 PubMed DOI
James S. A., Powell L. C., Wright C. J. (2016). “Atomic Force Microscopy of Biofilms—Imaging, Interactions, and Mechanics,” in Microbial Biofilms - Importance and Applications. Eds. Dhanasekaran D., Thajuddin N. (London: InTech; ). doi: 10.5772/63312 DOI
Kastanos E., Kyriakides A., Hadjigeorgiou K., Pitris C. (2012). A Novel Method for Bacterial UTI Diagnosis Using Raman Spectroscopy. Int. J. Spectrosc. 2012, 1–13. doi: 10.1155/2012/195317 DOI
Kearns H., Goodacre R., Jamieson L. E., Graham D., Faulds K. (2017). SERS Detection of Multiple Antimicrobial-Resistant Pathogens Using Nanosensors. Analytical Chem. 89 (23), 12666–12673. doi: 10.1021/acs.analchem.7b02653 PubMed DOI
Keleştemur S., Avci E., Çulha M. (2018). Raman and Surface-Enhanced Raman Scattering for Biofilm Characterization. Chemosensors 6 (1), 5. doi: 10.3390/chemosensors6010005 DOI
Khalid M., Bora T., Ghaithi A. A., Thukral S., Dutta J. (2018). Raman Spectroscopy Detects Changes in Bone Mineral Quality and Collagen Cross-Linkage in Staphylococcus Infected Human Bone. Sci. Rep. 8 (1), 9417. doi: 10.1038/s41598-018-27752-z PubMed DOI PMC
Khan Z. A., Siddiqui M. F., Park S. (2019). Current and Emerging Methods of Antibiotic Susceptibility Testing. Diagnostics 9 (2), 49. doi: 10.3390/diagnostics9020049 PubMed DOI PMC
Kim J., Hegde M., Kim S. H., Wood T. K., Jayaraman A. (2012). A Microfluidic Device for High Throughput Bacterial Biofilm Studies. Lab. Chip 12 (6), 1157. doi: 10.1039/c2lc20800h PubMed DOI
Kim W., Lee S. H., Kim J. H., Ahn Y. J., Kim Y.-H., Yu J. S., et al. . (2018). Paper-Based Surface-Enhanced Raman Spectroscopy for Diagnosing Prenatal Diseases in Women. ACS Nano 12 (7), 7100–7108. doi: 10.1021/acsnano.8b02917 PubMed DOI
Kim K., Choi N., Jeon J. H., Rhie G., Choo J. (2019). SERS-Based Immunoassays for the Detection of Botulinum Toxins a and B Using Magnetic Beads. Sensors 19 (19), 4081. doi: 10.3390/s19194081 PubMed DOI PMC
Kloß S., Rösch P., Pfister W., Kiehntopf M., Popp J. (2015. b). Toward Culture-Free Raman Spectroscopic Identification of Pathogens in Ascitic Fluid. Anal. Chem. 87 (2), 937–943. doi: 10.1021/ac503373r PubMed DOI
Kloß S., Lorenz B., Dees S., Labugger I., Rösch P., Popp J. (2015. a). Destruction-Free Procedure for the Isolation of Bacteria From Sputum Samples for Raman Spectroscopic Analysis. Anal. Bioanal. Chem. 407 (27), 8333–8341. doi: 10.1007/s00216-015-8743-x PubMed DOI
Kong K., Kendall C., Stone N., Notingher I. (2015). Raman Spectroscopy for Medical Diagnostics — From in-Vitro Biofluid Assays to in-Vivo Cancer Detection. Advanced Drug Delivery Rev. 89, 121–134. doi: 10.1016/j.addr.2015.03.009 PubMed DOI
Kotanen C. N., Martinez L., Alvarez R., Simecek J. W. (2016). Surface Enhanced Raman Scattering Spectroscopy for Detection and Identification of Microbial Pathogens Isolated From Human Serum. Sens. Bio-Sensing Res. 8, 20–26. doi: 10.1016/j.sbsr.2016.03.002 DOI
Kubina R., Dziedzic A. (2020). Molecular and Serological Tests for COVID-19. A Comparative Review of SARS-Cov-2 Coronavirus Laboratory and Point-of-Care Diagnostics. Diagnostics 10(6) p, 434. doi: 10.3390/diagnostics10060434 PubMed DOI PMC
Kuhar N., Sil S., Verma T., Umapathy S. (2018). Challenges in Application of Raman Spectroscopy to Biology and Materials. RSC Adv. 8 (46), 25888–25908. doi: 10.1039/C8RA04491K PubMed DOI PMC
Kusić D., Kampe B., Rösch P., Popp J. (2014). Identification of Water Pathogens by Raman Microspectroscopy. Water Res. 48, 179–189. doi: 10.1016/j.watres.2013.09.030 PubMed DOI
Lee J., Shin Y., Kim S., Rho K., Park K. H. (2017). “SVM Classification Model of Similar Bacteria Species Using Negative Marker: Based on Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry,” in 2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE). 2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE) (Washington, DC: IEEE; ), 145–150. doi: 10.1109/BIBE.2017.00-64 DOI
Lee R. A., Al Dhaheri F., Pollock N. R., Sharma T. S. (2020). Assessment of the Clinical Utility of Plasma Metagenomic Next-Generation Sequencing in a Pediatric Hospital Population. J. Clin. Microbiol. 58 (7), e00419–20. doi: 10.1128/JCM.00419-20 PubMed DOI PMC
Li J., Wang C., Shi L., Shao L., Fu P., Wang K., et al. . (2019). Rapid Identification and Antibiotic Susceptibility Test of Pathogens in Blood Based on Magnetic Separation and Surface-Enhanced Raman Scattering. Microchimica Acta 186 (7), 475. doi: 10.1007/s00604-019-3571-x PubMed DOI
Li S., Li Y., Yi R., Liu L., Qu J. (2020). Coherent Anti-Stokes Raman Scattering Microscopy and its Applications. Front. Phys. 8. doi: 10.3389/fphy.2020.598420 DOI
Liu H., Xu Q., Huo L., Wei X., Ling J. (2014). Chemical Composition of Enterococcus Faecalis in Biofilm Cells Initiated From Different Physiologic States. Folia Microbiologica 59 (5), 447–453. doi: 10.1007/s12223-014-0319-1 PubMed DOI
Lorenz B., Wichmann C., Stöckel S., Rösch P., Popp J. (2017). Cultivation-Free Raman Spectroscopic Investigations of Bacteria. Trends Microbiol. 25 (5), 413–424. doi: 10.1016/j.tim.2017.01.002 PubMed DOI
Machen A., Drake T., Wang Y. F. (2014). Same Day Identification and Full Panel Antimicrobial Susceptibility Testing of Bacteria From Positive Blood Culture Bottles Made Possible by a Combined Lysis-Filtration Method With MALDI-TOF VITEK Mass Spectrometry and the VITEK2 System. PloS One 9 (2), e87870. doi: 10.1371/journal.pone.0087870. Wayne. PubMed DOI PMC
Mackay I. M. (2004). Real-Time PCR in the Microbiology Laboratory. Clin. Microbiol. Infect. 10 (3), 190–212. doi: 10.1111/j.1198-743X.2004.00722.x PubMed DOI
Maquelin K., Kirschner C., Choo-Smith L.-P., Ngo-Thi N. A., van Vreeswijk T., Stämmler M., et al. . (2003). Prospective Study of the Performance of Vibrational Spectroscopies for Rapid Identification of Bacterial and Fungal Pathogens Recovered From Blood Cultures. J. Clin. Microbiol. 41 (1), 324–329. doi: 10.1128/JCM.41.1.324-329.2003 PubMed DOI PMC
Mathey R., Dupoy M., Espagnon I., Leroux D., Mallard F., Novelli-Rousseau A. (2015). Viability of 3h Grown Bacterial Micro-Colonies After Direct Raman Identification. J. Microbiol Methods 109, 67–73. doi: 10.1016/j.mimet.2014.12.002 PubMed DOI
McCreery R. L. (2000). Raman Spectroscopy for Chemical Analysis: Mccreery/Raman Spectroscopy. Hoboken (NJ, USA: John Wiley & Sons, Inc; ). doi: 10.1002/0471721646 DOI
McCutcheon J., Southam G. (2018). Advanced Biofilm Staining Techniques for TEM and SEM in Geomicrobiology: Implications for Visualizing EPS Architecture, Mineral Nucleation, and Microfossil Generation. Chem. Geol. 498, 115–127. doi: 10.1016/j.chemgeo.2018.09.016 DOI
Meex C., Neuville F., Descy J., Huynen P., Hayette M.-P., De Mol P., et al. . (2012). Direct Identification of Bacteria From Bact/ALERT Anaerobic Positive Blood Cultures by MALDI-TOF MS: MALDI Sepsityper Kit Versus an in-House Saponin Method for Bacterial Extraction. J. Med. Microbiol. 61 (11), 1511–1516. doi: 10.1099/jmm.0.044750-0 PubMed DOI
Mlynáriková K., Samek O., Bernatová S., Růžička F., Ježek J., Hároniková A., et al. . (2015). Influence of Culture Media on Microbial Fingerprints Using Raman Spectroscopy. Sensors 15 (11), 29635–29647. doi: 10.3390/s151129635 PubMed DOI PMC
Nakar A., Pistiki A., Ryabchykov O., Bocklitz T., Rösch P., Popp J. (2022). Detection of Multi-Resistant Clinical Strains of E. Coli With Raman Spectroscopy. Anal. Bioanal. Chem. 18, 1481–1492. doi: 10.1007/s00216-021-03800-y PubMed DOI PMC
Neugebauer U., Rösch P., Popp J. (2014). Fast Differentiation of SIRS and Sepsis From Blood Plasma of ICU Patients Using Raman Spectroscopy: Spectroscopic Differentiation of SIRS and Sepsis From Blood Plasma. J. Biophotonics 7 (3–4), 232–240. doi: 10.1002/jbio.201400010 PubMed DOI
Neugebauer U., Rösch P., Popp J. (2015). Raman Spectroscopy Towards Clinical Application: Drug Monitoring and Pathogen Identification. Int. J. Antimicrob. Agents 46, S35–S39. doi: 10.1016/j.ijantimicag.2015.10.014 PubMed DOI
Ojeda J. J., Dittrich M. (2012). “Fourier Transform Infrared Spectroscopy for Molecular Analysis of Microbial Cells,” in Microbial Systems Biology. Ed. Navid A. (Totowa, NJ: Humana Press (Methods in Molecular Biology; ), 187–211. doi: 10.1007/978-1-61779-827-6_8 PubMed DOI
Pahlow S., Meisel S., Cialla-May D., Weber K., Rösch P., Popp J. (2015). Isolation and Identification of Bacteria by Means of Raman Spectroscopy. Advanced Drug Delivery Rev. 89, 105–120. doi: 10.1016/j.addr.2015.04.006 PubMed DOI
Palama T. L., Canard I., Rautureau G. J. P., Mirande C., Chatellier S., Elena-Herrmann B. (2016). Identification of Bacterial Species by Untargeted NMR Spectroscopy of the Exo-Metabolome. Analyst 141 (15), 4558–4561. doi: 10.1039/C6AN00393A PubMed DOI
Parlatan U., Inanc M. T., Ozgor B. Y., Oral E., Bastu E., Unlu M. B., et al. . (2019). Raman Spectroscopy as a non-Invasive Diagnostic Technique for Endometriosis. Sci. Rep. 9 (1), 19795. doi: 10.1038/s41598-019-56308-y PubMed DOI PMC
Peker N., Garcia-Croes S., Dijkhuizen B., Wiersma H. H., van Zanten E., Wisselink G., et al. . (2019). A Comparison of Three Different Bioinformatics Analyses of the 16S–23S Rrna Encoding Region for Bacterial Identification. Front. Microbiol. 10. doi: 10.3389/fmicb.2019.00620 PubMed DOI PMC
Peng Y., Zhang Q., Xu C., Shi W. (2019). MALDI−TOF MS for the Rapid Identification and Drug Susceptibility Testing of Filamentous Fungi. Exp. Ther. Med. 414, 4865–4873 doi: 10.3892/etm.2019.8118 PubMed DOI PMC
Pérez-Rodríguez S., García-Aznar J. M., Gonzalo-Asensio J. (2022). Microfluidic Devices for Studying Bacterial Taxis, Drug Testing and Biofilm Formation. Microbial Biotechnol. 15, 395–414. doi: 10.1111/1751-7915.13775 PubMed DOI PMC
Pezzotti G. (2021). Raman Spectroscopy in Cell Biology and Microbiology. J. Raman Spectrosc. 52 (12), 2348–2443. doi: 10.1002/jrs.6204 DOI
Pilát Z., Bernatová S., Ježek J., Kirchhoff J., Tannert A., Neugebauer U., et al. . (2018). ‘Microfluidic Cultivation and Laser Tweezers Raman Spectroscopy of E. Coli Under Antibiotic Stress’ Sensors 18(5) p, 1623. doi: 10.3390/s18051623 PubMed DOI PMC
Pimenta M. A., Dresselhaus G., Dresselhaus M. S., Cançado L. G., Jorio A., Saito R. (2007). Studying Disorder in Graphite-Based Systems by Raman Spectroscopy. Phys. Chem. Chem. Phys. 9 (11), 1276–1290. doi: 10.1039/B613962K PubMed DOI
Poon K. W. C., Lyng F. M., Knief P., Howe O., Meade A. D., Curtin J. F., et al. . (2012). Quantitative Reagent-Free Detection of Fibrinogen Levels in Human Blood Plasma Using Raman Spectroscopy. Analyst 137 (8), 1807. doi: 10.1039/c2an35042d PubMed DOI
Premasiri W. R., Chen Y., Williamson P. M., Bandarage D. C., Pyles C., Ziegler L. D. (2017). Rapid Urinary Tract Infection Diagnostics by Surface-Enhanced Raman Spectroscopy (SERS): Identification and Antibiotic Susceptibilities. Anal. Bioanal. Chem. 409 (11), 3043–3054. doi: 10.1007/s00216-017-0244-7 PubMed DOI
Qi D., Berger A. J. (2007). Chemical Concentration Measurement in Blood Serum and Urine Samples Using Liquid-Core Optical Fiber Raman Spectroscopy. Appl. Optics 46 (10), 1726. doi: 10.1364/AO.46.001726 PubMed DOI
Qun M., Yan-Le L., Nian-Chun G., Xi J., Shuang-Yan H. (2015). Surface Enhanced Raman Spectroscopy Sensor Based on Magnetic Beads-Induced Nanoparticles Aggregation for Detection of Bacterial Deoxyribonucleic Acid. Chin. J. Anal. Chem. 43 (11), 1676–1681. doi: 10.1016/S1872-2040(15)60876-3 DOI
Ramamurthy T., Ghosh A., Pazhani G. P., Shinoda S. (2014). Current Perspectives on Viable But non-Culturable (VBNC) Pathogenic Bacteria. Front. Public Health 2. doi: 10.3389/fpubh.2014.00103 PubMed DOI PMC
Read D. S., Whiteley A. S. (2015). Chemical Fixation Methods for Raman Spectroscopy-Based Analysis of Bacteria. J. Microbiol. Methods 109, 79–83. doi: 10.1016/j.mimet.2014.12.008 PubMed DOI
Rebrošová K., Šiler M., Samek O., Růžička F., Bernatová S., Holá V., et al. . (2017). Rapid Identification of Staphylococci by Raman Spectroscopy. Sci. Rep. 7 (1), 14846. doi: 10.1038/s41598-017-13940-w PubMed DOI PMC
Rebrošová K., Šiler M., Samek O., Růžička F., Bernatová S., Ježek J., et al. . (2019). Identification of Ability to Form Biofilm in Candida Parapsilosis and Staphylococcus Epidermidis by Raman Spectroscopy. Future Microbiol. 14 (6), 509–517. doi: 10.2217/fmb-2018-0297 PubMed DOI
Rebrošová K., Bernatová S., Šiler M., Uhlirova M., Samek O., Ježek J., et al. . (2022). Raman Spectroscopy—a Tool for Rapid Differentiation Among Microbes Causing Urinary Tract Infections. Analytica Chimica Acta 1191, 339292. doi: 10.1016/j.aca.2021.339292 PubMed DOI
Reller L. B., Weinstein M. P., Petti C. A. (2007). Detection and Identification of Microorganisms by Gene Amplification and Sequencing. Clin. Infect. Dis. 44 (8), 1108–1114. doi: 10.1086/512818 PubMed DOI
Relucenti M., Familiari G., Donfrancesco O., Taurino M., Li X., Chen R., et al. . (2021). Microscopy Methods for Biofilm Imaging: Focus on SEM and VP-SEM Pros and Cons. Biology 10 (1), 51. doi: 10.3390/biology10010051 PubMed DOI PMC
Reschiglian P., Zattoni A., Roda B., Casolari S., Moon M. H., Lee J., et al. . (2002). Bacteria Sorting by Field-Flow Fractionation. Application to Whole-Cell Escherichia Coli Vaccine Strains. Anal. Chem. 74 (19), 4895–4904. doi: 10.1021/ac020199t PubMed DOI
Romaniuk J. A. H., Cegelski L. (2015). Bacterial Cell Wall Composition and the Influence of Antibiotics by Cell-Wall and Whole-Cell NMR. Philos. Trans. R. Soc. B: Biol. Sci. 370 (1679), 20150024. doi: 10.1098/rstb.2015.0024 PubMed DOI PMC
Rousseau A. N., Faure N., Rol F., Sedaghat Z., Le Galudec J., Mallard F., et al. . (2021). Fast Antibiotic Susceptibility Testing via Raman Microspectrometry on Single Bacteria: An MRSA Case Study. ACS Omega 6 (25), 16273–16279. doi: 10.1021/acsomega.1c00170 PubMed DOI PMC
Ruzicka F., Horka M., Hola V., Mlynarikova K., Drab V. (2016). Capillary Isoelectric Focusing—Useful Tool for Detection and Quantification of Lactic Acid Bacteria in Milk. Food Anal. Methods 9 (12), 3251–3257. doi: 10.1007/s12161-016-0522-6 DOI
Rychert J. (2019). Benefits and Limitations of MALDI-TOF Mass Spectrometry for the Identification of Microorganisms. J. Infectiol. 2 (4), 1–5. doi: 10.29245/2689-9981/2019/4.1142 DOI
Sabat A. J., van Zanten E., Akkerboom V., Wisselink G., van Slochteren K., de Boer R. F., et al. . (2017). Targeted Next-Generation Sequencing of the 16S-23S Rrna Region for Culture-Independent Bacterial Identification - Increased Discrimination of Closely Related Species. Sci. Rep. 7 (1), 3434. doi: 10.1038/s41598-017-03458-6 PubMed DOI PMC
Sabnis R. W. (2015). Handbook of Fluorescent Dyes and Probes. Hoboken (New Jersey: Wiley; ).
Saenton S., Lee H., Gao Y.-S., Ranville J. F., Williams S. K. R. (2000). Evaluation of Different Field-Flow Fractionation Techniques for Separating Bacteria. Separation Sci. Technol. 35 (11), 1761–1775. doi: 10.1081/SS-100102492 DOI
Samek O., Bernatová S., Dohnal F. (2021). The Potential of SERS as an AST Methodology in Clinical Settings. Nanophotonics 10 (10), 2537–2561. doi: 10.1515/nanoph-2021-0095 DOI
Samek O., Telle H. H., Harris L. G., Bloomfield M., Mack D. (2008). Raman Spectroscopy for Rapid Discrimination of Staphylococcus Epidermidis Clones Related to Medical Device-Associated Infections. Laser Phys. Lett. 5 (6), 465–470. doi: 10.1002/lapl.200810011 DOI
Samek O., Jonáš A., Pilát Z., Zemánek P., Nedbal L., Tříska J., et al. . (2010). Raman Microspectroscopy of Individual Algal Cells: Sensing Unsaturation of Storage Lipids In Vivo . Sensors 10 (9), 8635–8651. doi: 10.3390/s100908635 PubMed DOI PMC
Samek O., Mlynariková K., Bernatová S., Ježek J., Krzyžánek V., Šiler M., et al. . (2014). Candida Parapsilosis Biofilm Identification by Raman Spectroscopy. Int. J. Mol. Sci. 15 (12), 23924–23935. doi: 10.3390/ijms151223924 PubMed DOI PMC
Samek O., Bernatová S., Ježek J., Šiler M., Šerý M., Krzyžánek V., et al. . (2015). Identification of Individual Biofilm-Forming Bacterial Cells Using Raman Tweezers. J. Biomed. Optics 20 (5), 51038. doi: 10.1117/1.JBO.20.5.051038 PubMed DOI
Sarno B., Heineck D., Heller M. J., Ibsen S. D. (2021). Dielectrophoresis: Developments and Applications From 2010 to 2020. ELECTROPHORESIS 42 (5), 539–564. doi: 10.1002/elps.202000156 PubMed DOI PMC
Schie I. W., Huser T. (2013). Methods and Applications of Raman Microspectroscopy to Single-Cell Analysis. Appl. Spectrosc. 67 (8), 813–828. doi: 10.1366/12-06971 PubMed DOI
Schröder U.-C., Ramoji A., Glaser U., Sachse S., Leiterer C., Csaki A., et al. . (2013). Combined Dielectrophoresis–Raman Setup for the Classification of Pathogens Recovered From the Urinary Tract. Anal. Chem. 85 (22), 10717–10724. doi: 10.1021/ac4021616 PubMed DOI
Schröder U.-C., Bokeloh F., O’Sullivan M., Glaser U., Wolf K., Pfister W., et al. . (2015). Rapid, Culture-Independent, Optical Diagnostics of Centrifugally Captured Bacteria From Urine Samples. Biomicrofluidics 9 (4), 044118. doi: 10.1063/1.4928070 PubMed DOI PMC
Schuster K. C., Urlaub E., Gapes J. R. (2000). Single-Cell Analysis of Bacteria by Raman Microscopy: Spectral Information on the Chemical Composition of Cells and on the Heterogeneity in a Culture. J. Microbiol. Methods 42 (1), 29–38. doi: 10.1016/S0167-7012(00)00169-X PubMed DOI
Schwaminger S. P., Fraga-García P., Eigenfeld M., Becker T. M., Berensmeier S. (2019). Magnetic Separation in Bioprocessing Beyond the Analytical Scale: From Biotechnology to the Food Industry. Front. Bioeng. Biotechnol. 7. doi: 10.3389/fbioe.2019.00233 PubMed DOI PMC
Sender R., Fuchs S., Milo R. (2016). Revised Estimates for the Number of Human and Bacteria Cells in the Body. PloS Biol. 14 (8), e1002533. doi: 10.1371/journal.pbio.1002533 PubMed DOI PMC
Singhal N., Kumar M., Kanaujia P. K., Virdi J. S. (2015). MALDI-TOF Mass Spectrometry: An Emerging Technology for Microbial Identification and Diagnosis. Front. Microbiol. 6. doi: 10.3389/fmicb.2015.00791 PubMed DOI PMC
Singh G. P., Volpe G., Creely C. M., Grötsch H., Geli I. M., Petrov D. (2006). The Lag Phase and G1 Phase of a Single Yeast Cell Monitored by Raman Microspectroscopy. J. Raman Spectrosc. 37 (8), 858–864. doi: 10.1002/jrs.1520 DOI
Smith E., Dent G. (2004). Modern Raman Spectroscopy - a Practical Approach: Smith/Modern Raman Spectroscopy - a Practical Approach. Chichester (UK: John Wiley & Sons, Ltd; ). doi: 10.1002/0470011831 DOI
Spratt D. A. (2004). Significance of Bacterial Identification by Molecular Biology Methods. Endodontic Topics 9 (1), 5–14. doi: 10.1111/j.1601-1546.2004.00106.x DOI
Taleb I., Thiéfin G., Gobinet C., Untereiner V., Bernard-Chabert B., Heurgué A., et al. . (2013). Diagnosis of Hepatocellular Carcinoma in Cirrhotic Patients: A Proof-of-Concept Study Using Serum Micro-Raman Spectroscopy. Analyst 138 (14), 4006. doi: 10.1039/c3an00245d PubMed DOI
Tanniche I., Collakova E., Denbow C., Senger R. S. (2020). Characterizing Metabolic Stress-Induced Phenotypes of Synechocystis PCC6803 With Raman Spectroscopy. PeerJ 8, e8535. doi: 10.7717/peerj.8535 PubMed DOI PMC
Tay F., Yu L., Iliescu C. (2009). Particle Manipulation by Miniaturised Dielectrophoretic Devices. Defence Sci. J. 59 (6), 595–604. doi: 10.14429/dsj.59.1564 DOI
Tien N., Chen H.-C., Gau S.-L., Lin T.-H., Lin H.-S., You B.-J., et al. . (2016). Diagnosis of Bacterial Pathogens in the Dialysate of Peritoneal Dialysis Patients With Peritonitis Using Surface-Enhanced Raman Spectroscopy. Clinica Chimica Acta 461, 69–75. doi: 10.1016/j.cca.2016.07.026 PubMed DOI
Vankeirsbilck T., Vercauteren A., Baeyens W., van der Weken G., Verpoort F., Vergote G., et al. . (2002). Applications of Raman Spectroscopy in Pharmaceutical Analysis. TrAC Trends Anal. Chem. 21 (12), 869–877. doi: 10.1016/S0165-9936(02)01208-6 DOI
Verroken A., Defourny L., Lechgar L., Magnette A., Delmée M., Glupczynski Y. (2015). Reducing Time to Identification of Positive Blood Cultures With MALDI-TOF MS Analysis After a 5-H Subculture. Eur. J. Clin. Microbiol. Infect. Dis. 34 (2), 405–413. doi: 10.1007/s10096-014-2242-4 PubMed DOI
Vogt S., Löffler K., Dinkelacker A. G., Bader B., Autenrieth I. B., Peter S., et al. . (2019). Fourier-Transform Infrared (FTIR) Spectroscopy for Typing of Clinical Enterobacter Cloacae Complex Isolates. Front. Microbiol. 10. doi: 10.3389/fmicb.2019.02582 PubMed DOI PMC
Wang X., Huang S.-C., Hu S., Yan S., Ren B. (2020). Fundamental Understanding and Applications of Plasmon-Enhanced Raman Spectroscopy. Nat. Rev. Phys. 2 (5), 253–271. doi: 10.1038/s42254-020-0171-y DOI
Wang L., Liu W., Tang J.-W., Wang J.-J., Liu Q.-H., Wen P.-B., et al. . (2021). Applications of Raman Spectroscopy in Bacterial Infections: Principles, Advantages, and Shortcomings. Front. Microbiol. 12. doi: 10.3389/fmicb.2021.683580 PubMed DOI PMC
Weber R. E., Petkowski J. J., Michaels B., Wisniewski K., Piela A., Antoszczyk S., et al. . (2021). Fluid-Screen as a Real Time Dielectrophoretic Method for Universal Microbial Capture. Sci. Rep. 11 (1), 22222. doi: 10.1038/s41598-021-01600-z PubMed DOI PMC
Weng S., Zhu W., Zhang X., Yuan H., Zheng L., Zhao J., et al. . (2019). Recent Advances in Raman Technology With Applications in Agriculture, Food and Biosystems: A Review. Artif. Intell. Agric. 3, 1–10. doi: 10.1016/j.aiia.2019.11.001 DOI
Wichmann C., Rösch P., Popp J. (2021). Isolation of Bacteria From Artificial Bronchoalveolar Lavage Fluid Using Density Gradient Centrifugation and Their Accessibility by Raman Spectroscopy. Anal. Bioanal. Chem. 413 (20), 5193–5200. doi: 10.1007/s00216-021-03488-0 PubMed DOI PMC
Witkowska E., Niciński K., Korsak D., Dominiak B., Waluk J., Kamińska A. (2020). Nanoplasmonic Sensor for Foodborne Pathogens Detection. Towards Development of ISO-SERS Methodology for Taxonomic Affiliation of Campylobacter Spp. J. Biophotonics 13 (5), e201960227. doi: 10.1002/jbio.201960227 PubMed DOI
Wu M., Ling D., Ling L., Li W., Li Y. (2017). Stable Optical Trapping and Sensitive Characterization of Nanostructures Using Standing-Wave Raman Tweezers. Sci. Rep. 7 (1), 42930. doi: 10.1038/srep42930 PubMed DOI PMC
Wulf M. W. H., Willemse-Erix D., Verduin C. M., Puppels G., van Belkum A., Maquelin K. (2012). The Use of Raman Spectroscopy in the Epidemiology of Methicillin-Resistant Staphylococcus Aureus of Human- and Animal-Related Clonal Lineages. Clin. Microbiol. Infect. 18 (2), 147–152. doi: 10.1111/j.1469-0691.2011.03517.x PubMed DOI
Xu T., Sun L. (2021). A Mini Review on Capillary Isoelectric Focusing-Mass Spectrometry for Top-Down Proteomics. Front. Chem. 9. doi: 10.3389/fchem.2021.651757 PubMed DOI PMC
Yogesha M., Chawla K., Bankapur A., Acharya M., D’Souza J. S., Chidangil S. (2019). A Micro-Raman and Chemometric Study of Urinary Tract Infection-Causing Bacterial Pathogens in Mixed Cultures. Anal. Bioanal. Chem. 411 (14), 3165–3177. doi: 10.1007/s00216-019-01784-4 PubMed DOI
Yonetani S., Ohnishi H., Ohkusu K., Matsumoto T., Watanabe T. (2016). Direct Identification of Microorganisms From Positive Blood Cultures by MALDI-TOF MS Using an in-House Saponin Method. Int. J. Infect. Dis. 52, 37–42. doi: 10.1016/j.ijid.2016.09.014 PubMed DOI
Zarnowiec P., Lechowicz L., Czerwonka G., Kaca W. (2015). Fourier Transform Infrared Spectroscopy (FTIR) as a Tool for the Identification and Differentiation of Pathogenic Bacteria. Curr. Med. Chem. 22 (14), 1710–1718. doi: 10.2174/0929867322666150311152800 PubMed DOI
Zhang H., Chang H., Neuzil P. (2019). DEP-on-a-Chip: Dielectrophoresis Applied to Microfluidic Platforms. Micromachines 10 (6), 423. doi: 10.3390/mi10060423 PubMed DOI PMC
Zhou M., Le J., Chen Y., Cai Y., Hong Z., Chai Y. (2017). An Improved in-House MALDI-TOF MS Protocol for Direct Cost-Effective Identification of Pathogens From Blood Cultures. Front. Microbiol. 8. doi: 10.3389/fmicb.2017.01824 PubMed DOI PMC
Zhou W., Yang Q., Kudinha T., Sun L., Zhang R., Liu C., et al. . (2019). Recent Advances in Microfluidic Devices for Bacteria and Fungus Research. TrAC Trends Analy. Chem. 112, 175–195. doi: 10.1016/j.trac.2018.12.024 DOI
Ziemann M. A., Madariaga J. M. (2021). Applications of Raman Spectroscopy in Art and Archaeology. J. Raman Spectrosc. 52 (1), 8–14. doi: 10.1002/jrs.6054 DOI
Zu T., Athamneh A., Senger R. (2016). Characterizing the Phenotypic Responses of Escherichia Coli to Multiple 4-Carbon Alcohols With Raman Spectroscopy. Fermentation 2 (4), 3. doi: 10.3390/fermentation2010003 DOI