Raman Spectroscopy-A Novel Method for Identification and Characterization of Microbes on a Single-Cell Level in Clinical Settings

. 2022 ; 12 () : 866463. [epub] 20220422

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35531343

Rapid and accurate identification of pathogens causing infections is one of the biggest challenges in medicine. Timely identification of causative agents and their antimicrobial resistance profile can significantly improve the management of infection, lower costs for healthcare, mitigate ever-growing antimicrobial resistance and in many cases, save lives. Raman spectroscopy was shown to be a useful-quick, non-invasive, and non-destructive -tool for identifying microbes from solid and liquid media. Modifications of Raman spectroscopy and/or pretreatment of samples allow single-cell analyses and identification of microbes from various samples. It was shown that those non-culture-based approaches could also detect antimicrobial resistance. Moreover, recent studies suggest that a combination of Raman spectroscopy with optical tweezers has the potential to identify microbes directly from human body fluids. This review aims to summarize recent advances in non-culture-based approaches of identification of microbes and their virulence factors, including antimicrobial resistance, using methods based on Raman spectroscopy in the context of possible use in the future point-of-care diagnostic process.

Zobrazit více v PubMed

Almarashi J. F. M., Kapel N., Wilkinson T. S., Telle H. H. (2012). Raman Spectroscopy of Bacterial Species and Strains Cultivated Under Reproducible Conditions. Spectroscopy: Int. J. 27, 361–365. doi: 10.1155/2012/540490 DOI

Amann R., Fuchs B. M. (2008). Single-Cell Identification in Microbial Communities by Improved Fluorescence in Situ Hybridization Techniques. Nat. Rev. Microbiol. 6 (5), 339–348. doi: 10.1038/nrmicro1888 PubMed DOI

Ashkin A. (1997). Optical Trapping and Manipulation of Neutral Particles Using Lasers. Proc. Natl. Acad. Sci. 94 (10), 4853–4860. doi: 10.1073/pnas.94.10.4853 PubMed DOI PMC

Athamneh A. I. M., Alajlouni R. A., Wallace R. S., Seleem M. N., Senger R. S. (2014). Phenotypic Profiling of Antibiotic Response Signatures in Escherichia Coli Using Raman Spectroscopy. Antimicrob. Agents Chemother. 58 (3), 1302–1314. doi: 10.1128/AAC.02098-13 PubMed DOI PMC

Auner G. W., Koya S. K., Huang C., Broadbent B., Trexler M., Auner Z., et al. . (2018). Applications of Raman Spectroscopy in Cancer Diagnosis. Cancer Metastasis Rev. 37 (4), 691–717. doi: 10.1007/s10555-018-9770-9 PubMed DOI PMC

Avci E., Kaya N. S., Ucankus G., Culha M. (2015). Discrimination of Urinary Tract Infection Pathogens by Means of Their Growth Profiles Using Surface Enhanced Raman Scattering. Anal. Bioanal. Chem. 407 (27), 8233–8241. doi: 10.1007/s00216-015-8950-5 PubMed DOI

Bader O., Weig M., Taverne-Ghadwal L., Lugert R., Groß U., Kuhns M. (2011). Improved Clinical Laboratory Identification of Human Pathogenic Yeasts by Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry. Clin. Microbiol. Infect. 17 (9), 1359–1365. doi: 10.1111/j.1469-0691.2010.03398.x PubMed DOI

Balloux F., van Dorp L. (2017). Q&a: What are Pathogens, and What Have They Done to and for Us? BMC Biol. 15 (1), 91. doi: 10.1186/s12915-017-0433-z PubMed DOI PMC

Berensmeier S. (2006). Magnetic Particles for the Separation and Purification of Nucleic Acids. Appl. Microbiol. Biotechnol. 73 (3), 495–504. doi: 10.1007/s00253-006-0675-0 PubMed DOI PMC

Bergholt M. S., Hassing S. (2009). Quantification of C-Reactive Protein in Human Blood Plasma Using Near-Infrared Raman Spectroscopy. Analyst 134 (10), 2123. doi: 10.1039/b903089a PubMed DOI

Bernatová S., Rebrošová K., Pilát Z., Šerý M., Gjevik A., Samek O., et al. . (2013). Following the Mechanisms of Bacteriostatic Versus Bactericidal Action Using Raman Spectroscopy. Molecules 18 (11), 13188–13199. doi: 10.3390/molecules181113188 PubMed DOI PMC

Bernatova S., Samek O., Pilát Z., Šerý M., Ježek J., Jákl P., et al. . (2014). “Raman Tweezers on Bacteria: Following the Mechanisms of Bacteriostatic Versus Bactericidal Action,” in Spie Photonics Europe. Ed. Popp J., et al.. (Brussels, Belgium: SPIE), 91291Y. doi: 10.1117/12.2052538 PubMed DOI

Bernatová S., Samek O., Pilat Z., Sery M., Jezek J., Jakl P., et al. . (2021). Rapid Detection of Antibiotic Sensitivity of Staphylococcus Aureus by Raman Tweezers. Eur. Phys. J. Plus 136 (2), 233. doi: 10.1140/epjp/s13360-021-01152-1 DOI

Boers S. A., Jansen R., Hays J. P. (2019). Understanding and Overcoming the Pitfalls and Biases of Next-Generation Sequencing (NGS) Methods for Use in the Routine Clinical Microbiological Diagnostic Laboratory. Eur. J. Clin. Microbiol. Infect. Dis. 38 (6), 1059–1070. doi: 10.1007/s10096-019-03520-3 PubMed DOI PMC

Brock T. D., et al. . (2003). ‘Brock Biology of Microorganisms’, in. Upper Saddle River NJ: Prentice hall (10) p, 1019.

Burckhardt I., Zimmermann S. (2018). Susceptibility Testing of Bacteria Using Maldi-Tof Mass Spectrometry. Front. Microbiol. 9. doi: 10.3389/fmicb.2018.01744 PubMed DOI PMC

Butler H. J., Ashton L., Bird B., Cinque G., Curtis K., Dorney J., et al. . (2016). Using Raman Spectroscopy to Characterize Biological Materials. Nat. Protoc. 11 (4), 664–687. doi: 10.1038/nprot.2016.036 PubMed DOI

Cardinale M., Kaiser D., Lueders T., Schnell S., Egert M. (2017). Microbiome Analysis and Confocal Microscopy of Used Kitchen Sponges Reveal Massive Colonization by Acinetobacter, Moraxella and Chryseobacterium Species. Sci. Rep. 7 (1), 5791. doi: 10.1038/s41598-017-06055-9 PubMed DOI PMC

Chan J. W., Taylor D. S., Lane S. M., Zwerdling T., Tuscano J., Huser T. (2008). Nondestructive Identification of Individual Leukemia Cells by Laser Trapping Raman Spectroscopy. Anal. Chem. 80 (6), 2180–2187. doi: 10.1021/ac7022348 PubMed DOI

Chen D., Chen T.-Y., Lu R.-J., Wu H.-W. (2009). Laser Tweezers Raman Spectroscopy Potential for Studies of Complex Dynamic Cellular Processes: Single Cell Bacterial Lysis. Anal. Chem. 81 (9), 3227–3238. doi: 10.1021/ac8023476 PubMed DOI

Chen X., Liang Z., Li D., Xiong Y., Xiong P., Guan Y., et al. . (2018). Microfluidic Dielectrophoresis Device for Trapping, Counting and Detecting Shewanella Oneidensis at the Cell Level. Biosensors Bioelectronics 99, 416–423. doi: 10.1016/j.bios.2017.08.017 PubMed DOI

Cheng I.-F., Chen T.-Y., Lu R.-J., Wu H.-W. (2014). Rapid Identification of Bacteria Utilizing Amplified Dielectrophoretic Force-Assisted Nanoparticle-Induced Surface-Enhanced Raman Spectroscopy. Nanoscale Res. Lett. 9 (1), 324. doi: 10.1186/1556-276X-9-324 PubMed DOI PMC

Chen Y., Premasiri W. R., Ziegler L. D. (2018). Surface Enhanced Raman Spectroscopy of Chlamydia Trachomatis and Neisseria Gonorrhoeae for Diagnostics, and Extra-Cellular Metabolomics and Biochemical Monitoring. Sci. Rep. 8 (1), 5163. doi: 10.1038/s41598-018-23562-5 PubMed DOI PMC

Choo-Smith L.-P., Maquelin K., van Vreeswijk T., Bruining H. A., Puppels G. J., Thi N. A. N., et al. . (2001). Investigating Microbial (Micro)Colony Heterogeneity by Vibrational Spectroscopy. Appl. Environ. Microbiol. 67 (4), 1461–1469. doi: 10.1128/AEM.67.4.1461-1469.2001 PubMed DOI PMC

Cui L., Li H.-Z., Yang K., Zhu L.-J., Xu F., Zhu Y.-G. (2021). Raman Biosensor and Molecular Tools for Integrated Monitoring of Pathogens and Antimicrobial Resistance in Wastewater. TrAC Trends Analy. Chem. 143, 116415. doi: 10.1016/j.trac.2021.116415 DOI

Das R. S., Agrawal Y. K. (2011). Raman Spectroscopy: Recent Advancements, Techniques and Applications. Vibrational Spectrosc. 57 (2), 163–176. doi: 10.1016/j.vibspec.2011.08.003 DOI

Dekter H. E., Orelio C. C., Morsink M. C., Tektas S., Vis B., te Witt R., et al. . (2017). Antimicrobial Susceptibility Testing of Gram-Positive and -Negative Bacterial Isolates Directly From Spiked Blood Culture Media With Raman Spectroscopy. Eur. J. Clin. Microbiol. Infect. Dis. 36 (1), 81–89. doi: 10.1007/s10096-016-2773-y PubMed DOI

de Siqueira e Oliveira F. S., da Silva A. M., Pacheco M. T. T., Giana H. E., Silveira L. (2021). Biochemical Characterization of Pathogenic Bacterial Species Using Raman Spectroscopy and Discrimination Model Based on Selected Spectral Features. Lasers Med. Sci. 36 (2), 289–302. doi: 10.1007/s10103-020-03028-9 PubMed DOI

Dochow S., Beleites C., Henkel T., Mayer G., Albert J., Clement J., et al. . (2013). Quartz Microfluidic Chip for Tumour Cell Identification by Raman Spectroscopy in Combination With Optical Traps. Anal. Bioanal. Chem. 405 (8), 2743–2746. doi: 10.1007/s00216-013-6726-3 PubMed DOI

Drancourt M. (2010). Detection of Microorganisms in Blood Specimens Using Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry: A Review. Clin. Microbiol. Infect. 16 (11), 1620–1625. doi: 10.1111/j.1469-0691.2010.03290.x PubMed DOI

Ember K. J. I., Hoeve M. A., McAughtrie S. L., Bergholt M. S., Dwyer B. J., Stevens M. M., et al. . (2017). Raman Spectroscopy and Regenerative Medicine: A Review. NPJ Regenerative Med. 2 (1), 12. doi: 10.1038/s41536-017-0014-3 PubMed DOI PMC

Escoriza M. F., VanBriesen J. M., Stewart S., Maier J., Treado P. J. (2006). Raman Spectroscopy and Chemical Imaging for Quantification of Filtered Waterborne Bacteria. J. Microbiol. Methods 66 (1), 63–72. doi: 10.1016/j.mimet.2005.10.013 PubMed DOI

Fernandez R. E., Rohani A., Farmehini V., Swami N. S. (2017). Review: Microbial Analysis in Dielectrophoretic Microfluidic Systems. Analytica Chimica Acta 966, 11–33. doi: 10.1016/j.aca.2017.02.024 PubMed DOI PMC

Fierz W. (2003). “Basic Problems of Serological Laboratory Diagnosis,” in Molecular Diagnosis of Infectious Diseases. Eds. Decker J., Reischl U. (New Jersey: Humana Press; ), 393–428. doi: 10.1385/1-59259-679-7:393 PubMed DOI

Florio W., Baldeschi L., Rizzato C., Tavanti A., Ghelardi E., Lupetti A. (2020). Detection of Antibiotic-Resistance by MALDI-TOF Mass Spectrometry: An Expanding Area. Front. Cell. Infect. Microbiol. 10. doi: 10.3389/fcimb.2020.572909 PubMed DOI PMC

Franco-Duarte R., Černáková L., Kadam S., S. Kaushik K., Salehi B., Bevilacqua A., et al. . (2019). Advances in Chemical and Biological Methods to Identify Microorganisms—From Past to Present. Microorganisms 7 (5), 130. doi: 10.3390/microorganisms7050130 PubMed DOI PMC

Harvey T. J., Faria E. C., Henderson A., Gazi E., Ward A. D., Clarke N. W., et al. . (2008). Spectral Discrimination of Live Prostate and Bladder Cancer Cell Lines Using Raman Optical Tweezers. J. Biomed. Optics 13 (6), 064004. doi: 10.1117/1.2999609 PubMed DOI

Hendrickx M., Goffinet J.-S., Swinne D., Detandt M. (2011). Screening of Strains of the Candida Parapsilosis Group of the BCCM/IHEM Collection by MALDI-TOF MS. Diagn. Microbiol. Infect. Dis. 70 (4), 544–548. doi: 10.1016/j.diagmicrobio.2011.04.006 PubMed DOI

Hoyos-Mallecot Y., Riazzo C., Miranda-Casas C., Rojo-Martín M. D., Gutiérrez-Fernández J., Navarro-Marí J. M. (2014). Rapid Detection and Identification of Strains Carrying Carbapenemases Directly From Positive Blood Cultures Using MALDI-TOF MS. J. Microbiol. Methods 105, 98–101. doi: 10.1016/j.mimet.2014.07.016 PubMed DOI

Hrubanova K., Krzyzanek V., Nebesarova J., Ruzicka F., Pilat Z., Samek O. (2018). Monitoring Candida Parapsilosis and Staphylococcus Epidermidis Biofilms by a Combination of Scanning Electron Microscopy and Raman Spectroscopy. Sensors 18 (12), 4089. doi: 10.3390/s18124089 PubMed DOI PMC

Huang S., Chen D., Pelczar P. L., Vepachedu V. R., Setlow P., Li Y. (2007). Levels of Ca2+-Dipicolinic Acid in Individual Bacillus Spores Determined Using Microfluidic Raman Tweezers. J. Bacteriol. 189 (13), 4681–4687. doi: 10.1128/JB.00282-07 PubMed DOI PMC

Hu S., Kang H., Gu F., Wang C., Cheng S., Gong W., et al. . (2021). Rapid Detection Method for Pathogenic Candida Captured by Magnetic Nanoparticles and Identified Using SERS via Agnps+’. Int. J. Nanomed. 16, 941–950. doi: 10.2147/IJN.S285339 PubMed DOI PMC

Hwang M. J., Jang A. S., Lim D.-K. (2021). Comparative Study of Fluorescence and Surface-Enhanced Raman Scattering With Magnetic Microparticle-Based Assay for Target Bacterial DNA Detection. Sensors Actuators B: Chem. 329, 129134. doi: 10.1016/j.snb.2020.129134 DOI

Idelevich E. A., Schüle I., Grünastel B., Wüllenweber J., Peters G., Becker K. (2014). Rapid Identification of Microorganisms From Positive Blood Cultures by MALDI-TOF Mass Spectrometry Subsequent to Very Short-Term Incubation on Solid Medium. Clin. Microbiol. Infect. 20 (10), 1001–1006. doi: 10.1111/1469-0691.12640 PubMed DOI

James S. A., Powell L. C., Wright C. J. (2016). “Atomic Force Microscopy of Biofilms—Imaging, Interactions, and Mechanics,” in Microbial Biofilms - Importance and Applications. Eds. Dhanasekaran D., Thajuddin N. (London: InTech; ). doi: 10.5772/63312 DOI

Kastanos E., Kyriakides A., Hadjigeorgiou K., Pitris C. (2012). A Novel Method for Bacterial UTI Diagnosis Using Raman Spectroscopy. Int. J. Spectrosc. 2012, 1–13. doi: 10.1155/2012/195317 DOI

Kearns H., Goodacre R., Jamieson L. E., Graham D., Faulds K. (2017). SERS Detection of Multiple Antimicrobial-Resistant Pathogens Using Nanosensors. Analytical Chem. 89 (23), 12666–12673. doi: 10.1021/acs.analchem.7b02653 PubMed DOI

Keleştemur S., Avci E., Çulha M. (2018). Raman and Surface-Enhanced Raman Scattering for Biofilm Characterization. Chemosensors 6 (1), 5. doi: 10.3390/chemosensors6010005 DOI

Khalid M., Bora T., Ghaithi A. A., Thukral S., Dutta J. (2018). Raman Spectroscopy Detects Changes in Bone Mineral Quality and Collagen Cross-Linkage in Staphylococcus Infected Human Bone. Sci. Rep. 8 (1), 9417. doi: 10.1038/s41598-018-27752-z PubMed DOI PMC

Khan Z. A., Siddiqui M. F., Park S. (2019). Current and Emerging Methods of Antibiotic Susceptibility Testing. Diagnostics 9 (2), 49. doi: 10.3390/diagnostics9020049 PubMed DOI PMC

Kim J., Hegde M., Kim S. H., Wood T. K., Jayaraman A. (2012). A Microfluidic Device for High Throughput Bacterial Biofilm Studies. Lab. Chip 12 (6), 1157. doi: 10.1039/c2lc20800h PubMed DOI

Kim W., Lee S. H., Kim J. H., Ahn Y. J., Kim Y.-H., Yu J. S., et al. . (2018). Paper-Based Surface-Enhanced Raman Spectroscopy for Diagnosing Prenatal Diseases in Women. ACS Nano 12 (7), 7100–7108. doi: 10.1021/acsnano.8b02917 PubMed DOI

Kim K., Choi N., Jeon J. H., Rhie G., Choo J. (2019). SERS-Based Immunoassays for the Detection of Botulinum Toxins a and B Using Magnetic Beads. Sensors 19 (19), 4081. doi: 10.3390/s19194081 PubMed DOI PMC

Kloß S., Rösch P., Pfister W., Kiehntopf M., Popp J. (2015. b). Toward Culture-Free Raman Spectroscopic Identification of Pathogens in Ascitic Fluid. Anal. Chem. 87 (2), 937–943. doi: 10.1021/ac503373r PubMed DOI

Kloß S., Lorenz B., Dees S., Labugger I., Rösch P., Popp J. (2015. a). Destruction-Free Procedure for the Isolation of Bacteria From Sputum Samples for Raman Spectroscopic Analysis. Anal. Bioanal. Chem. 407 (27), 8333–8341. doi: 10.1007/s00216-015-8743-x PubMed DOI

Kong K., Kendall C., Stone N., Notingher I. (2015). Raman Spectroscopy for Medical Diagnostics — From in-Vitro Biofluid Assays to in-Vivo Cancer Detection. Advanced Drug Delivery Rev. 89, 121–134. doi: 10.1016/j.addr.2015.03.009 PubMed DOI

Kotanen C. N., Martinez L., Alvarez R., Simecek J. W. (2016). Surface Enhanced Raman Scattering Spectroscopy for Detection and Identification of Microbial Pathogens Isolated From Human Serum. Sens. Bio-Sensing Res. 8, 20–26. doi: 10.1016/j.sbsr.2016.03.002 DOI

Kubina R., Dziedzic A. (2020). Molecular and Serological Tests for COVID-19. A Comparative Review of SARS-Cov-2 Coronavirus Laboratory and Point-of-Care Diagnostics. Diagnostics 10(6) p, 434. doi: 10.3390/diagnostics10060434 PubMed DOI PMC

Kuhar N., Sil S., Verma T., Umapathy S. (2018). Challenges in Application of Raman Spectroscopy to Biology and Materials. RSC Adv. 8 (46), 25888–25908. doi: 10.1039/C8RA04491K PubMed DOI PMC

Kusić D., Kampe B., Rösch P., Popp J. (2014). Identification of Water Pathogens by Raman Microspectroscopy. Water Res. 48, 179–189. doi: 10.1016/j.watres.2013.09.030 PubMed DOI

Lee J., Shin Y., Kim S., Rho K., Park K. H. (2017). “SVM Classification Model of Similar Bacteria Species Using Negative Marker: Based on Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry,” in 2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE). 2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE) (Washington, DC: IEEE; ), 145–150. doi: 10.1109/BIBE.2017.00-64 DOI

Lee R. A., Al Dhaheri F., Pollock N. R., Sharma T. S. (2020). Assessment of the Clinical Utility of Plasma Metagenomic Next-Generation Sequencing in a Pediatric Hospital Population. J. Clin. Microbiol. 58 (7), e00419–20. doi: 10.1128/JCM.00419-20 PubMed DOI PMC

Li J., Wang C., Shi L., Shao L., Fu P., Wang K., et al. . (2019). Rapid Identification and Antibiotic Susceptibility Test of Pathogens in Blood Based on Magnetic Separation and Surface-Enhanced Raman Scattering. Microchimica Acta 186 (7), 475. doi: 10.1007/s00604-019-3571-x PubMed DOI

Li S., Li Y., Yi R., Liu L., Qu J. (2020). Coherent Anti-Stokes Raman Scattering Microscopy and its Applications. Front. Phys. 8. doi: 10.3389/fphy.2020.598420 DOI

Liu H., Xu Q., Huo L., Wei X., Ling J. (2014). Chemical Composition of Enterococcus Faecalis in Biofilm Cells Initiated From Different Physiologic States. Folia Microbiologica 59 (5), 447–453. doi: 10.1007/s12223-014-0319-1 PubMed DOI

Lorenz B., Wichmann C., Stöckel S., Rösch P., Popp J. (2017). Cultivation-Free Raman Spectroscopic Investigations of Bacteria. Trends Microbiol. 25 (5), 413–424. doi: 10.1016/j.tim.2017.01.002 PubMed DOI

Machen A., Drake T., Wang Y. F. (2014). Same Day Identification and Full Panel Antimicrobial Susceptibility Testing of Bacteria From Positive Blood Culture Bottles Made Possible by a Combined Lysis-Filtration Method With MALDI-TOF VITEK Mass Spectrometry and the VITEK2 System. PloS One 9 (2), e87870. doi: 10.1371/journal.pone.0087870. Wayne. PubMed DOI PMC

Mackay I. M. (2004). Real-Time PCR in the Microbiology Laboratory. Clin. Microbiol. Infect. 10 (3), 190–212. doi: 10.1111/j.1198-743X.2004.00722.x PubMed DOI

Maquelin K., Kirschner C., Choo-Smith L.-P., Ngo-Thi N. A., van Vreeswijk T., Stämmler M., et al. . (2003). Prospective Study of the Performance of Vibrational Spectroscopies for Rapid Identification of Bacterial and Fungal Pathogens Recovered From Blood Cultures. J. Clin. Microbiol. 41 (1), 324–329. doi: 10.1128/JCM.41.1.324-329.2003 PubMed DOI PMC

Mathey R., Dupoy M., Espagnon I., Leroux D., Mallard F., Novelli-Rousseau A. (2015). Viability of 3h Grown Bacterial Micro-Colonies After Direct Raman Identification. J. Microbiol Methods 109, 67–73. doi: 10.1016/j.mimet.2014.12.002 PubMed DOI

McCreery R. L. (2000). Raman Spectroscopy for Chemical Analysis: Mccreery/Raman Spectroscopy. Hoboken (NJ, USA: John Wiley & Sons, Inc; ). doi: 10.1002/0471721646 DOI

McCutcheon J., Southam G. (2018). Advanced Biofilm Staining Techniques for TEM and SEM in Geomicrobiology: Implications for Visualizing EPS Architecture, Mineral Nucleation, and Microfossil Generation. Chem. Geol. 498, 115–127. doi: 10.1016/j.chemgeo.2018.09.016 DOI

Meex C., Neuville F., Descy J., Huynen P., Hayette M.-P., De Mol P., et al. . (2012). Direct Identification of Bacteria From Bact/ALERT Anaerobic Positive Blood Cultures by MALDI-TOF MS: MALDI Sepsityper Kit Versus an in-House Saponin Method for Bacterial Extraction. J. Med. Microbiol. 61 (11), 1511–1516. doi: 10.1099/jmm.0.044750-0 PubMed DOI

Mlynáriková K., Samek O., Bernatová S., Růžička F., Ježek J., Hároniková A., et al. . (2015). Influence of Culture Media on Microbial Fingerprints Using Raman Spectroscopy. Sensors 15 (11), 29635–29647. doi: 10.3390/s151129635 PubMed DOI PMC

Nakar A., Pistiki A., Ryabchykov O., Bocklitz T., Rösch P., Popp J. (2022). Detection of Multi-Resistant Clinical Strains of E. Coli With Raman Spectroscopy. Anal. Bioanal. Chem. 18, 1481–1492. doi: 10.1007/s00216-021-03800-y PubMed DOI PMC

Neugebauer U., Rösch P., Popp J. (2014). Fast Differentiation of SIRS and Sepsis From Blood Plasma of ICU Patients Using Raman Spectroscopy: Spectroscopic Differentiation of SIRS and Sepsis From Blood Plasma. J. Biophotonics 7 (3–4), 232–240. doi: 10.1002/jbio.201400010 PubMed DOI

Neugebauer U., Rösch P., Popp J. (2015). Raman Spectroscopy Towards Clinical Application: Drug Monitoring and Pathogen Identification. Int. J. Antimicrob. Agents 46, S35–S39. doi: 10.1016/j.ijantimicag.2015.10.014 PubMed DOI

Ojeda J. J., Dittrich M. (2012). “Fourier Transform Infrared Spectroscopy for Molecular Analysis of Microbial Cells,” in Microbial Systems Biology. Ed. Navid A. (Totowa, NJ: Humana Press (Methods in Molecular Biology; ), 187–211. doi: 10.1007/978-1-61779-827-6_8 PubMed DOI

Pahlow S., Meisel S., Cialla-May D., Weber K., Rösch P., Popp J. (2015). Isolation and Identification of Bacteria by Means of Raman Spectroscopy. Advanced Drug Delivery Rev. 89, 105–120. doi: 10.1016/j.addr.2015.04.006 PubMed DOI

Palama T. L., Canard I., Rautureau G. J. P., Mirande C., Chatellier S., Elena-Herrmann B. (2016). Identification of Bacterial Species by Untargeted NMR Spectroscopy of the Exo-Metabolome. Analyst 141 (15), 4558–4561. doi: 10.1039/C6AN00393A PubMed DOI

Parlatan U., Inanc M. T., Ozgor B. Y., Oral E., Bastu E., Unlu M. B., et al. . (2019). Raman Spectroscopy as a non-Invasive Diagnostic Technique for Endometriosis. Sci. Rep. 9 (1), 19795. doi: 10.1038/s41598-019-56308-y PubMed DOI PMC

Peker N., Garcia-Croes S., Dijkhuizen B., Wiersma H. H., van Zanten E., Wisselink G., et al. . (2019). A Comparison of Three Different Bioinformatics Analyses of the 16S–23S Rrna Encoding Region for Bacterial Identification. Front. Microbiol. 10. doi: 10.3389/fmicb.2019.00620 PubMed DOI PMC

Peng Y., Zhang Q., Xu C., Shi W. (2019). MALDI−TOF MS for the Rapid Identification and Drug Susceptibility Testing of Filamentous Fungi. Exp. Ther. Med. 414, 4865–4873 doi: 10.3892/etm.2019.8118 PubMed DOI PMC

Pérez-Rodríguez S., García-Aznar J. M., Gonzalo-Asensio J. (2022). Microfluidic Devices for Studying Bacterial Taxis, Drug Testing and Biofilm Formation. Microbial Biotechnol. 15, 395–414. doi: 10.1111/1751-7915.13775 PubMed DOI PMC

Pezzotti G. (2021). Raman Spectroscopy in Cell Biology and Microbiology. J. Raman Spectrosc. 52 (12), 2348–2443. doi: 10.1002/jrs.6204 DOI

Pilát Z., Bernatová S., Ježek J., Kirchhoff J., Tannert A., Neugebauer U., et al. . (2018). ‘Microfluidic Cultivation and Laser Tweezers Raman Spectroscopy of E. Coli Under Antibiotic Stress’ Sensors 18(5) p, 1623. doi: 10.3390/s18051623 PubMed DOI PMC

Pimenta M. A., Dresselhaus G., Dresselhaus M. S., Cançado L. G., Jorio A., Saito R. (2007). Studying Disorder in Graphite-Based Systems by Raman Spectroscopy. Phys. Chem. Chem. Phys. 9 (11), 1276–1290. doi: 10.1039/B613962K PubMed DOI

Poon K. W. C., Lyng F. M., Knief P., Howe O., Meade A. D., Curtin J. F., et al. . (2012). Quantitative Reagent-Free Detection of Fibrinogen Levels in Human Blood Plasma Using Raman Spectroscopy. Analyst 137 (8), 1807. doi: 10.1039/c2an35042d PubMed DOI

Premasiri W. R., Chen Y., Williamson P. M., Bandarage D. C., Pyles C., Ziegler L. D. (2017). Rapid Urinary Tract Infection Diagnostics by Surface-Enhanced Raman Spectroscopy (SERS): Identification and Antibiotic Susceptibilities. Anal. Bioanal. Chem. 409 (11), 3043–3054. doi: 10.1007/s00216-017-0244-7 PubMed DOI

Qi D., Berger A. J. (2007). Chemical Concentration Measurement in Blood Serum and Urine Samples Using Liquid-Core Optical Fiber Raman Spectroscopy. Appl. Optics 46 (10), 1726. doi: 10.1364/AO.46.001726 PubMed DOI

Qun M., Yan-Le L., Nian-Chun G., Xi J., Shuang-Yan H. (2015). Surface Enhanced Raman Spectroscopy Sensor Based on Magnetic Beads-Induced Nanoparticles Aggregation for Detection of Bacterial Deoxyribonucleic Acid. Chin. J. Anal. Chem. 43 (11), 1676–1681. doi: 10.1016/S1872-2040(15)60876-3 DOI

Ramamurthy T., Ghosh A., Pazhani G. P., Shinoda S. (2014). Current Perspectives on Viable But non-Culturable (VBNC) Pathogenic Bacteria. Front. Public Health 2. doi: 10.3389/fpubh.2014.00103 PubMed DOI PMC

Read D. S., Whiteley A. S. (2015). Chemical Fixation Methods for Raman Spectroscopy-Based Analysis of Bacteria. J. Microbiol. Methods 109, 79–83. doi: 10.1016/j.mimet.2014.12.008 PubMed DOI

Rebrošová K., Šiler M., Samek O., Růžička F., Bernatová S., Holá V., et al. . (2017). Rapid Identification of Staphylococci by Raman Spectroscopy. Sci. Rep. 7 (1), 14846. doi: 10.1038/s41598-017-13940-w PubMed DOI PMC

Rebrošová K., Šiler M., Samek O., Růžička F., Bernatová S., Ježek J., et al. . (2019). Identification of Ability to Form Biofilm in Candida Parapsilosis and Staphylococcus Epidermidis by Raman Spectroscopy. Future Microbiol. 14 (6), 509–517. doi: 10.2217/fmb-2018-0297 PubMed DOI

Rebrošová K., Bernatová S., Šiler M., Uhlirova M., Samek O., Ježek J., et al. . (2022). Raman Spectroscopy—a Tool for Rapid Differentiation Among Microbes Causing Urinary Tract Infections. Analytica Chimica Acta 1191, 339292. doi: 10.1016/j.aca.2021.339292 PubMed DOI

Reller L. B., Weinstein M. P., Petti C. A. (2007). Detection and Identification of Microorganisms by Gene Amplification and Sequencing. Clin. Infect. Dis. 44 (8), 1108–1114. doi: 10.1086/512818 PubMed DOI

Relucenti M., Familiari G., Donfrancesco O., Taurino M., Li X., Chen R., et al. . (2021). Microscopy Methods for Biofilm Imaging: Focus on SEM and VP-SEM Pros and Cons. Biology 10 (1), 51. doi: 10.3390/biology10010051 PubMed DOI PMC

Reschiglian P., Zattoni A., Roda B., Casolari S., Moon M. H., Lee J., et al. . (2002). Bacteria Sorting by Field-Flow Fractionation. Application to Whole-Cell Escherichia Coli Vaccine Strains. Anal. Chem. 74 (19), 4895–4904. doi: 10.1021/ac020199t PubMed DOI

Romaniuk J. A. H., Cegelski L. (2015). Bacterial Cell Wall Composition and the Influence of Antibiotics by Cell-Wall and Whole-Cell NMR. Philos. Trans. R. Soc. B: Biol. Sci. 370 (1679), 20150024. doi: 10.1098/rstb.2015.0024 PubMed DOI PMC

Rousseau A. N., Faure N., Rol F., Sedaghat Z., Le Galudec J., Mallard F., et al. . (2021). Fast Antibiotic Susceptibility Testing via Raman Microspectrometry on Single Bacteria: An MRSA Case Study. ACS Omega 6 (25), 16273–16279. doi: 10.1021/acsomega.1c00170 PubMed DOI PMC

Ruzicka F., Horka M., Hola V., Mlynarikova K., Drab V. (2016). Capillary Isoelectric Focusing—Useful Tool for Detection and Quantification of Lactic Acid Bacteria in Milk. Food Anal. Methods 9 (12), 3251–3257. doi: 10.1007/s12161-016-0522-6 DOI

Rychert J. (2019). Benefits and Limitations of MALDI-TOF Mass Spectrometry for the Identification of Microorganisms. J. Infectiol. 2 (4), 1–5. doi: 10.29245/2689-9981/2019/4.1142 DOI

Sabat A. J., van Zanten E., Akkerboom V., Wisselink G., van Slochteren K., de Boer R. F., et al. . (2017). Targeted Next-Generation Sequencing of the 16S-23S Rrna Region for Culture-Independent Bacterial Identification - Increased Discrimination of Closely Related Species. Sci. Rep. 7 (1), 3434. doi: 10.1038/s41598-017-03458-6 PubMed DOI PMC

Sabnis R. W. (2015). Handbook of Fluorescent Dyes and Probes. Hoboken (New Jersey: Wiley; ).

Saenton S., Lee H., Gao Y.-S., Ranville J. F., Williams S. K. R. (2000). Evaluation of Different Field-Flow Fractionation Techniques for Separating Bacteria. Separation Sci. Technol. 35 (11), 1761–1775. doi: 10.1081/SS-100102492 DOI

Samek O., Bernatová S., Dohnal F. (2021). The Potential of SERS as an AST Methodology in Clinical Settings. Nanophotonics 10 (10), 2537–2561. doi: 10.1515/nanoph-2021-0095 DOI

Samek O., Telle H. H., Harris L. G., Bloomfield M., Mack D. (2008). Raman Spectroscopy for Rapid Discrimination of Staphylococcus Epidermidis Clones Related to Medical Device-Associated Infections. Laser Phys. Lett. 5 (6), 465–470. doi: 10.1002/lapl.200810011 DOI

Samek O., Jonáš A., Pilát Z., Zemánek P., Nedbal L., Tříska J., et al. . (2010). Raman Microspectroscopy of Individual Algal Cells: Sensing Unsaturation of Storage Lipids In Vivo . Sensors 10 (9), 8635–8651. doi: 10.3390/s100908635 PubMed DOI PMC

Samek O., Mlynariková K., Bernatová S., Ježek J., Krzyžánek V., Šiler M., et al. . (2014). Candida Parapsilosis Biofilm Identification by Raman Spectroscopy. Int. J. Mol. Sci. 15 (12), 23924–23935. doi: 10.3390/ijms151223924 PubMed DOI PMC

Samek O., Bernatová S., Ježek J., Šiler M., Šerý M., Krzyžánek V., et al. . (2015). Identification of Individual Biofilm-Forming Bacterial Cells Using Raman Tweezers. J. Biomed. Optics 20 (5), 51038. doi: 10.1117/1.JBO.20.5.051038 PubMed DOI

Sarno B., Heineck D., Heller M. J., Ibsen S. D. (2021). Dielectrophoresis: Developments and Applications From 2010 to 2020. ELECTROPHORESIS 42 (5), 539–564. doi: 10.1002/elps.202000156 PubMed DOI PMC

Schie I. W., Huser T. (2013). Methods and Applications of Raman Microspectroscopy to Single-Cell Analysis. Appl. Spectrosc. 67 (8), 813–828. doi: 10.1366/12-06971 PubMed DOI

Schröder U.-C., Ramoji A., Glaser U., Sachse S., Leiterer C., Csaki A., et al. . (2013). Combined Dielectrophoresis–Raman Setup for the Classification of Pathogens Recovered From the Urinary Tract. Anal. Chem. 85 (22), 10717–10724. doi: 10.1021/ac4021616 PubMed DOI

Schröder U.-C., Bokeloh F., O’Sullivan M., Glaser U., Wolf K., Pfister W., et al. . (2015). Rapid, Culture-Independent, Optical Diagnostics of Centrifugally Captured Bacteria From Urine Samples. Biomicrofluidics 9 (4), 044118. doi: 10.1063/1.4928070 PubMed DOI PMC

Schuster K. C., Urlaub E., Gapes J. R. (2000). Single-Cell Analysis of Bacteria by Raman Microscopy: Spectral Information on the Chemical Composition of Cells and on the Heterogeneity in a Culture. J. Microbiol. Methods 42 (1), 29–38. doi: 10.1016/S0167-7012(00)00169-X PubMed DOI

Schwaminger S. P., Fraga-García P., Eigenfeld M., Becker T. M., Berensmeier S. (2019). Magnetic Separation in Bioprocessing Beyond the Analytical Scale: From Biotechnology to the Food Industry. Front. Bioeng. Biotechnol. 7. doi: 10.3389/fbioe.2019.00233 PubMed DOI PMC

Sender R., Fuchs S., Milo R. (2016). Revised Estimates for the Number of Human and Bacteria Cells in the Body. PloS Biol. 14 (8), e1002533. doi: 10.1371/journal.pbio.1002533 PubMed DOI PMC

Singhal N., Kumar M., Kanaujia P. K., Virdi J. S. (2015). MALDI-TOF Mass Spectrometry: An Emerging Technology for Microbial Identification and Diagnosis. Front. Microbiol. 6. doi: 10.3389/fmicb.2015.00791 PubMed DOI PMC

Singh G. P., Volpe G., Creely C. M., Grötsch H., Geli I. M., Petrov D. (2006). The Lag Phase and G1 Phase of a Single Yeast Cell Monitored by Raman Microspectroscopy. J. Raman Spectrosc. 37 (8), 858–864. doi: 10.1002/jrs.1520 DOI

Smith E., Dent G. (2004). Modern Raman Spectroscopy - a Practical Approach: Smith/Modern Raman Spectroscopy - a Practical Approach. Chichester (UK: John Wiley & Sons, Ltd; ). doi: 10.1002/0470011831 DOI

Spratt D. A. (2004). Significance of Bacterial Identification by Molecular Biology Methods. Endodontic Topics 9 (1), 5–14. doi: 10.1111/j.1601-1546.2004.00106.x DOI

Taleb I., Thiéfin G., Gobinet C., Untereiner V., Bernard-Chabert B., Heurgué A., et al. . (2013). Diagnosis of Hepatocellular Carcinoma in Cirrhotic Patients: A Proof-of-Concept Study Using Serum Micro-Raman Spectroscopy. Analyst 138 (14), 4006. doi: 10.1039/c3an00245d PubMed DOI

Tanniche I., Collakova E., Denbow C., Senger R. S. (2020). Characterizing Metabolic Stress-Induced Phenotypes of Synechocystis PCC6803 With Raman Spectroscopy. PeerJ 8, e8535. doi: 10.7717/peerj.8535 PubMed DOI PMC

Tay F., Yu L., Iliescu C. (2009). Particle Manipulation by Miniaturised Dielectrophoretic Devices. Defence Sci. J. 59 (6), 595–604. doi: 10.14429/dsj.59.1564 DOI

Tien N., Chen H.-C., Gau S.-L., Lin T.-H., Lin H.-S., You B.-J., et al. . (2016). Diagnosis of Bacterial Pathogens in the Dialysate of Peritoneal Dialysis Patients With Peritonitis Using Surface-Enhanced Raman Spectroscopy. Clinica Chimica Acta 461, 69–75. doi: 10.1016/j.cca.2016.07.026 PubMed DOI

Vankeirsbilck T., Vercauteren A., Baeyens W., van der Weken G., Verpoort F., Vergote G., et al. . (2002). Applications of Raman Spectroscopy in Pharmaceutical Analysis. TrAC Trends Anal. Chem. 21 (12), 869–877. doi: 10.1016/S0165-9936(02)01208-6 DOI

Verroken A., Defourny L., Lechgar L., Magnette A., Delmée M., Glupczynski Y. (2015). Reducing Time to Identification of Positive Blood Cultures With MALDI-TOF MS Analysis After a 5-H Subculture. Eur. J. Clin. Microbiol. Infect. Dis. 34 (2), 405–413. doi: 10.1007/s10096-014-2242-4 PubMed DOI

Vogt S., Löffler K., Dinkelacker A. G., Bader B., Autenrieth I. B., Peter S., et al. . (2019). Fourier-Transform Infrared (FTIR) Spectroscopy for Typing of Clinical Enterobacter Cloacae Complex Isolates. Front. Microbiol. 10. doi: 10.3389/fmicb.2019.02582 PubMed DOI PMC

Wang X., Huang S.-C., Hu S., Yan S., Ren B. (2020). Fundamental Understanding and Applications of Plasmon-Enhanced Raman Spectroscopy. Nat. Rev. Phys. 2 (5), 253–271. doi: 10.1038/s42254-020-0171-y DOI

Wang L., Liu W., Tang J.-W., Wang J.-J., Liu Q.-H., Wen P.-B., et al. . (2021). Applications of Raman Spectroscopy in Bacterial Infections: Principles, Advantages, and Shortcomings. Front. Microbiol. 12. doi: 10.3389/fmicb.2021.683580 PubMed DOI PMC

Weber R. E., Petkowski J. J., Michaels B., Wisniewski K., Piela A., Antoszczyk S., et al. . (2021). Fluid-Screen as a Real Time Dielectrophoretic Method for Universal Microbial Capture. Sci. Rep. 11 (1), 22222. doi: 10.1038/s41598-021-01600-z PubMed DOI PMC

Weng S., Zhu W., Zhang X., Yuan H., Zheng L., Zhao J., et al. . (2019). Recent Advances in Raman Technology With Applications in Agriculture, Food and Biosystems: A Review. Artif. Intell. Agric. 3, 1–10. doi: 10.1016/j.aiia.2019.11.001 DOI

Wichmann C., Rösch P., Popp J. (2021). Isolation of Bacteria From Artificial Bronchoalveolar Lavage Fluid Using Density Gradient Centrifugation and Their Accessibility by Raman Spectroscopy. Anal. Bioanal. Chem. 413 (20), 5193–5200. doi: 10.1007/s00216-021-03488-0 PubMed DOI PMC

Witkowska E., Niciński K., Korsak D., Dominiak B., Waluk J., Kamińska A. (2020). Nanoplasmonic Sensor for Foodborne Pathogens Detection. Towards Development of ISO-SERS Methodology for Taxonomic Affiliation of Campylobacter Spp. J. Biophotonics 13 (5), e201960227. doi: 10.1002/jbio.201960227 PubMed DOI

Wu M., Ling D., Ling L., Li W., Li Y. (2017). Stable Optical Trapping and Sensitive Characterization of Nanostructures Using Standing-Wave Raman Tweezers. Sci. Rep. 7 (1), 42930. doi: 10.1038/srep42930 PubMed DOI PMC

Wulf M. W. H., Willemse-Erix D., Verduin C. M., Puppels G., van Belkum A., Maquelin K. (2012). The Use of Raman Spectroscopy in the Epidemiology of Methicillin-Resistant Staphylococcus Aureus of Human- and Animal-Related Clonal Lineages. Clin. Microbiol. Infect. 18 (2), 147–152. doi: 10.1111/j.1469-0691.2011.03517.x PubMed DOI

Xu T., Sun L. (2021). A Mini Review on Capillary Isoelectric Focusing-Mass Spectrometry for Top-Down Proteomics. Front. Chem. 9. doi: 10.3389/fchem.2021.651757 PubMed DOI PMC

Yogesha M., Chawla K., Bankapur A., Acharya M., D’Souza J. S., Chidangil S. (2019). A Micro-Raman and Chemometric Study of Urinary Tract Infection-Causing Bacterial Pathogens in Mixed Cultures. Anal. Bioanal. Chem. 411 (14), 3165–3177. doi: 10.1007/s00216-019-01784-4 PubMed DOI

Yonetani S., Ohnishi H., Ohkusu K., Matsumoto T., Watanabe T. (2016). Direct Identification of Microorganisms From Positive Blood Cultures by MALDI-TOF MS Using an in-House Saponin Method. Int. J. Infect. Dis. 52, 37–42. doi: 10.1016/j.ijid.2016.09.014 PubMed DOI

Zarnowiec P., Lechowicz L., Czerwonka G., Kaca W. (2015). Fourier Transform Infrared Spectroscopy (FTIR) as a Tool for the Identification and Differentiation of Pathogenic Bacteria. Curr. Med. Chem. 22 (14), 1710–1718. doi: 10.2174/0929867322666150311152800 PubMed DOI

Zhang H., Chang H., Neuzil P. (2019). DEP-on-a-Chip: Dielectrophoresis Applied to Microfluidic Platforms. Micromachines 10 (6), 423. doi: 10.3390/mi10060423 PubMed DOI PMC

Zhou M., Le J., Chen Y., Cai Y., Hong Z., Chai Y. (2017). An Improved in-House MALDI-TOF MS Protocol for Direct Cost-Effective Identification of Pathogens From Blood Cultures. Front. Microbiol. 8. doi: 10.3389/fmicb.2017.01824 PubMed DOI PMC

Zhou W., Yang Q., Kudinha T., Sun L., Zhang R., Liu C., et al. . (2019). Recent Advances in Microfluidic Devices for Bacteria and Fungus Research. TrAC Trends Analy. Chem. 112, 175–195. doi: 10.1016/j.trac.2018.12.024 DOI

Ziemann M. A., Madariaga J. M. (2021). Applications of Raman Spectroscopy in Art and Archaeology. J. Raman Spectrosc. 52 (1), 8–14. doi: 10.1002/jrs.6054 DOI

Zu T., Athamneh A., Senger R. (2016). Characterizing the Phenotypic Responses of Escherichia Coli to Multiple 4-Carbon Alcohols With Raman Spectroscopy. Fermentation 2 (4), 3. doi: 10.3390/fermentation2010003 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...