Rapid identification of pathogens in blood serum via Raman tweezers in combination with advanced processing methods
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38420303
PubMed Central
PMC10898560
DOI
10.1364/boe.503628
PII: 503628
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Pathogenic microbes contribute to several major global diseases that kill millions of people every year. Bloodstream infections caused by these microbes are associated with high morbidity and mortality rates, which are among the most common causes of hospitalizations. The search for the "Holy Grail" in clinical diagnostic microbiology, a reliable, accurate, low cost, real-time, and easy-to-use diagnostic method, is one of the essential issues in clinical practice. These very critical conditions can be met by Raman tweezers in combination with advanced analysis methods. Here, we present a proof-of-concept study based on Raman tweezers combined with spectral mixture analysis that allows for the identification of microbial strains directly from human blood serum without user intervention, thus eliminating the influence of a data analyst.
Zobrazit více v PubMed
Tabah A., Lipman J., Barbier F., Buetti N., Timsit J.-F., “Use of Antimicrobials for Bloodstream Infections in the Intensive Care Unit, a Clinically Oriented Review,” Antibiotics (Basel, Switz.) 11(3), 362 (2022).10.3390/antibiotics11030362 PubMed DOI PMC
Carolus H., Van Dyck K., Van Dijck P., “Candida albicans and Staphylococcus Species: A Threatening Twosome,” Front. Microbiol. 10, 2162 (2019).10.3389/fmicb.2019.02162 PubMed DOI PMC
Bonten M., Johnson J. R., Van Den Biggelaar A. H. J., Georgalis L., Geurtsen J., De Palacios P. I., Gravenstein S., Verstraeten T., Hermans P., Poolman J. T., “Epidemiology of Escherichia coli Bacteremia: A Systematic Literature Review,” Clin. Infect. Dis. 72(7), 1211–1219 (2021).10.1093/cid/ciaa210 PubMed DOI
Suzuki M., Miyaki M., Sekine K., Kurihara T., Abe S., Aikawa N., Shinagawa N., “Antimicrobial-susceptible patterns of Staphylococcus aureus isolated from surgical infections: a new approach,” J. Infect. Chemother. 17(1), 34–39 (2011).10.1007/s10156-010-0096-y PubMed DOI
Buchan B. W., “Commentary: Can Automated Blood Culture Systems Be Both New and Improved?” J. Clin. Microbiol. 60(4), e00192 (2022).10.1128/jcm.00192-22 PubMed DOI PMC
Martín-Gutiérrez G., Martín-Pérez C., Gutiérrez-Pizarraya A., Lepe J. A., Cisneros J. M., Aznar J., “Time to positivity of blood cultures in patients with bloodstream infections: A useful prognostic tool,” Enfermedades Infecciosas y Microbiología Clínica 35(10), 638–644 (2017).10.1016/j.eimc.2016.10.003 PubMed DOI
Lamy B., Dargère S., Arendrup M. C., Parienti J.-J., Tattevin P., “How to Optimize the Use of Blood Cultures for the Diagnosis of Bloodstream Infections? A State-of-the Art,” Front. Microbiol. 7, 125 (2016).10.3389/fmicb.2016.00697 PubMed DOI PMC
Lamy B., “Blood culture time-to-positivity: making use of the hidden information,” Clin. Microbiol. Infect. 25(3), 268–271 (2019). Publisher: Elsevier.10.1016/j.cmi.2018.12.001 PubMed DOI
Lay J. O., “MALDI-TOF mass spectrometry of bacteria,” Mass Spectrom. Rev. 20(4), 172–194 (2001).10.1002/mas.10003 PubMed DOI
Sauget M., Bertrand X., Hocquet D., “Rapid antibiotic susceptibility testing on blood cultures using MALDI-TOF MS,” PLoS One 13(10), e0205603 (2018).10.1371/journal.pone.0205603 PubMed DOI PMC
Ugaban K., Pak P., She R. C., “Direct MALDI-TOF MS and Antimicrobial Susceptibility Testing of Positive Blood Cultures Using the FASTTM System and FAST-PBC Prep Cartridges-Performance Evaluation in a Clinical Microbiology Laboratory Serving High-Risk Patients,” Microorganisms 10(10), 2076 (2022).10.3390/microorganisms10102076 PubMed DOI PMC
Barth P. O., Roesch E. W., Lutz L., de Souza A. C., Goldani L. Z., Pereira D. C., “Rapid bacterial identification by MALDI-TOF MS directly from blood cultures and rapid susceptibility testing: A simple approach to reduce the turnaround time of blood cultures,” Braz. J. Infect. Dis. 27(1), 102721 (2023).10.1016/j.bjid.2022.102721 PubMed DOI PMC
Gola S., Martin R., Walther A., Dünkler A., Wendland J., “New modules for PCR-based gene targeting in Candida albicans : rapid and efficient gene targeting using 100 bp of flanking homology region: Efficient PCR-based gene targeting in Candida albicans,” Yeast 20(16), 1339–1347 (2003).10.1002/yea.1044 PubMed DOI
Zhang K., McClure J.-A., Elsayed S., Louie T., Conly J. M., “Novel Multiplex PCR Assay for Characterization and Concomitant Subtyping of Staphylococcal Cassette Chromosome mec Types I to V in Methicillin-Resistant Staphylococcus aureus,” J. Clin. Microbiol. 43(10), 5026–5033 (2005).10.1128/JCM.43.10.5026-5033.2005 PubMed DOI PMC
Datsenko K. A., Wanner B. L., “One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products,” Proc. Natl. Acad. Sci. U.S.A. 97(12), 6640–6645 (2000).10.1073/pnas.120163297 PubMed DOI PMC
Dunbar S. A., Gardner C., Das S., “Diagnosis and Management of Bloodstream Infections With Rapid, Multiplexed Molecular Assays,” Front. Cell. Infect. Microbiol. 12, 859935 (2022).10.3389/fcimb.2022.859935 PubMed DOI PMC
Van Den Berg S., Bonarius H. P., Van Kessel K. P., Elsinga G. S., Kooi N., Westra H., Bosma T., Van Der Kooi-Pol M. M., Koedijk D. G., Groen H., Van Dijl J. M., Buist G., Bakker-Woudenberg I. A., “A human monoclonal antibody targeting the conserved staphylococcal antigen IsaA protects mice against Staphylococcus aureus bacteremia,” Int. J. Med. Microbiol. 305(1), 55–64 (2015).10.1016/j.ijmm.2014.11.002 PubMed DOI
Xie C., Mace J., Dinno M. A., Li Y. Q., Tang W., Newton R. J., Gemperline P. J., “Identification of Single Bacterial Cells in Aqueous Solution Using Confocal Laser Tweezers Raman Spectroscopy,” Anal. Chem. 77(14), 4390–4397 (2005).10.1021/ac0504971 PubMed DOI
Huang W. E., Ward A. D., Whiteley A. S., “Raman tweezers sorting of single microbial cells,” Environ. Microbiol. Rep. 1(1), 44–49 (2009).10.1111/j.1758-2229.2008.00002.x PubMed DOI
Dochow S., Krafft C., Neugebauer U., Bocklitz T., Henkel T., Mayer G., Albert J., Popp J., “Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip 11(8), 1484 (2011).10.1039/c0lc00612b PubMed DOI
Bernatová S., Rebrošová K., Pilát Z., Šerý M., Gjevik A., Samek O., Ježek J., Šiler M., Kizovský M., Klementová T., Holá V., Růžička F., Zemánek P., “Rapid detection of antibiotic sensitivity of Staphylococcus aureus by Raman tweezers,” Eur. Phys. J. Plus 136(2), 233 (2021).10.1140/epjp/s13360-021-01152-1 DOI
Rebrošová K., Bernatová S., Šiler M., Mašek J., Samek O., Ježek J., Kizovsky M., Holá V., Zemánek P., Růžička F., “Rapid Identification of Pathogens Causing Bloodstream Infections by Raman Spectroscopy and Raman Tweezers,” Microbiol. Spectrum 11(3), e00028 (2023).10.1128/spectrum.00028-23 PubMed DOI PMC
Rebrošová K., Bernatová S., Šiler M., Uhlirova M., Samek O., Ježek J., Holá V., Růžička F., Zemánek P., “Raman spectroscopy-a tool for rapid differentiation among microbes causing urinary tract infections,” Anal. Chim. Acta 1191, 339292 (2022).10.1016/j.aca.2021.339292 PubMed DOI
Spencer A. R., Klein M. D., Ang J. Y., Twomey T. A., Sant D. J., Chinkhota C. N., Kast R. E., Auner G. W., “Staphylococcus aureus identification and antibiotic resistance determination using raman spectroscopy,” Journal of the American College of Surgeons 213(3), S49 (2011).10.1016/j.jamcollsurg.2011.06.104 DOI
Kirchhoff J., Glaser U., Bohnert J. A., Pletz M. W., Popp J., Neugebauer U., “Simple Ciprofloxacin Resistance Test and Determination of Minimal Inhibitory Concentration within 2 h Using Raman Spectroscopy,” Anal. Chem. 90(3), 1811–1818 (2018).10.1021/acs.analchem.7b03800 PubMed DOI
Liu W., Tang J.-W., Lyu J.-W., Wang J.-J., Pan Y.-C., Shi X.-Y., Liu Q.-H., Zhang X., Gu B., Wang L., “Discrimination between Carbapenem-Resistant and Carbapenem-Sensitive Klebsiella pneumoniae Strains through Computational Analysis of Surface-Enhanced Raman Spectra: a Pilot Study,” Microbiol. Spectrum 10(1), e0240921 (2022).10.1128/spectrum.02409-21 PubMed DOI PMC
Volpe G., Maragó O. M., Rubinsztein-Dunlop H., et al. , “Roadmap for optical tweezers,” J. Phys. Photonics 5(2), 022501 (2023).10.1088/2515-7647/acb57b DOI
Gu W., Deng X., Lee M., et al. , “Rapid pathogen detection by metagenomic next-generation sequencing of infected body fluids,” Nat. Med. 27(1), 115–124 (2021).10.1038/s41591-020-1105-z PubMed DOI PMC
Pahlow S., Meisel S., Cialla-May D., Weber K., Rösch P., Popp J., “Isolation and identification of bacteria by means of Raman spectroscopy,” Adv. Drug Delivery Rev. 89, 105–120 (2015).10.1016/j.addr.2015.04.006 PubMed DOI
Kloß S., Rösch P., Pfister W., Kiehntopf M., Popp J., “Toward Culture-Free Raman Spectroscopic Identification of Pathogens in Ascitic Fluid,” Anal. Chem. 87(2), 937–943 (2015).10.1021/ac503373r PubMed DOI
Pahlow S., Kloß S., Blättel V., Kirsch K., Hübner U., Cialla D., Rösch P., Weber K., Popp J., “Isolation and Enrichment of Pathogens with a Surface-Modified Aluminium Chip for Raman Spectroscopic Applications,” ChemPhysChem 14(15), 3600–3605 (2013).10.1002/cphc.201300543 PubMed DOI
Fernandez R. E., Rohani A., Farmehini V., Swami N. S., “Review: Microbial analysis in dielectrophoretic microfluidic systems,” Anal. Chim. Acta 966, 11–33 (2017).10.1016/j.aca.2017.02.024 PubMed DOI PMC
Schröder U.-C., Ramoji A., Glaser U., Sachse S., Leiterer C., Csaki A., Hübner U., Fritzsche W., Pfister W., Bauer M., Popp J., Neugebauer U., “Combined Dielectrophoresis-Raman Setup for the Classification of Pathogens Recovered from the Urinary Tract,” Anal. Chem. 85(22), 10717–10724 (2013).10.1021/ac4021616 PubMed DOI
Ryabchykov O., Bocklitz T., Ramoji A., Neugebauer U., Foerster M., Kroegel C., Bauer M., Kiehntopf M., Popp J., “Automatization of spike correction in Raman spectra of biological samples,” Chemom. Intell. Lab. Syst. 155, 1–6 (2016).10.1016/j.chemolab.2016.03.024 DOI
Li S. Z., Jain A., “L2 norm,” in Encyclopedia of Biometrics , (Springer US, Boston, MA, 2009), pp. 883.
Gawinkowski S., Kamińska A., Roliński T., Waluk J., “A new algorithm for identification of components in a mixture: application to Raman spectra of solid amino acids,” The Analyst 139(22), 5755–5764 (2014).10.1039/C4AN01159G PubMed DOI
Hedegaard M., Matthäus C., Hassing S., Krafft C., Diem M., Popp J., “Spectral unmixing and clustering algorithms for assessment of single cells by Raman microscopic imaging,” Theor. Chem. Acc. 130(4-6), 1249–1260 (2011).10.1007/s00214-011-0957-1 DOI
Winter M. E., “N-FINDR: an algorithm for fast autonomous spectral end-member determination in hyperspectral data,” in Imaging Spectrometry V, Vol. 3753 (SPIE, 1999), pp. 266–275.
Chang C.-I., Plaza A., “A Fast Iterative Algorithm for Implementation of Pixel Purity Index,” IEEE Geosci. Remote Sensing Lett. 3(1), 63–67 (2006).10.1109/LGRS.2005.856701 DOI
Heinz D., Chang Chein-I-, “Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery,” IEEE Trans. Geosci. Remote Sensing 39(3), 529–545 (2001).10.1109/36.911111 DOI
Brandt N. N., Brovko O. O., Chikishev A. Y., Paraschuk O. D., “Optimization of the Rolling-Circle Filter for Raman Background Subtraction,” Appl. Spectrosc. 60(3), 288–293 (2006).10.1366/000370206776342553 PubMed DOI
Liland K. H., Almøy T., Mevik B.-H., “Optimal Choice of Baseline Correction for Multivariate Calibration of Spectra,” Appl. Spectrosc. 64(9), 1007–1016 (2010).10.1366/000370210792434350 PubMed DOI
Eberhardt K., Stiebing C., Matthäus C., Schmitt M., Popp J., “Advantages and limitations of Raman spectroscopy for molecular diagnostics: an update,” Expert Rev. Mol. Diagn. 15(6), 773–787 (2015).10.1586/14737159.2015.1036744 PubMed DOI
Ryabchykov O., Schie I. W., Popp J., Bocklitz T., “Errors and Mistakes to Avoid when Analyzing Raman Spectra,” Spectroscopy 37, 48–50 (2022).10.56530/spectroscopy.zz8373x6 Publisher: MJH Life Sciences. DOI
Larose D. T., Larose C. D., Chrostowski L., Ratner D., “k-Nearest Neighbor Algorithm,” in Discovering Knowledge in Data , Vol. 9166 (John Wiley & Sons, Inc., 2014), p. 149–164.
Shukla N., “ Machine Learning with TensorFlow , (Manning Publications, 2018), p. 91660M.OCLC: 1027223507.
Martin E., Kaski S., Zheng F., et al. , “Sensitivity and Specificity,” in Encyclopedia of Machine Learning , Sammut C., Webb G. I., eds. (Springer US, 2011), pp. 901–902.
Shultz T. R., Fahlman S. E., Craw S., et al. , “Confusion Matrix,” in Encyclopedia of Machine Learning (Springer US, 2011), pp.209.
Rebrošová K., Šiler M., Samek O., Růžička F., Bernatová S., Ježek J., Zemánek P., Holá V., “Differentiation between Staphylococcus aureus and Staphylococcus epidermidis strains using Raman spectroscopy,” Future Microbiology 12(10), 881–890 (2017).10.2217/fmb-2016-0224 PubMed DOI
Van De Vossenberg J., Tervahauta H., Maquelin K., Blokker-Koopmans C. H. W., Uytewaal-Aarts M., Van Der Kooij D., Van Wezel A. P., Van Der Gaag B., “Identification of bacteria in drinking water with Raman spectroscopy,” Anal. Methods 5(11), 2679 (2013).10.1039/c3ay40289d DOI
Strola S. A., Baritaux J.-C., Schultz E., Simon A. C., Allier C., Espagnon I., Jary D., Dinten J.-M., “Single bacteria identification by Raman spectroscopy,” J. Biomed. Opt 19(11), 111610 (2014).10.1117/1.JBO.19.11.111610 PubMed DOI
Dahms M., Eiserloh S., Rödel J., Makarewicz O., Bocklitz T., Popp J., Neugebauer U., “Raman Spectroscopic Differentiation of Streptococcus pneumoniae From Other Streptococci Using Laboratory Strains and Clinical Isolates,” Front. Cell. Infect. Microbiol. 12, 930011 (2022).10.3389/fcimb.2022.930011 PubMed DOI PMC
Rebrošová K., Samek O., Kizovsky M., Bernatová S., Hola V., Růžička F., “Raman Spectroscopy-A Novel Method for Identification and Characterization of Microbes on a Single-Cell Level in Clinical Settings,” Front. Cell. Infect. Microbiol. 12, 866463 (2022).10.3389/fcimb.2022.866463 PubMed DOI PMC
Rebrošová K., Šiler M., Samek O., Růžička F., Bernatová S., Ježek J., Zemánek P., Holá V., “Identification of ability to form biofilm in Candida parapsilosis and Staphylococcus epidermidis by Raman spectroscopy,” Future Microbiol. 14(6), 509–517 (2019).10.2217/fmb-2018-0297 PubMed DOI