Rapid identification of staphylococci by Raman spectroscopy
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29093473
PubMed Central
PMC5665888
DOI
10.1038/s41598-017-13940-w
PII: 10.1038/s41598-017-13940-w
Knihovny.cz E-zdroje
- MeSH
- agar MeSH
- analýza hlavních komponent MeSH
- časové faktory MeSH
- diagnostické testy rutinní MeSH
- fluorescence MeSH
- odběr biologického vzorku MeSH
- Ramanova spektroskopie metody MeSH
- Staphylococcus izolace a purifikace MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- agar MeSH
Clinical treatment of the infections caused by various staphylococcal species differ depending on the actual cause of infection. Therefore, it is necessary to develop a fast and reliable method for identification of staphylococci. Raman spectroscopy is an optical method used in multiple scientific fields. Recent studies showed that the method has a potential for use in microbiological research, too. Our work here shows a possibility to identify staphylococci by Raman spectroscopy. We present a method that enables almost 100% successful identification of 16 of the clinically most important staphylococcal species directly from bacterial colonies grown on a Mueller-Hinton agar plate. We obtained characteristic Raman spectra of 277 staphylococcal strains belonging to 16 species from a 24-hour culture of each strain grown on the Mueller-Hinton agar plate using the Raman instrument. The results show that it is possible to distinguish among the tested species using Raman spectroscopy and therefore it has a great potential for use in routine clinical diagnostics.
Zobrazit více v PubMed
Vandenbergh MF, Verbrugh HA. Carriage of Staphylococcus aureus: epidemiology and clinical relevance. J. Lab. Clin. Med. 1999;133:525–534. doi: 10.1016/S0022-2143(99)90181-6. PubMed DOI
Piette A, Verschraegen G. Role of coagulase-negative staphylococci in human disease. Vet. Microbiol. 2009;134:45–54. doi: 10.1016/j.vetmic.2008.09.009. PubMed DOI
Kocianova S, et al. Key role of poly-g-DL-glutamic acid in immune evasion and virulence of Staphylococcus epidermidis. J. Clin. Invest. 2005;115:688–694. doi: 10.1172/JCI200523523. PubMed DOI PMC
Oogai Y, Hashimoto M, Kato F, Sugai M, Komatsuzawa H. Expression of Virulence Factors by Staphylococcus aureus Grown in Serum. Appl. Environ. Microbiol. 2011;77:8097–8105. doi: 10.1128/AEM.05316-11. PubMed DOI PMC
Lindberg E, et al. Effect of lifestyle factors on Staphylococcus aureus gut colonization in Swedish and Italian infants. Clin. Microbiol. Infect. 2011;17:1209–1215. doi: 10.1111/j.1469-0691.2010.03426.x. PubMed DOI
van den Berg S, et al. A human monoclonal antibody targeting the conserved staphylococcal antigen IsaA protects mice against Staphylococcus aureus bacteremia. Int. J. Med. Microbiol. 2015;305:55–64. doi: 10.1016/j.ijmm.2014.11.002. PubMed DOI
Cosgrove SE. The relationship between antimicrobial resistance and patient outcomes: mortality, length of hospital stay, and health care costs. Clin. Infect. Dis. 2006;42(Suppl. 2):S82–S89. doi: 10.1086/499406. PubMed DOI
Kelesidis T, Tsiodras S. Staphylococcus intermedius is not only a zoonotic pathogen, but may also cause skin abscesses in humans after exposure to saliva. Int. J. Infect. Dis. 2010;14:e838–e841. doi: 10.1016/j.ijid.2010.02.2249. PubMed DOI PMC
Durdik P, et al. Staphylococcus intermedius—rare pathogen of acute meningitis. Int. J. Infect. Dis. 2010;14:e236–e238. doi: 10.1016/j.ijid.2009.08.020. PubMed DOI
McCann MT, Gilmore BF, Gorman SP. Staphylococcus epidermidis device-related infections: pathogenesis and clinical management. J. Pharm. Pharmacol. 2008;60:1551–1571. doi: 10.1211/jpp.60.12.0001. PubMed DOI
Jansen B, Hartmann C, Schaumacher-Pedreau F, Peters G. Late onset endopthalmitis associated with intraocular lens: a case of molecularly proved S. epidermidis aetiology. Br. J. Ophthalmol. 1991;75:440–441. doi: 10.1136/bjo.75.7.440. PubMed DOI PMC
Verhoef J, Fleer A. Staphylococcus epidermidis endocarditis and Staphylococcus epidermidis infection in an intensive care unit. Scand. J. Infect. Dis. Suppl. 1983;41:56–64. PubMed
Warren JW. Catheter-associated urinary tract infection. Int. J. Antimicrob. Agents. 2001;17:299–303. doi: 10.1016/S0924-8579(00)00359-9. PubMed DOI
Rupp ME, Archer GL. Coagulase-negative staphylococci: pathogens associated with medical progress. Clin. Infect. Dis. 1994;19:231–245. doi: 10.1093/clinids/19.2.231. PubMed DOI
Rupp ME, Hamer KE. Effect of subinhibitory concentrations of vancomycin, cefazolin, ofloxacin, L-ofloxacin and D-ofloxacin on adherence to intravascular catheters and biofilm formation by Staphylococcus epidermidis. J. Antimicrob. Chemother. 1998;41:155–161. doi: 10.1093/jac/41.2.155. PubMed DOI
Høiby N, et al. ESCMID guideline for the diagnosis and treatment of biofilm infections 2014. Clin. Microbiol. Infect. 2015;21:S1–S25. doi: 10.1016/j.cmi.2014.10.024. PubMed DOI
Nanoukon C, et al. Pathogenic features of clinically significant coagulase-negative staphylococci in hospital and community infections in Benin. Int. J. Med. Microbiol. 2017;307:75–82. doi: 10.1016/j.ijmm.2016.11.001. PubMed DOI
Perdoso SHSP, et al. Biofilm and toxin profile: A phenotypic and genotypic characterization of coagulase-negative staphylococci isolated from human bloodstream infections. Microb. Pathog. 2016;100:312–318. doi: 10.1016/j.micpath.2016.10.005. PubMed DOI
Falcone M, et al. Methicillin-Resistant Staphylococcal Bacteremia in Patients with Hematologic Malignancies: Clinical and Microbiological Retrospective Comparative Analysis of S. haemolyticus, S. epidermidis and S. aureus. J. Chemother. 2004;16:540–548. doi: 10.1179/joc.2004.16.6.540. PubMed DOI
Ertem GT, et al. Peritonitis due to teicoplanin-resistant Staphylococcus haemolyticus. Perit. Dial. Int. 2010;30:117–118. doi: 10.3747/pdi.2008.00274. PubMed DOI
Peel TN, Cole NC, Dylla BL, Patel R. Matrix-assisted laser desorption ionization time of flight mass spectrometry and diagnostic testing for prosthetic joint infection in the clinical microbiology laboratory. Diagn. Microbiol. Infect. Dis. 2015;81:163–168. doi: 10.1016/j.diagmicrobio.2014.11.015. PubMed DOI
Lo DS, Shieh HH, Barreira ER, Ragazzi SL, Gilio AE. High frequency of Staphylococcus saprophyticus urinary tract infections among female adolescents. Pediatr. Infect. Dis. J. 2015;34:1023–1025. doi: 10.1097/INF.0000000000000780. PubMed DOI
Delmas J, et al. Evaluation of the Vitek 2 system with a variety of Staphylococcus species. J. Clin. Microbiol. 2008;46:311–313. doi: 10.1128/JCM.01610-07. PubMed DOI PMC
Marsou R, et al. Distribution of Staphylococcus sciuri subspecies among human clinical specimens, and profile of antibiotic resistance. Res. Microbiol. 1999;150:531–541. doi: 10.1016/S0923-2508(99)00104-7. PubMed DOI
Giordano N, et al. Erythema nodosum associated with Staphylococcus xylosus septicemia. J. Microbiol. Immun. Infect. 2016;49:134–137. doi: 10.1016/j.jmii.2012.10.003. PubMed DOI
Shields BE, Tschetter AJ, Wanat KA. Staphylococcus simulans: An emerging cutaneous pathogen. JAAD Case Rep. 2016;2:428–429. doi: 10.1016/j.jdcr.2016.08.015. PubMed DOI PMC
Pantůček R, et al. Staphylococcus petrasii sp. nov. including S. petrasii subsp. petrasii subsp. nov. and S. petrasii subsp. croceilyticus subsp. nov., isolated from human clinical specimens and human ear infections. Syst. Appl. Microbiol. 2013;36:90–95. doi: 10.1016/j.syapm.2012.11.004. PubMed DOI
Schie IW, Huser T. Methods and applications of Raman microspectroscopy to single-cell analysis. Appl. Spectrosc. 2013;67:813–828. doi: 10.1366/12-06971. PubMed DOI
Read DS, Whiteley AS. Chemical fixation methods for Raman spectroscopy-based analysis of bacteria. J. Microbiol. Meth. 2015;109:79–83. doi: 10.1016/j.mimet.2014.12.008. PubMed DOI
Maquelin K, et al. Prospective study of the performance of vibrational spectroscopies for rapid identification of bacterial and fungal pathogens recovered from blood cultures. J. Clin. Microbiol. 2013;41:324–329. doi: 10.1128/JCM.41.1.324-329.2003. PubMed DOI PMC
Afseth NK, Bloomfield M, Wold JP, Matousek PA. Novel approach for subsurface through-skin analysis of salmon using spatially offset Raman spectroscopy (SORS) Appl. Spectrosc. 2014;68:255–262. doi: 10.1366/13-07215. PubMed DOI
Notingher I. Raman spectroscopy cell-based biosensors. Sensors. 2007;7:1343–1358. doi: 10.3390/s7081343. DOI
Almarashi JFM, Kapel N, Wilkinson TS, Telle HH. Raman spectroscopy of bacterial species and strains cultivated under reproducible conditions. Spectrosc. Int. J. 2012;27:361–365. doi: 10.1155/2012/540490. DOI
De Gelder J, de Gussem K, Vandenabeele P, Moens L. Reference database of Raman spectra of biological molecules. J. Raman Spectrosc. 2007;38:1133–1147. doi: 10.1002/jrs.1734. DOI
Martinelli A. Effects of a protic ionic liquid on the reaction pathway during non-aqueous sol–gel synthesis of silica: A Raman spectroscopic investigation. Int. J. Mol. Sci. 2014;15:6488–6503. doi: 10.3390/ijms15046488. PubMed DOI PMC
Brauchle E, Schenke-Leyland K. Raman spectroscopy in biomedicine—Non-invasive in vitro analysis of cells and extracellular matrix components in tissues. Biotechnol. J. 2013;8:288–297. doi: 10.1002/biot.201200163. PubMed DOI PMC
Samek O, Al-Marashi JFM, Telle HH. The potential of Raman spectroscopy for the identification of biofilm formation by. Staphylococcus epidermidis. Laser Phys. Lett. 2010;7:378–383. doi: 10.1002/lapl.200910154. DOI
Rebrošová K, et al. (2017) Differentiation between Staphylococcus aureus and Staphylococcus epidermidis strains using Raman spectroscopy. Future Microbiol. 2017;12:881–890. doi: 10.2217/fmb-2016-0224. PubMed DOI
Bernatová S, et al. Following the mechanisms of bacteriostatic versus bactericidal action using Raman spectroscopy. Molecules. 2013;18:13188–13199. doi: 10.3390/molecules181113188. PubMed DOI PMC
Samek O, et al. Raman microspectroscopy of individual algal cells: Sensing unsaturation of storage lipids in vivo. Sensors. 2010;10:8635–8651. doi: 10.3390/s100908635. PubMed DOI PMC
Sandt C, Smith-Palmer T, Pink J, Brennan L, Pink D. Confocal Raman microspectroscopy as a tool for studying the chemical heterogeneities of biofilms in situ. J. Appl. Microbiol. 2007;103:1808–1820. doi: 10.1111/j.1365-2672.2007.03413.x. PubMed DOI
Choo-Smith LP, et al. Investigating microbial (Micro)colony heterogeneity by vibrational spectroscopy. Appl. Environ. Microbiol. 2001;67:1461–1469. doi: 10.1128/AEM.67.4.1461-1469.2001. PubMed DOI PMC
Samek O, et al. Candida parapsilosis Biofilm Identification by Raman Spectroscopy. Int. J. Mol. Sci. 2014;15:23924–23935. doi: 10.3390/ijms151223924. PubMed DOI PMC
Tien NI, et al. Diagnosis of bacterial pathogens in the dialysate of peritoneal dialysis patients with peritonitis using surface-enhanced Raman spectroscopy. Clin. Chim. Acta. 2016;461:69–75. doi: 10.1016/j.cca.2016.07.026. PubMed DOI
Neugebauer U, Rösch P, Popp J. Raman spectroscopy towards clinical application: drug monitoring and pathogen identification. Int. J. Antimicrob. Agents. 2015;46:S35–S39. doi: 10.1016/j.ijantimicag.2015.10.014. PubMed DOI
Kotanen CN, Martinez L, Alvarez J, Simecek JW. Surface enhanced Raman scattering spectroscopy for detection and identification of microbial pathogens isolated from human serum. Sens. Biosensing Res. 2016;8:20–26. doi: 10.1016/j.sbsr.2016.03.002. DOI
Pahlow S, et al. Isolation and identification of bacteria by means of Raman spectroscopy. Adv. Drug Deliv. Rev. 2015;89:105–120. doi: 10.1016/j.addr.2015.04.006. PubMed DOI
Wulf MWH, et al. The use of Raman spectroscopy in the epidemiology of methicillin-resistant Staphylococcus aureus of human- and animal-related clonal lineages. Clin. Microbiol. Infect. 2012;18:147–152. doi: 10.1111/j.1469-0691.2011.03517.x. PubMed DOI
Mathey R, et al. Viability of 3 h grown bacterial micro-colonies after direct Raman identification. J. Microbiol. Methods. 2013;109:67–73. doi: 10.1016/j.mimet.2014.12.002. PubMed DOI
Schuster KC, Urlaub E, Gapes JR. Single-cell analysis of bacteria by Raman microscopy: spectral information on the chemical composition of cells and on the heterogeneity in a culture. J. Microbiol. Methods. 2000;42:29–38. doi: 10.1016/S0167-7012(00)00169-X. PubMed DOI
Mlynáriková K, et al. Influence of Culture Media on Microbial Fingerprints Using Raman Spectroscopy. Sensors. 2015;15:29635–29647. doi: 10.3390/s151129635. PubMed DOI PMC
Liland KH, Almøy T, Mevik BH. Optimal choice of baseline correction for multivariate calibration of spectra. Appl. Spectrosc. 2010;64:1007–1016. doi: 10.1366/000370210792434350. PubMed DOI
Cadusch PJ, Hlaing MM, Wade SA, McArthur SL, Stoddart PR. Improved methods for fluorescence background subtraction from raman spectra. J. Raman. Spectrosc. 2013;44:1587–1595. doi: 10.1002/jrs.4371. DOI
De Luca AC, Mazilu M, Riches A, Herrington CS, Dholakia K. Online fluorescence suppression in modulated raman spectroscopy. Anal. Chem. 2010;82:738–745. doi: 10.1021/ac9026737. PubMed DOI
Brandt NN, Brovko OO, Chikishev AY, Paraschuk OD. Optimization of the rolling-circle filter for raman background subtraction. Appl. Spectrosc. 2006;60:288–293. doi: 10.1366/000370206776342553. PubMed DOI
Fisher RA. The use of multiple measurements in taxonomic problems. Ann. Hum. Genet. 1936;7:179–188.
Sattlecker M, Bessant C, Smith J, Stone N. Investigation of support vector machines and raman spectroscopy for lymph node diagnostics. Analyst. 2010;135:895–901. doi: 10.1039/b920229c. PubMed DOI
Altman NS. An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression. Am. Stat. 1992;46:175–185.
Cortes C, Vapnik V. Support-Vector Networks. Mach. Learn. 1995;20:273–297.
Harz M. Micro-raman spectroscopic identification of bacterial cells of the genus staphylococcus and dependence on their cultivation conditions. Analyst. 2005;130:1543–1550. doi: 10.1039/b507715j. PubMed DOI
Seo Y, Park B, Hinton A, Yoon SC, Lawrence KC. Identification of staphylococcus species with hyperspectral microscope imaging and classification algorithms. Food. Measure. 2016;10:253–263. doi: 10.1007/s11694-015-9301-0. DOI
Allen V, Kalivas JH, Rodriguez RG. Post-consumer plastic identification using raman spectroscopy. Appl Spectrosc. 1999;53:672–681. doi: 10.1366/0003702991947324. DOI
Dingari NC, et al. Development and comparative assessment of raman spectroscopic classification algorithms for lesion discrimination in stereotactic breast biopsies with microcalcifications. J. Biophotonics. 2013;6:371–381. doi: 10.1002/jbio.201200098. PubMed DOI PMC
Verma SP, et al. Resonance Raman spectra of beta-carotene in native and modified low-density lipoprotein. Biochem. Biophys. Res. Commun. 1984;122:867–875. doi: 10.1016/S0006-291X(84)80114-X. PubMed DOI
Fawcett T. An introduction to ROC analysis. Pattern Recogn Lett. 2006;27:861–874. doi: 10.1016/j.patrec.2005.10.010. DOI
Spencer AR, et al. Staphylococcus aureus identification and antibiotic resistance determination using raman spectroscopy. J. Am. Coll. Surgeons. 2011;213:S49. doi: 10.1016/j.jamcollsurg.2011.06.104. DOI