Following the mechanisms of bacteriostatic versus bactericidal action using Raman spectroscopy

. 2013 Oct 24 ; 18 (11) : 13188-99. [epub] 20131024

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid24284484

Antibiotics cure infections by influencing bacterial growth or viability. Antibiotics can be divided to two groups on the basis of their effect on microbial cells through two main mechanisms, which are either bactericidal or bacteriostatic. Bactericidal antibiotics kill the bacteria and bacteriostatic antibiotics suppress the growth of bacteria (keep them in the stationary phase of growth). One of many factors to predict a favorable clinical outcome of the potential action of antimicrobial chemicals may be provided using in vitro bactericidal/bacteriostatic data (e.g., minimum inhibitory concentrations-MICs). Consequently, MICs are used in clinical situations mainly to confirm resistance, and to determine the in vitro activities of new antimicrobials. We report on the combination of data obtained from MICs with information on microorganisms' "fingerprint" (e.g., DNA/RNA, and proteins) provided by Raman spectroscopy. Thus, we could follow mechanisms of the bacteriostatic versus bactericidal action simply by detecting the Raman bands corresponding to DNA. The Raman spectra of Staphylococcus epidermidis treated with clindamycin (a bacteriostatic agent) indeed show little effect on DNA which is in contrast with the action of ciprofloxacin (a bactericidal agent), where the Raman spectra show a decrease in strength of the signal assigned to DNA, suggesting DNA fragmentation.

Zobrazit více v PubMed

Samek O., Al-Marashi J.F.M., Telle H.H. The potential of Raman spectroscopy for the identification of biofilm formation by Staphylococcus epidermidis. Laser Phys. Lett. 2010;7:378–383. doi: 10.1002/lapl.200910154. DOI

Ruzicka F., Hola V., Votava M., Tejkalova R., Horvat R., Heroldova M., Woznicova V. Biofilm Detection and the Clinical Significance of Staphylococcus epidermidis Isolates. Folia Microbiol. 2004;49:596–600. PubMed

Kim J., Park H.-D., Chung S. Microfluidic Approaches to Bacterial Biofilm Formation. Molecules. 2012;17:9818–9834. PubMed PMC

Maquelin K., Kirschner C., Choo-Smith L.-P., van den Braak N., Endtz H.P., Naumann D., Puppels G.J. Identification of medically relevant microorganisms by vibrational spectroscopy. J. Microbiol. Method. 2002;51:255–271. doi: 10.1016/S0167-7012(02)00127-6. PubMed DOI

Nagels N., Hauchecorne D., Herrebout W.A. Exploring the C-X…π Halogen Bonding Motif: An Infrared and Raman Study of the Complexes of CF3X (X = Cl, Br and I) with the Aromatic Model Compounds Benzene and Toluene. Molecules. 2013;18:6829–6851. doi: 10.3390/molecules18066829. PubMed DOI PMC

Huo M.-M., Liu W.-L., Zheng Z.-R., Zhang W., Li A.-H., Xu D.-P. Effect of End Groups on the Raman Spectra of Lycopene and β-Carotene under High Pressure. Molecules. 2011;16:1973–1980. doi: 10.3390/molecules16031973. PubMed DOI PMC

De Gelder J., Scheldeman P., Leus K., Heyndrickx M., Vandenabeele P., Moens L., De Vos P. Raman spectroscopic study of bacterial endospores. Anal. Bioanal. Chem. 2007;389:2143–2151. doi: 10.1007/s00216-007-1616-1. PubMed DOI

De Gelder J., De Gussem K., Vandenabeele P., Vancanneyt M., De Vos P., Moens L. Methods for extracting biochemical information from bacterial Raman spectra: Focus on a group of structurally similar biomolecules—Fatty acids. Anal. Chim. Acta. 2007;603:167–175. doi: 10.1016/j.aca.2007.09.049. PubMed DOI

Samek O., Telle H.H., Harris L.G., Bloomfield M., Mack D. Raman spectroscopy for rapid discrimination of Staphylococcus epidermidis clones related to medical device-associated infections. Laser Phys. Lett. 2008;5:465–470. doi: 10.1002/lapl.200810011. DOI

Tuma R. Raman spectroscopy of proteins: From peptides to large assemblies. J. Raman Spectrosc. 2005;36:307–319. doi: 10.1002/jrs.1323. DOI

Notingher I., Hench L.L. Raman microspectroscopy: A noninvasive tool for studies of individual living cells in vitro. Expert Rev. Med. Devices. 2006;3:215–234. doi: 10.1586/17434440.3.2.215. PubMed DOI

Notingher I. Raman Spectroscopy cell-based Biosensors. Sensors. 2007;7:1343–1358.

Movasaghi Z., Rehman S., Rehman I.U. Raman spectroscopy of biological tissues. Appl. Spectrosc. Rev. 2007;42:493–541.

Mansour H.M., Hickey A.J. Raman characterization and chemical imaging of biocolloidal self- assemblies, drug delivery systems, and pulmonary inhalation aerosols: A review. AAPS PharmSciTech. 2007;8:99–109. doi: 10.1208/pt0803064. PubMed DOI PMC

Harz A., Rösch P., Popp J. Vibrational spectroscopy—A powerful tool for the rapid identification of microbial cells at the single-cell level. Cytometry Part A. 2009;75A:104–113. doi: 10.1002/cyto.a.20682. PubMed DOI

De Gelder J., De Gussem K., Vandenabeele P., Moens L. Reference database of Raman spectra of biological molecules. J. Raman Spectrosc. 2007;38:1133–1147. doi: 10.1002/jrs.1734. DOI

Andriole V.T. The quinolones: Past, present, and future. Clin. Infect. Dis. 2005;41:S113–S119. doi: 10.1086/428051. PubMed DOI

Pankey G.A., Sabath L.D. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of gram-positive bacterial infections. Clin. Infect. Dis. 2004;38:864–870. doi: 10.1086/381972. PubMed DOI

Paul M., Kariv G., Goldberg E., Raskin M., Shaked H., Hazzan R., Samra Z., Paghis D., Bishara J., Leibovici L. Importance of appropriate empirical antibiotic therapy for methicillin-resistant Staphylococcus aureus bacteraemia. J. Antimicrob Chemother. 2010;65:2658–2665. doi: 10.1093/jac/dkq373. PubMed DOI

Andrews J.M. Determination of minimum inhibitory concentrations. J. Antimicrob. Chemother. 2001;48:5–16. doi: 10.1093/jac/48.suppl_1.5. PubMed DOI

Smaill F. Antibiotic susceptibility and resistance testing: An overview. Can. J. Gastroenterol. 2000;14:871–875. PubMed

Kohanski M.A., Dwyer D.J., Collins J.J. How antibiotics kill bacteria: From targets to networks. Nat. Rev. Microbial. 2010;8:423–435. doi: 10.1038/nrmicro2333. PubMed DOI PMC

Kohanski M.A., Dwyer D.J., Hayete B., Lawrence C.A., Collins J.J. A common mechanism of cellular death induced by bactericidal antibiotics. Cell. 2007;130:797–810. doi: 10.1016/j.cell.2007.06.049. PubMed DOI

Ashkin A., Driedzic J.M., Bjorkholm J.E., Chu S. Observation of single-beam gradient force optical trap for dielectric particles. Opt. Lett. 1986;11:288–290. doi: 10.1364/OL.11.000288. PubMed DOI

Petrov D.V. Raman spectroscopy of optically trapped particles. J. Opt. A. 2007;9:S139–S156. doi: 10.1088/1464-4258/9/8/S06. DOI

Jonas A., Zemanek P. Light at work: The use of optical forces for particle manipulation, sorting, and analysis. Electrophoresis. 2008;29:4813–4851. doi: 10.1002/elps.200800484. PubMed DOI

Vermeulen K.C., Wuite G.J.L., Stienen G.J.M., Schmidt C.F. Optical trap stiffness in the presence and absence of spherical aberrations. Appl. Opt. 2006;45:1812–1819. doi: 10.1364/AO.45.001812. PubMed DOI

Brandt N.N., Brovko O.O., Chikishev A.Y., Paraschuk O.D. Optimization of the rolling-circle filter for Raman background subtraction. Appl. Spectrosc. 2006;60:288–293. doi: 10.1366/000370206776342553. PubMed DOI

Clinical and Laboratory Standards Institute . Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, Approved Standard. 9th ed. CLSI document M07-A9. Clinical and Laboratory Standards Institut; Wayne, PA, USA: 2012.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Identification of staphyloxanthin and derivates in yellow-pigmented Staphylococcus capitis subsp. capitis

. 2023 ; 14 () : 1272734. [epub] 20230929

Rapid Identification of Pathogens Causing Bloodstream Infections by Raman Spectroscopy and Raman Tweezers

. 2023 Jun 15 ; 11 (3) : e0002823. [epub] 20230420

SERS-Tags: Selective Immobilization and Detection of Bacteria by Strain-Specific Antibodies and Surface-Enhanced Raman Scattering

. 2023 Jan 24 ; 13 (2) : . [epub] 20230124

Raman Spectroscopy-A Novel Method for Identification and Characterization of Microbes on a Single-Cell Level in Clinical Settings

. 2022 ; 12 () : 866463. [epub] 20220422

Microfluidic Cultivation and Laser Tweezers Raman Spectroscopy of E. coli under Antibiotic Stress

. 2018 May 18 ; 18 (5) : . [epub] 20180518

Rapid identification of staphylococci by Raman spectroscopy

. 2017 Nov 01 ; 7 (1) : 14846. [epub] 20171101

Quantitative Raman Spectroscopy Analysis of Polyhydroxyalkanoates Produced by Cupriavidus necator H16

. 2016 Oct 28 ; 16 (11) : . [epub] 20161028

Influence of Culture Media on Microbial Fingerprints Using Raman Spectroscopy

. 2015 Nov 24 ; 15 (11) : 29635-47. [epub] 20151124

Candida parapsilosis biofilm identification by Raman spectroscopy

. 2014 Dec 22 ; 15 (12) : 23924-35. [epub] 20141222

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace