Following the mechanisms of bacteriostatic versus bactericidal action using Raman spectroscopy
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24284484
PubMed Central
PMC6270526
DOI
10.3390/molecules181113188
PII: molecules181113188
Knihovny.cz E-zdroje
- MeSH
- antibakteriální látky farmakologie MeSH
- ciprofloxacin farmakologie MeSH
- DNA bakterií účinky léků MeSH
- klindamycin farmakologie MeSH
- mikrobiální testy citlivosti MeSH
- Ramanova spektroskopie metody MeSH
- Staphylococcus epidermidis účinky léků genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky MeSH
- ciprofloxacin MeSH
- DNA bakterií MeSH
- klindamycin MeSH
Antibiotics cure infections by influencing bacterial growth or viability. Antibiotics can be divided to two groups on the basis of their effect on microbial cells through two main mechanisms, which are either bactericidal or bacteriostatic. Bactericidal antibiotics kill the bacteria and bacteriostatic antibiotics suppress the growth of bacteria (keep them in the stationary phase of growth). One of many factors to predict a favorable clinical outcome of the potential action of antimicrobial chemicals may be provided using in vitro bactericidal/bacteriostatic data (e.g., minimum inhibitory concentrations-MICs). Consequently, MICs are used in clinical situations mainly to confirm resistance, and to determine the in vitro activities of new antimicrobials. We report on the combination of data obtained from MICs with information on microorganisms' "fingerprint" (e.g., DNA/RNA, and proteins) provided by Raman spectroscopy. Thus, we could follow mechanisms of the bacteriostatic versus bactericidal action simply by detecting the Raman bands corresponding to DNA. The Raman spectra of Staphylococcus epidermidis treated with clindamycin (a bacteriostatic agent) indeed show little effect on DNA which is in contrast with the action of ciprofloxacin (a bactericidal agent), where the Raman spectra show a decrease in strength of the signal assigned to DNA, suggesting DNA fragmentation.
Zobrazit více v PubMed
Samek O., Al-Marashi J.F.M., Telle H.H. The potential of Raman spectroscopy for the identification of biofilm formation by Staphylococcus epidermidis. Laser Phys. Lett. 2010;7:378–383. doi: 10.1002/lapl.200910154. DOI
Ruzicka F., Hola V., Votava M., Tejkalova R., Horvat R., Heroldova M., Woznicova V. Biofilm Detection and the Clinical Significance of Staphylococcus epidermidis Isolates. Folia Microbiol. 2004;49:596–600. PubMed
Kim J., Park H.-D., Chung S. Microfluidic Approaches to Bacterial Biofilm Formation. Molecules. 2012;17:9818–9834. PubMed PMC
Maquelin K., Kirschner C., Choo-Smith L.-P., van den Braak N., Endtz H.P., Naumann D., Puppels G.J. Identification of medically relevant microorganisms by vibrational spectroscopy. J. Microbiol. Method. 2002;51:255–271. doi: 10.1016/S0167-7012(02)00127-6. PubMed DOI
Nagels N., Hauchecorne D., Herrebout W.A. Exploring the C-X…π Halogen Bonding Motif: An Infrared and Raman Study of the Complexes of CF3X (X = Cl, Br and I) with the Aromatic Model Compounds Benzene and Toluene. Molecules. 2013;18:6829–6851. doi: 10.3390/molecules18066829. PubMed DOI PMC
Huo M.-M., Liu W.-L., Zheng Z.-R., Zhang W., Li A.-H., Xu D.-P. Effect of End Groups on the Raman Spectra of Lycopene and β-Carotene under High Pressure. Molecules. 2011;16:1973–1980. doi: 10.3390/molecules16031973. PubMed DOI PMC
De Gelder J., Scheldeman P., Leus K., Heyndrickx M., Vandenabeele P., Moens L., De Vos P. Raman spectroscopic study of bacterial endospores. Anal. Bioanal. Chem. 2007;389:2143–2151. doi: 10.1007/s00216-007-1616-1. PubMed DOI
De Gelder J., De Gussem K., Vandenabeele P., Vancanneyt M., De Vos P., Moens L. Methods for extracting biochemical information from bacterial Raman spectra: Focus on a group of structurally similar biomolecules—Fatty acids. Anal. Chim. Acta. 2007;603:167–175. doi: 10.1016/j.aca.2007.09.049. PubMed DOI
Samek O., Telle H.H., Harris L.G., Bloomfield M., Mack D. Raman spectroscopy for rapid discrimination of Staphylococcus epidermidis clones related to medical device-associated infections. Laser Phys. Lett. 2008;5:465–470. doi: 10.1002/lapl.200810011. DOI
Tuma R. Raman spectroscopy of proteins: From peptides to large assemblies. J. Raman Spectrosc. 2005;36:307–319. doi: 10.1002/jrs.1323. DOI
Notingher I., Hench L.L. Raman microspectroscopy: A noninvasive tool for studies of individual living cells in vitro. Expert Rev. Med. Devices. 2006;3:215–234. doi: 10.1586/17434440.3.2.215. PubMed DOI
Notingher I. Raman Spectroscopy cell-based Biosensors. Sensors. 2007;7:1343–1358.
Movasaghi Z., Rehman S., Rehman I.U. Raman spectroscopy of biological tissues. Appl. Spectrosc. Rev. 2007;42:493–541.
Mansour H.M., Hickey A.J. Raman characterization and chemical imaging of biocolloidal self- assemblies, drug delivery systems, and pulmonary inhalation aerosols: A review. AAPS PharmSciTech. 2007;8:99–109. doi: 10.1208/pt0803064. PubMed DOI PMC
Harz A., Rösch P., Popp J. Vibrational spectroscopy—A powerful tool for the rapid identification of microbial cells at the single-cell level. Cytometry Part A. 2009;75A:104–113. doi: 10.1002/cyto.a.20682. PubMed DOI
De Gelder J., De Gussem K., Vandenabeele P., Moens L. Reference database of Raman spectra of biological molecules. J. Raman Spectrosc. 2007;38:1133–1147. doi: 10.1002/jrs.1734. DOI
Andriole V.T. The quinolones: Past, present, and future. Clin. Infect. Dis. 2005;41:S113–S119. doi: 10.1086/428051. PubMed DOI
Pankey G.A., Sabath L.D. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of gram-positive bacterial infections. Clin. Infect. Dis. 2004;38:864–870. doi: 10.1086/381972. PubMed DOI
Paul M., Kariv G., Goldberg E., Raskin M., Shaked H., Hazzan R., Samra Z., Paghis D., Bishara J., Leibovici L. Importance of appropriate empirical antibiotic therapy for methicillin-resistant Staphylococcus aureus bacteraemia. J. Antimicrob Chemother. 2010;65:2658–2665. doi: 10.1093/jac/dkq373. PubMed DOI
Andrews J.M. Determination of minimum inhibitory concentrations. J. Antimicrob. Chemother. 2001;48:5–16. doi: 10.1093/jac/48.suppl_1.5. PubMed DOI
Smaill F. Antibiotic susceptibility and resistance testing: An overview. Can. J. Gastroenterol. 2000;14:871–875. PubMed
Kohanski M.A., Dwyer D.J., Collins J.J. How antibiotics kill bacteria: From targets to networks. Nat. Rev. Microbial. 2010;8:423–435. doi: 10.1038/nrmicro2333. PubMed DOI PMC
Kohanski M.A., Dwyer D.J., Hayete B., Lawrence C.A., Collins J.J. A common mechanism of cellular death induced by bactericidal antibiotics. Cell. 2007;130:797–810. doi: 10.1016/j.cell.2007.06.049. PubMed DOI
Ashkin A., Driedzic J.M., Bjorkholm J.E., Chu S. Observation of single-beam gradient force optical trap for dielectric particles. Opt. Lett. 1986;11:288–290. doi: 10.1364/OL.11.000288. PubMed DOI
Petrov D.V. Raman spectroscopy of optically trapped particles. J. Opt. A. 2007;9:S139–S156. doi: 10.1088/1464-4258/9/8/S06. DOI
Jonas A., Zemanek P. Light at work: The use of optical forces for particle manipulation, sorting, and analysis. Electrophoresis. 2008;29:4813–4851. doi: 10.1002/elps.200800484. PubMed DOI
Vermeulen K.C., Wuite G.J.L., Stienen G.J.M., Schmidt C.F. Optical trap stiffness in the presence and absence of spherical aberrations. Appl. Opt. 2006;45:1812–1819. doi: 10.1364/AO.45.001812. PubMed DOI
Brandt N.N., Brovko O.O., Chikishev A.Y., Paraschuk O.D. Optimization of the rolling-circle filter for Raman background subtraction. Appl. Spectrosc. 2006;60:288–293. doi: 10.1366/000370206776342553. PubMed DOI
Clinical and Laboratory Standards Institute . Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, Approved Standard. 9th ed. CLSI document M07-A9. Clinical and Laboratory Standards Institut; Wayne, PA, USA: 2012.
Microfluidic Cultivation and Laser Tweezers Raman Spectroscopy of E. coli under Antibiotic Stress
Rapid identification of staphylococci by Raman spectroscopy
Influence of Culture Media on Microbial Fingerprints Using Raman Spectroscopy
Candida parapsilosis biofilm identification by Raman spectroscopy