Ligand Strain and Its Conformational Complexity Is a Major Factor in the Binding of Cyclic Dinucleotides to STING Protein

. 2021 Apr 26 ; 60 (18) : 10172-10178. [epub] 20210324

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33616279

STING (stimulator of interferon genes) is a key regulator of innate immunity that has recently been recognized as a promising drug target. STING is activated by cyclic dinucleotides (CDNs) which eventually leads to expression of type I interferons and other cytokines. Factors underlying the affinity of various CDN analogues are poorly understood. Herein, we correlate structural biology, isothermal calorimetry (ITC) and computational modeling to elucidate factors contributing to binding of six CDNs-three pairs of natural (ribo) and fluorinated (2'-fluororibo) 3',3'-CDNs. X-ray structural analyses of six {STING:CDN} complexes did not offer any explanation for the different affinities of the studied ligands. ITC showed entropy/enthalpy compensation up to 25 kcal mol-1 for this set of similar ligands. The higher affinities of fluorinated analogues are explained with help of computational methods by smaller loss of entropy upon binding and by smaller strain (free) energy.

Zobrazit více v PubMed

Shan Y. B., Kim E. T., Eastwood M. P., Dror R. O., Seeliger M. A., Shaw D. E., J. Am. Chem. Soc. 2011, 133, 9181–9183. PubMed PMC

Ryde U., Soderhjelm P., Chem. Rev. 2016, 116, 5520–5566. PubMed

“What Next for Quantum Mechanics in Structure-Based Drug Discovery?”: Bryce R. A. in Quantum Mechanics in Drug Discovery (Ed.: Heifetz A.), Springer US, New York, 2020, pp. 339–353. PubMed

Sandner A., Hufner-Wulsdorf T., Heine A., Steinmetzer T., Klebe G., J. Med. Chem. 2019, 62, 9753–9771. PubMed

Wang Y., Kim J., Hilty C., Chem. Sci. 2020, 11, 5935–5943.RETURN TO ISSUEPREVARTICLENEXTRational Design of Novel Highly Potent and Selective Phosphatidylinositol 4-Kinase IIIβ (PI4KB) Inhibitors as Broad-Spectrum Antiviral Agents and Tools for Chemical Biology PubMed

Mejdrová I., Chalupská D., Plačková P., Müller C., Šála M., Klíma M., Baumlová A., Hřebabecký H., Procházková E., Dejmek M., Strunin D., Weber J., Lee G., Matoušová M., Mertlíková-Kaiserová H., Ziebuhr J., Birkus G., Boura E., Nencka R., J. Med. Chem. 2017, 60, 100–118. PubMed

Eyrilmez S. M., Kopruluoglu C., Rezac J., Hobza P., ChemPhysChem 2019, 20, 2759–2766. PubMed

Pecina A., Brynda J., Vrzal L., Gnanasekaran R., Hořejší M., Eyrilmez S. M., Řezáč J., Lepšík M., Řezáčová P., Hobza P., Majer P., Veverka V., Fanfrlík J., ChemPhysChem 2018, 19, 873–879. PubMed

Wu G. C., Zhao T., Kang D. W., Zhang J., Song Y. N., Namasivayam V., Kongsted J., Pannecouque C., De Clercq E., Poongavanam V., Liu X. Y., Zhan P., J. Med. Chem. 2019, 62, 9375–9414. PubMed

Wang L., Wu Y., Deng Y., Kim B., Pierce L., Krilov G., Lupyan D., Robinson S., Dahlgren M. K., Greenwood J., Romero D. L., Masse C., Knight J. L., Steinbrecher T., Beuming T., Damm W., Harder E., Sherman W., Brewer M., Wester R., Murcko M., Frye L., Farid R., Lin T., Mobley D. L., Jorgensen W. L., Berne B. J., Friesner R. A., Abel R., J. Am. Chem. Soc. 2015, 137, 2695–2703. PubMed

Klebe G., Drug Discovery Today 2019, 24, 943–948. PubMed

Sarter M., Niether D., Koenig B. W., Lohstroh W., Zamponi M., Jalarvo N. H., Wiegand S., Fitter J., Stadler A. M., J. Phys. Chem. B 2020, 124, 324–335. PubMed

Barinka C., Novakova Z., Hin N., Bim D., Ferraris D. V., Duvall B., Kabarriti G., Tsukamoto R., Budesinsky M., Motlova L., Rojas C., Slusher B. S., Rokob T. A., Rulíšek L., Tsukamoto T., Bioorg. Med. Chem. 2019, 27, 255–264. PubMed PMC

Foloppe N., Chen I. J., Bioorg. Med. Chem. 2016, 24, 2159–2189. PubMed

Sitzmann M., Weidlich I. E., Filippov I. V., Liao C., Peach M. L., Ihlenfeldt W. D., Karki R. G., Borodina Y. V., Cachau R. E., Nicklaus M. C., J. Chem. Inf. Model. 2012, 52, 739–756. PubMed PMC

Verteramo M. L., Stenstrom O., Ignjatovic M. M., Caldararu O., Olsson M. A., Manzoni F., Leffler H., Oksanen E., Logan D. T., Nilsson U. J., Ryde U., Akke M., J. Am. Chem. Soc. 2019, 141, 2012–2026. PubMed

Tzeng S. R., Kalodimos C. G., Nature 2012, 488, 236–240. PubMed

Gaspari R., Prota A. E., Bargsten K., Cavalli A., Steinmetz M. O., Chem 2017, 2, 102–113.

Geschwindner S., Ulander J., Expert Opin. Drug Discovery 2019, 14, 1221–1225. PubMed

Zhang H., You Q. D., Xu X. L., J. Med. Chem. 2020, 63, 3785–3816. PubMed

Tanaka Y., Chen Z. J. J., Sci. Signaling 2012, 5, 11. PubMed PMC

Cai X., Chiu Y. H., Chen Z. J. J., Mol. Cell 2014, 54, 289–296. PubMed

Fang R., Wang C. G., Jiang Q. F., Lv M. Z., Gao P. F., Yu X. Y., Mu P., Zhang R., Bi S., Feng J. M., Jiang Z. F., J. Immunol. 2017, 199, 3222–3233. PubMed

Ahn J., Son S., Oliveira S. C., Barber G. N., Cell Rep. 2017, 21, 3873–3884. PubMed PMC

Barber G. N., Nat. Rev. Immunol. 2015, 15, 760–770. PubMed PMC

Papinska J., Bagavant H., Gmyrek G. B., Sroka M., Tummala S., Fitzgerald K. A., Deshmukh U. S., J. Dent. Res. 2018, 97, 893–900. PubMed PMC

Chen Q., Sun L. J., Chen Z. J. J., Nat. Immunol. 2016, 17, 1142–1149. PubMed

Burdette D. L., Monroe K. M., Sotelo-Troha K., Iwig J. S., Eckert B., Hyodo M., Hayakawa Y., Vance R. E., Nature 2011, 478, 515–518. PubMed PMC

Tamayo R., Pratt J. T., Camilli A., Annu. Rev. Microbiol. 2007, 61, 131–148. PubMed PMC

Tsuchiya Y., Jounai N., Takeshita F., Ishii K. J., Mizuguchi K., EBioMedicine 2016, 9, 87–96. PubMed PMC

Shu C., Yi G. H., Watts T., Kao C. C., Li P. W., Nat. Struct. Mol. Biol. 2012, 19, 722–724. PubMed PMC

Zhang X., Shi H. P., Wu J. X., Zhang X. W., Sun L. J., Chen C., Chen Z. J. J., Mol. Cell 2013, 51, 226–235. PubMed PMC

Lioux T., Mauny M.-A., Lamoureux A., Bascoul N., Hays M., Vernejoul F., Baudru A.-S., Boularan C., Lopes-Vicente J., Qushair G., Tiraby G., J. Med. Chem. 2016, 59, 10253–10267. PubMed

“Fluorinated Cyclic Dinucleotides for Cytokine Induction”: INVIVOGEN, WO2016096174A, 2016.

Ouyang S. Y., Song X. Q., Wang Y. Y., Ru H., Shaw N., Jiang Y., Niu F. F., Zhu Y. P., Qiu W. C., Parvatiyar K., Li Y., Zhang R. G., Cheng G. H., Liu Z. J., Immunity 2012, 36, 1073–1086. PubMed PMC

Antony J., Grimme S., Liakos D. G., Neese F., J. Phys. Chem. A 2011, 115, 11210–11220. PubMed

Novotná B., Vanekováa L., Zavřel M., Buděšínský M., Dejmek M., Smola M., Gutten O., Tehrani Z. A., Polidarová M. P., Brázdová A., Liboska R., Štěpánek I., Vavřina Z., Jandušík T., Nencka R., Rulíšek L., Bouřa E., Brynda J., Páv O., Birkuš G., J. Med. Chem. 2019, 62, 10676–10690. PubMed

Smola M., Birkus G., Boura E., Acta Crystallogr. Sect. F 2019, 75, 593–598. PubMed PMC

Ergun S. L., Fernandez D., Weiss T. M., Li L. Y., Cell 2019, 178, 290–301. PubMed

Shi H. P., Wu J. X., Chen Z. J. J., Chen C., Proc. Natl. Acad. Sci. USA 2015, 112, 8947–8952. PubMed PMC

Gao P., Ascano M., Zillinger T., Wang W. Y., Dai P. H., Serganov A. A., Gaffney B. L., Shuman S., Jones R. A., Deng L., Hartmann G., Barchet W., Tuschl T., Patel D. J., Cell 2013, 154, 748–762. PubMed PMC

Krimmer S. G., Klebe G., J. Comput.-Aided Mol. Des. 2015, 29, 867–883. PubMed

Bastiansen O., Christensen J. J., Hansen L. D., Izatt R. M., Handbook of Proton Ionization Heats and Related Thermodynamic Quantities, Wiley, New York: 1976.

Fukada H., Takahashi K., Proteins: Struct. Funct. Genet. 1998, 33, 159–166. PubMed

Řezáč J., Bím D., Gutten O., Rulíšek L., J. Chem. Theory Comput. 2018, 14, 1254–1266. PubMed

Klamt A., J. Phys. Chem. 1995, 99, 2224–2235.

Klamt A., Jonas V., Bürger T., Lohrenz J. C. W., J. Phys. Chem. A 1998, 102, 5074–5085.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...