Ligand Strain and Its Conformational Complexity Is a Major Factor in the Binding of Cyclic Dinucleotides to STING Protein
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33616279
PubMed Central
PMC8251555
DOI
10.1002/anie.202016805
Knihovny.cz E-zdroje
- Klíčová slova
- conformational analysis, cyclic dinucleotides, entropy, quantum chemistry, strain energy,
- MeSH
- lidé MeSH
- ligandy MeSH
- membránové proteiny chemie MeSH
- molekulární konformace MeSH
- molekulární modely MeSH
- nukleotidy cyklické chemie MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ligandy MeSH
- membránové proteiny MeSH
- nukleotidy cyklické MeSH
- STING1 protein, human MeSH Prohlížeč
STING (stimulator of interferon genes) is a key regulator of innate immunity that has recently been recognized as a promising drug target. STING is activated by cyclic dinucleotides (CDNs) which eventually leads to expression of type I interferons and other cytokines. Factors underlying the affinity of various CDN analogues are poorly understood. Herein, we correlate structural biology, isothermal calorimetry (ITC) and computational modeling to elucidate factors contributing to binding of six CDNs-three pairs of natural (ribo) and fluorinated (2'-fluororibo) 3',3'-CDNs. X-ray structural analyses of six {STING:CDN} complexes did not offer any explanation for the different affinities of the studied ligands. ITC showed entropy/enthalpy compensation up to 25 kcal mol-1 for this set of similar ligands. The higher affinities of fluorinated analogues are explained with help of computational methods by smaller loss of entropy upon binding and by smaller strain (free) energy.
Zobrazit více v PubMed
Shan Y. B., Kim E. T., Eastwood M. P., Dror R. O., Seeliger M. A., Shaw D. E., J. Am. Chem. Soc. 2011, 133, 9181–9183. PubMed PMC
Ryde U., Soderhjelm P., Chem. Rev. 2016, 116, 5520–5566. PubMed
“What Next for Quantum Mechanics in Structure-Based Drug Discovery?”: Bryce R. A. in Quantum Mechanics in Drug Discovery (Ed.: Heifetz A.), Springer US, New York, 2020, pp. 339–353. PubMed
Sandner A., Hufner-Wulsdorf T., Heine A., Steinmetzer T., Klebe G., J. Med. Chem. 2019, 62, 9753–9771. PubMed
Wang Y., Kim J., Hilty C., Chem. Sci. 2020, 11, 5935–5943.RETURN TO ISSUEPREVARTICLENEXTRational Design of Novel Highly Potent and Selective Phosphatidylinositol 4-Kinase IIIβ (PI4KB) Inhibitors as Broad-Spectrum Antiviral Agents and Tools for Chemical Biology PubMed
Mejdrová I., Chalupská D., Plačková P., Müller C., Šála M., Klíma M., Baumlová A., Hřebabecký H., Procházková E., Dejmek M., Strunin D., Weber J., Lee G., Matoušová M., Mertlíková-Kaiserová H., Ziebuhr J., Birkus G., Boura E., Nencka R., J. Med. Chem. 2017, 60, 100–118. PubMed
Eyrilmez S. M., Kopruluoglu C., Rezac J., Hobza P., ChemPhysChem 2019, 20, 2759–2766. PubMed
Pecina A., Brynda J., Vrzal L., Gnanasekaran R., Hořejší M., Eyrilmez S. M., Řezáč J., Lepšík M., Řezáčová P., Hobza P., Majer P., Veverka V., Fanfrlík J., ChemPhysChem 2018, 19, 873–879. PubMed
Wu G. C., Zhao T., Kang D. W., Zhang J., Song Y. N., Namasivayam V., Kongsted J., Pannecouque C., De Clercq E., Poongavanam V., Liu X. Y., Zhan P., J. Med. Chem. 2019, 62, 9375–9414. PubMed
Wang L., Wu Y., Deng Y., Kim B., Pierce L., Krilov G., Lupyan D., Robinson S., Dahlgren M. K., Greenwood J., Romero D. L., Masse C., Knight J. L., Steinbrecher T., Beuming T., Damm W., Harder E., Sherman W., Brewer M., Wester R., Murcko M., Frye L., Farid R., Lin T., Mobley D. L., Jorgensen W. L., Berne B. J., Friesner R. A., Abel R., J. Am. Chem. Soc. 2015, 137, 2695–2703. PubMed
Klebe G., Drug Discovery Today 2019, 24, 943–948. PubMed
Sarter M., Niether D., Koenig B. W., Lohstroh W., Zamponi M., Jalarvo N. H., Wiegand S., Fitter J., Stadler A. M., J. Phys. Chem. B 2020, 124, 324–335. PubMed
Barinka C., Novakova Z., Hin N., Bim D., Ferraris D. V., Duvall B., Kabarriti G., Tsukamoto R., Budesinsky M., Motlova L., Rojas C., Slusher B. S., Rokob T. A., Rulíšek L., Tsukamoto T., Bioorg. Med. Chem. 2019, 27, 255–264. PubMed PMC
Foloppe N., Chen I. J., Bioorg. Med. Chem. 2016, 24, 2159–2189. PubMed
Sitzmann M., Weidlich I. E., Filippov I. V., Liao C., Peach M. L., Ihlenfeldt W. D., Karki R. G., Borodina Y. V., Cachau R. E., Nicklaus M. C., J. Chem. Inf. Model. 2012, 52, 739–756. PubMed PMC
Verteramo M. L., Stenstrom O., Ignjatovic M. M., Caldararu O., Olsson M. A., Manzoni F., Leffler H., Oksanen E., Logan D. T., Nilsson U. J., Ryde U., Akke M., J. Am. Chem. Soc. 2019, 141, 2012–2026. PubMed
Tzeng S. R., Kalodimos C. G., Nature 2012, 488, 236–240. PubMed
Gaspari R., Prota A. E., Bargsten K., Cavalli A., Steinmetz M. O., Chem 2017, 2, 102–113.
Geschwindner S., Ulander J., Expert Opin. Drug Discovery 2019, 14, 1221–1225. PubMed
Zhang H., You Q. D., Xu X. L., J. Med. Chem. 2020, 63, 3785–3816. PubMed
Tanaka Y., Chen Z. J. J., Sci. Signaling 2012, 5, 11. PubMed PMC
Cai X., Chiu Y. H., Chen Z. J. J., Mol. Cell 2014, 54, 289–296. PubMed
Fang R., Wang C. G., Jiang Q. F., Lv M. Z., Gao P. F., Yu X. Y., Mu P., Zhang R., Bi S., Feng J. M., Jiang Z. F., J. Immunol. 2017, 199, 3222–3233. PubMed
Ahn J., Son S., Oliveira S. C., Barber G. N., Cell Rep. 2017, 21, 3873–3884. PubMed PMC
Barber G. N., Nat. Rev. Immunol. 2015, 15, 760–770. PubMed PMC
Papinska J., Bagavant H., Gmyrek G. B., Sroka M., Tummala S., Fitzgerald K. A., Deshmukh U. S., J. Dent. Res. 2018, 97, 893–900. PubMed PMC
Chen Q., Sun L. J., Chen Z. J. J., Nat. Immunol. 2016, 17, 1142–1149. PubMed
Burdette D. L., Monroe K. M., Sotelo-Troha K., Iwig J. S., Eckert B., Hyodo M., Hayakawa Y., Vance R. E., Nature 2011, 478, 515–518. PubMed PMC
Tamayo R., Pratt J. T., Camilli A., Annu. Rev. Microbiol. 2007, 61, 131–148. PubMed PMC
Tsuchiya Y., Jounai N., Takeshita F., Ishii K. J., Mizuguchi K., EBioMedicine 2016, 9, 87–96. PubMed PMC
Shu C., Yi G. H., Watts T., Kao C. C., Li P. W., Nat. Struct. Mol. Biol. 2012, 19, 722–724. PubMed PMC
Zhang X., Shi H. P., Wu J. X., Zhang X. W., Sun L. J., Chen C., Chen Z. J. J., Mol. Cell 2013, 51, 226–235. PubMed PMC
Lioux T., Mauny M.-A., Lamoureux A., Bascoul N., Hays M., Vernejoul F., Baudru A.-S., Boularan C., Lopes-Vicente J., Qushair G., Tiraby G., J. Med. Chem. 2016, 59, 10253–10267. PubMed
“Fluorinated Cyclic Dinucleotides for Cytokine Induction”: INVIVOGEN, WO2016096174A, 2016.
Ouyang S. Y., Song X. Q., Wang Y. Y., Ru H., Shaw N., Jiang Y., Niu F. F., Zhu Y. P., Qiu W. C., Parvatiyar K., Li Y., Zhang R. G., Cheng G. H., Liu Z. J., Immunity 2012, 36, 1073–1086. PubMed PMC
Antony J., Grimme S., Liakos D. G., Neese F., J. Phys. Chem. A 2011, 115, 11210–11220. PubMed
Novotná B., Vanekováa L., Zavřel M., Buděšínský M., Dejmek M., Smola M., Gutten O., Tehrani Z. A., Polidarová M. P., Brázdová A., Liboska R., Štěpánek I., Vavřina Z., Jandušík T., Nencka R., Rulíšek L., Bouřa E., Brynda J., Páv O., Birkuš G., J. Med. Chem. 2019, 62, 10676–10690. PubMed
Smola M., Birkus G., Boura E., Acta Crystallogr. Sect. F 2019, 75, 593–598. PubMed PMC
Ergun S. L., Fernandez D., Weiss T. M., Li L. Y., Cell 2019, 178, 290–301. PubMed
Shi H. P., Wu J. X., Chen Z. J. J., Chen C., Proc. Natl. Acad. Sci. USA 2015, 112, 8947–8952. PubMed PMC
Gao P., Ascano M., Zillinger T., Wang W. Y., Dai P. H., Serganov A. A., Gaffney B. L., Shuman S., Jones R. A., Deng L., Hartmann G., Barchet W., Tuschl T., Patel D. J., Cell 2013, 154, 748–762. PubMed PMC
Krimmer S. G., Klebe G., J. Comput.-Aided Mol. Des. 2015, 29, 867–883. PubMed
Bastiansen O., Christensen J. J., Hansen L. D., Izatt R. M., Handbook of Proton Ionization Heats and Related Thermodynamic Quantities, Wiley, New York: 1976.
Fukada H., Takahashi K., Proteins: Struct. Funct. Genet. 1998, 33, 159–166. PubMed
Řezáč J., Bím D., Gutten O., Rulíšek L., J. Chem. Theory Comput. 2018, 14, 1254–1266. PubMed
Klamt A., J. Phys. Chem. 1995, 99, 2224–2235.
Klamt A., Jonas V., Bürger T., Lohrenz J. C. W., J. Phys. Chem. A 1998, 102, 5074–5085.
Structure of monkeypox virus poxin: implications for drug design
The Present and Future of Virology in the Czech Republic-A New Phoenix Made of Ashes?