Structure of monkeypox virus poxin: implications for drug design
Jazyk angličtina Země Rakousko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
61388963
Ústav organické chemie a biochemie Akademie věd České republiky
PubMed
37378908
PubMed Central
PMC10307694
DOI
10.1007/s00705-023-05824-4
PII: 10.1007/s00705-023-05824-4
Knihovny.cz E-zdroje
- MeSH
- lidé MeSH
- opičí neštovice * MeSH
- Poxviridae * MeSH
- racionální návrh léčiv MeSH
- signální transdukce MeSH
- virus opičích neštovic MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Monkeypox, or mpox, is a disease that has recently resurfaced and spread across the globe. Despite the availability of an FDA-approved vaccine (JYNNEOS) and an effective drug (tecovirimat), concerns remain over the possible recurrence of a viral pandemic. Like any other virus, mpox virus must overcome the immune system to replicate. Viruses have evolved various strategies to overcome both innate and adaptive immunity. Poxviruses possess an unusual nuclease, poxin, which cleaves 2'-3'-cGAMP, a cyclic dinucleotide, which is an important second messenger in the cGAS-STING signaling pathway. Here, we present the crystal structure of mpox poxin. The structure reveals a conserved, predominantly β-sheet fold and highlights the high conservation of the cGAMP binding site and of the catalytic residues His17, Tyr138, and Lys142. This research suggests that poxin inhibitors could be effective against multiple poxviruses.
Zobrazit více v PubMed
Gessain A, Nakoune E, Yazdanpanah Y. Monkeypox. N Engl J Med. 2022 doi: 10.1056/NEJMra2208860. PubMed DOI
Bunge EM, Hoet B, Chen L, Lienert F, Weidenthaler H, Baer LR, Steffen R. The changing epidemiology of human monkeypox-A potential threat? A systematic review. PLoS Negl Trop Dis. 2022;16(2):e0010141. doi: 10.1371/journal.pntd.0010141. PubMed DOI PMC
Rao AK, Petersen BW, Whitehill F, Razeq JH, Isaacs SN, Merchlinsky MJ, Campos-Outcalt D, Morgan RL, Damon I, Sanchez PJ, Bell BP. Use of JYNNEOS (smallpox and monkeypox vaccine, live, nonreplicating) for preexposure vaccination of persons at risk for occupational exposure to orthopoxviruses: recommendations of the advisory committee on immunization practices-United States, 2022. Mmwr-Morbidity and Mortality Weekly Report. 2022;71(22):734–742. doi: 10.15585/mmwr.mm7122e1. PubMed DOI PMC
Russo AT, Grosenbach DW, Chinsangaram J, Honeychurch KM, Long PG, Lovejoy C, Maiti B, Meara I, Hruby DE. An overview of tecovirimat for smallpox treatment and expanded anti-orthopoxvirus applications. Expert Rev Anti Infect Ther. 2021;19(3):331–344. doi: 10.1080/14787210.2020.1819791. PubMed DOI PMC
Carty M, Guy C, Bowie AG. Detection of viral infections by innate immunity. Biochem Pharmacol. 2021;183:114316. doi: 10.1016/j.bcp.2020.114316. PubMed DOI
Kikkert M. Innate immune evasion by human respiratory RNA viruses. J Innate Immun. 2020;12(1):4–20. doi: 10.1159/000503030. PubMed DOI PMC
Staudt RP, Alvarado JJ, Emert-Sedlak LA, Shi HB, Shu ST, Wales TE, Engen JR, Smithgall TE. Structure, function, and inhibitor targeting of HIV-1 Nef-effector kinase complexes. J Biol Chem. 2020;295(44):15158–15171. doi: 10.1074/jbc.REV120.012317. PubMed DOI PMC
Nencka R, Silhan J, Klima M, Otava T, Kocek H, Krafcikova P, Boura E. Coronaviral RNA-methyltransferases: function, structure and inhibition. Nucleic Acids Res. 2022;50(2):635–650. doi: 10.1093/nar/gkab1279. PubMed DOI PMC
Li N, Rana TM. Regulation of antiviral innate immunity by chemical modification of viral RNA. Wiley Interdiscip Rev-RNA. 2022 doi: 10.1002/wrna.1720. PubMed DOI PMC
Muthukrishnan S, Moss B, Cooper JA, Maxwell ES. Influence of 5'-terminal cap structure on initiation of translation of vaccinia virus messenger-RNA. J Biol Chem. 1978;253(5):1710–1715. doi: 10.1016/S0021-9258(17)34923-2. PubMed DOI
Abernathy E, Glaunsinger B. Emerging roles for RNA degradation in viral replication and antiviral defense. Virology. 2015;479:600–608. doi: 10.1016/j.virol.2015.02.007. PubMed DOI PMC
Yu HB, Bruneau RC, Brennan G, Rothenburg S. Battle royale: innate recognition of poxviruses and viral immune evasion. Biomedicines. 2021;9(7):765. doi: 10.3390/biomedicines9070765. PubMed DOI PMC
Eaglesham JB, Pan YD, Kupper TS, Kranzusch PJ. Viral and metazoan poxins are cGAMP-specific nucleases that restrict cGAS-STING signalling. Nature. 2019;566(7743):259. doi: 10.1038/s41586-019-0928-6. PubMed DOI PMC
de Motes CM. Poxvirus cGAMP nucleases: clues and mysteries from a stolen gene. PLoS Pathog. 2021;17(3):e1009372. doi: 10.1371/journal.ppat.1009372. PubMed DOI PMC
Eaglesham JB, McCarty KL, Kranzusch PJ. Structures of diverse poxin cGAMP nucleases reveal a widespread role for cGAS-STING evasion in host-pathogen conflict. Elife. 2020 doi: 10.7554/eLife.59753. PubMed DOI PMC
Ablasser A, Goldeck M, Cavlar T, Deimling T, Witte G, Rohl I, Hopfner KP, Ludwig J, Hornung V. cGAS produces a 2 '-5 '-linked cyclic dinucleotide second messenger that activates STING. Nature. 2013;498(7454):380. doi: 10.1038/nature12306. PubMed DOI PMC
Phelan T, Little MA, Brady G. Targeting of the cGAS-STING system by DNA viruses. Biochem Pharmacol. 2020;174:113831. doi: 10.1016/j.bcp.2020.113831. PubMed DOI
Dubankova A, Humpolickova J, Klima M, Boura E. Negative charge and membrane-tethered viral 3B cooperate to recruit viral RNA dependent RNA polymerase 3D (pol) Sci Rep. 2017;7(1):17309. doi: 10.1038/s41598-017-17621-6. PubMed DOI PMC
Konkolova E, Krejcova K, Eyer L, Hodek J, Zgarbova M, Fortova A, Jirasek M, Teply F, Reyes-Gutierrez PE, Ruzek D, Weber J, Boura E. A Helquat-like compound as a potent inhibitor of flaviviral and coronaviral polymerases. Molecules. 2022;27(6):1894. doi: 10.3390/molecules27061894. PubMed DOI PMC
DeLaurentis CE, Kiser J, Zucker J. New perspectives on antimicrobial agents: tecovirimat for treatment of human Monkeypox virus. Antimicrob Agents Chemother. 2022;66(12):e0122622. doi: 10.1128/aac.01226-22. PubMed DOI PMC
Russo AT, Berhanu A, Bigger CB, Prigge J, Silvera PM, Grosenbach DW, Hruby D. Co-administration of tecovirimat and ACAM2000 in non-human primates: Effect of tecovirimat treatment on ACAM2000 immunogenicity and efficacy versus lethal monkeypox virus challenge. Vaccine. 2020;38(3):644–654. doi: 10.1016/j.vaccine.2019.10.049. PubMed DOI PMC
Otava T, Sala M, Li F, Fanfrlik J, Devkota K, Perveen S, Chau I, Pakarian P, Hobza P, Vedadi M, Boura E, Nencka R. The structure-based design of SARS-CoV-2 nsp14 methyltransferase ligands yields nanomolar inhibitors. ACS Infect Dis. 2021;7(8):2214–2220. doi: 10.1021/acsinfecdis.1c00131. PubMed DOI
Klima M, Khalili Yazdi A, Li F, Chau I, Hajian T, Bolotokova A, Kaniskan HU, Han Y, Wang K, Li D, Luo M, Jin J, Boura E, Vedadi M. Crystal structure of SARS-CoV-2 nsp10-nsp16 in complex with small molecule inhibitors, SS148 and WZ16. Protein Sci. 2022;31(9):4395. doi: 10.1002/pro.4395. PubMed DOI PMC
Li F, Ghiabi P, Hajian T, Klima M, Li ASM, Khalili Yazdi A, Chau I, Loppnau P, Kutera M, Seitova A, Bolotokova A, Hutchinson A, Perveen S, Boura E, Vedadi M. SS148 and WZ16 inhibit the activities of nsp10-nsp16 complexes from all seven human pathogenic coronaviruses. Biochim Biophys Acta Gen Subj. 2023;1867(4):130319. doi: 10.1016/j.bbagen.2023.130319. PubMed DOI PMC
Devkota K, Schapira M, Perveen S, Khalili Yazdi A, Li F, Chau I, Ghiabi P, Hajian T, Loppnau P, Bolotokova A, Satchell KJF, Wang K, Li D, Liu J, Smil D, Luo M, Jin J, Fish PV, Brown PJ, Vedadi M. Probing the SAM binding site of SARS-CoV-2 Nsp14 in vitro using SAM competitive inhibitors guides developing selective bisubstrate inhibitors. SLAS Discov. 2021;5:36. PubMed PMC
Silhan J, Klima M, Otava T, Skvara P, Chalupska D, Chalupsky K, Kozic J, Nencka R, Boura E. Discovery and structural characterization of monkeypox virus methyltransferase VP39 inhibitors reveal similarities to SARS-CoV-2 nsp14 methyltransferase. Nat Commun. 2023;14(1):2259. doi: 10.1038/s41467-023-38019-1. PubMed DOI PMC
Dvory-Sobol H, Shaik N, Callebaut C, Rhee MS. Lenacapavir: a first-in-class HIV-1 capsid inhibitor. Curr Opin HIV AIDS. 2022;17(1):15–21. doi: 10.1097/COH.0000000000000713. PubMed DOI
Segal-Maurer S, DeJesus E, Stellbrink HJ, Castagna A, Richmond GJ, Sinclair GI, Siripassorn K, Ruane PJ, Berhe M, Wang H, Margot NA, Dvory-Sobol H, Hyland RH, Brainard DM, Rhee MS, Baeten JM, Molina JM. Capsid Inhibition with lenacapavir in multidrug-resistant HIV-1 infection. N Engl J Med. 2022;386(19):1793–1803. doi: 10.1056/NEJMoa2115542. PubMed DOI
Novotna B, Hola L, Stas M, Gutten O, Smola M, Zavrel M, Vavrina Z, Budesinsky M, Liboska R, Chevrier F, Dobias J, Boura E, Rulisek L, Birkus G. Enzymatic synthesis of 3'-5', 3'-5' cyclic dinucleotides, their binding properties to the stimulator of interferon genes adaptor protein, and structure/activity correlations. Biochemistry. 2021;60(48):3714–3727. doi: 10.1021/acs.biochem.1c00692. PubMed DOI
Pimkova Polidarova M, Brehova P, Kaiser MM, Smola M, Dracinsky M, Smith J, Marek A, Dejmek M, Sala M, Gutten O, Rulisek L, Novotna B, Brazdova A, Janeba Z, Nencka R, Boura E, Pav O, Birkus G. Synthesis and biological evaluation of phosphoester and phosphorothioate prodrugs of STING agonist 3',3'-c-Di(2'F,2'dAMP) J Med Chem. 2021;64(11):7596–7616. doi: 10.1021/acs.jmedchem.1c00301. PubMed DOI
Smola M, Gutten O, Dejmek M, Kozisek M, Evangelidis T, Tehrani ZA, Novotna B, Nencka R, Birkus G, Rulisek L, Boura E. Ligand strain and its conformational complexity is a major factor in the binding of cyclic dinucleotides to STING protein. Angew Chem Int Ed Engl. 2021;60(18):10172–10178. doi: 10.1002/anie.202016805. PubMed DOI PMC
Dejmek M, Sala M, Brazdova A, Vanekova L, Smola M, Klima M, Brehova P, Budesinsky M, Dracinsky M, Prochazkova E, Zavrel M, Simak O, Pav O, Boura E, Birkus G, Nencka R. Discovery of isonucleotidic CDNs as potent STING agonists with immunomodulatory potential. Structure. 2022;30(8):1146–1156. doi: 10.1016/j.str.2022.05.012. PubMed DOI
Stazzoni S, Bohmer DFR, Hernichel F, Ozdemir D, Pappa A, Drexler D, Bauernfried S, Witte G, Wagner M, Veth S, Hopfner KP, Hornung V, Konig LM, Carell T. Novel Poxin Stable cGAMP-Derivatives Are Remarkable STING Agonists. Angew Chem Int Ed Engl. 2022;61(40):e202207175. doi: 10.1002/anie.202207175. PubMed DOI PMC