Negative charge and membrane-tethered viral 3B cooperate to recruit viral RNA dependent RNA polymerase 3D pol
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29230036
PubMed Central
PMC5725453
DOI
10.1038/s41598-017-17621-6
PII: 10.1038/s41598-017-17621-6
Knihovny.cz E-zdroje
- MeSH
- adaptorové proteiny signální transdukční genetika metabolismus MeSH
- buněčná membrána metabolismus MeSH
- fosfatidylinositolfosfáty metabolismus MeSH
- fosfotransferasy s alkoholovou skupinou jako akceptorem genetika metabolismus MeSH
- Kobuvirus enzymologie MeSH
- lidé MeSH
- membránové proteiny genetika metabolismus MeSH
- pikornavirové infekce metabolismus virologie MeSH
- virové nestrukturální proteiny genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ACBD3 protein, human MeSH Prohlížeč
- adaptorové proteiny signální transdukční MeSH
- fosfatidylinositolfosfáty MeSH
- fosfotransferasy s alkoholovou skupinou jako akceptorem MeSH
- membránové proteiny MeSH
- phosphatidylinositol 4-kinase IIIbeta, human MeSH Prohlížeč
- phosphatidylinositol 4-phosphate MeSH Prohlížeč
- virové nestrukturální proteiny MeSH
Most single stranded plus RNA viruses hijack phosphatidylinositol 4-kinases (PI4Ks) to generate membranes highly enriched in phosphatidylinositol 4-phosphate (PI4P). These membranous compartments known as webs, replication factories or replication organelles are essential for viral replication because they provide protection from the innate intracellular immune response while serving as platforms for viral replication. Using purified recombinant proteins and biomimetic model membranes we show that the nonstructural viral 3A protein is sufficient to promote membrane hyper-phosphorylation given the proper intracellular cofactors (PI4KB and ACBD3). However, our bio-mimetic in vitro reconstitution assay revealed that rather than the presence of PI4P specifically, negative charge alone is sufficient for the recruitment of 3Dpol enzymes to the surface of the lipid bilayer. Additionally, we show that membrane tethered viral 3B protein (also known as Vpg) works in combination with the negative charge to increase the efficiency of membrane recruitment of 3Dpol.
Zobrazit více v PubMed
den Boon JA, Ahlquist P. Organelle-like membrane compartmentalization of positive-strand RNA virus replication factories. Annual review of microbiology. 2010;64:241–256. doi: 10.1146/annurev.micro.112408.134012. PubMed DOI
Berger KL, et al. Roles for endocytic trafficking and phosphatidylinositol 4-kinase III alpha in hepatitis C virus replication. Proceedings of the National Academy of Sciences of the United States of America. 2009;106:7577–7582. doi: 10.1073/pnas.0902693106. PubMed DOI PMC
Berger KL, Kelly SM, Jordan TX, Tartell MA, Randall G. Hepatitis C virus stimulates the phosphatidylinositol 4-kinase III alpha-dependent phosphatidylinositol 4-phosphate production that is essential for its replication. Journal of virology. 2011;85:8870–8883. doi: 10.1128/JVI.00059-11. PubMed DOI PMC
Arita M, et al. Phosphatidylinositol 4-kinase III beta is a target of enviroxime-like compounds for antipoliovirus activity. Journal of virology. 2011;85:2364–2372. doi: 10.1128/JVI.02249-10. PubMed DOI PMC
Sasaki J, Ishikawa K, Arita M, Taniguchi K. ACBD3-mediated recruitment of PI4KB to picornavirus RNA replication sites. The EMBO journal. 2012;31:754–766. doi: 10.1038/emboj.2011.429. PubMed DOI PMC
Reiss S, et al. Recruitment and activation of a lipid kinase by hepatitis C virus NS5A is essential for integrity of the membranous replication compartment. Cell host & microbe. 2011;9:32–45. doi: 10.1016/j.chom.2010.12.002. PubMed DOI PMC
Dornan GL, McPhail JA, Burke JE. Type III phosphatidylinositol 4 kinases: structure, function, regulation, signalling and involvement in disease. Biochemical Society transactions. 2016;44:260–266. doi: 10.1042/BST20150219. PubMed DOI
Boura E, Nencka R. Phosphatidylinositol 4-kinases: Function, structure, and inhibition. Experimental cell research. 2015;337:136–145. doi: 10.1016/j.yexcr.2015.03.028. PubMed DOI
Altan-Bonnet N, Balla T. Phosphatidylinositol 4-kinases: hostages harnessed to build panviral replication platforms. Trends in biochemical sciences. 2012;37:293–302. doi: 10.1016/j.tibs.2012.03.004. PubMed DOI PMC
Burke JE, et al. Structures of PI4KIIIbeta complexes show simultaneous recruitment of Rab11 and its effectors. Science. 2014;344:1035–1038. doi: 10.1126/science.1253397. PubMed DOI PMC
Baumlova A, et al. The crystal structure of the phosphatidylinositol 4-kinase IIalpha. EMBO reports. 2014;15:1085–1092. doi: 10.15252/embr.201438841. PubMed DOI PMC
Klima M, et al. The high-resolution crystal structure of phosphatidylinositol 4-kinase IIbeta and the crystal structure of phosphatidylinositol 4-kinase IIalpha containing a nucleoside analogue provide a structural basis for isoform-specific inhibitor design. Acta crystallographica. Section D, Biological crystallography. 2015;71:1555–1563. doi: 10.1107/S1399004715009505. PubMed DOI
Klima M, et al. Structural insights and in vitro reconstitution of membrane targeting and activation of human PI4KB by the ACBD3 protein. Scientific reports. 2016;6:23641. doi: 10.1038/srep23641. PubMed DOI PMC
Eisenreichova A, Klima M, Boura E. Crystal structures of a yeast 14-3-3 protein from Lachancea thermotolerans in the unliganded form and bound to a human lipid kinase PI4KB-derived peptide reveal high evolutionary conservation. Acta Crystallogr F Struct Biol Commun. 2016;72:799–803. doi: 10.1107/S2053230X16015053. PubMed DOI PMC
Chalupska, D. et al. Structural analysis of phosphatidylinositol 4-kinase IIIbeta (PI4KB) - 14-3-3 protein complex reveals internal flexibility and explains 14-3-3 mediated protection from degradation in vitro. Journal of structural biology, 10.1016/j.jsb.2017.08.006 (2017). PubMed
Lamarche MJ, et al. Anti-hepatitis C virus activity and toxicity of type III phosphatidylinositol-4-kinase beta inhibitors. Antimicrobial agents and chemotherapy. 2012;56:5149–5156. doi: 10.1128/AAC.00946-12. PubMed DOI PMC
Raubo P, et al. Discovery of potent, selective small molecule inhibitors of alpha-subtype of type III phosphatidylinositol-4-kinase (PI4KIIIalpha) Bioorganic & medicinal chemistry letters. 2015;25:3189–3193. doi: 10.1016/j.bmcl.2015.05.093. PubMed DOI
Mejdrova I, et al. Highly Selective Phosphatidylinositol 4-Kinase IIIbeta Inhibitors and Structural Insight into Their Mode of Action. Journal of medicinal chemistry. 2015;58:3767–3793. doi: 10.1021/acs.jmedchem.5b00499. PubMed DOI
Rutaganira FU, et al. Design and Structural Characterization of Potent and Selective Inhibitors of Phosphatidylinositol 4 Kinase IIIbeta. Journal of medicinal chemistry. 2016;59:1830–1839. doi: 10.1021/acs.jmedchem.5b01311. PubMed DOI PMC
Dorobantu, C. M. et al. Modulation of the Host Lipid Landscape to Promote RNA Virus Replication: The Picornavirus Encephalomyocarditis Virus Converges on the Pathway Used by Hepatitis C Virus. PLoS pathogens11, doi:ARTN e100518510.1371/journal.ppat.1005185 (2015). PubMed PMC
Ishikawa-Sasaki K, Sasaki J, Taniguchi K. A complex comprising phosphatidylinositol 4-kinase IIIbeta, ACBD3, and Aichi virus proteins enhances phosphatidylinositol 4-phosphate synthesis and is critical for formation of the viral replication complex. Journal of virology. 2014;88:6586–6598. doi: 10.1128/JVI.00208-14. PubMed DOI PMC
Wessels E, et al. A viral protein that blocks Arf1-mediated COP-I assembly by inhibiting the guanine nucleotide exchange factor GBF1. Developmental cell. 2006;11:191–201. doi: 10.1016/j.devcel.2006.06.005. PubMed DOI
Wessels E, et al. Molecular determinants of the interaction between coxsackievirus protein 3A and guanine nucleotide exchange factor GBF1. Journal of virology. 2007;81:5238–5245. doi: 10.1128/JVI.02680-06. PubMed DOI PMC
Greninger AL, Knudsen GM, Betegon M, Burlingame AL, Derisi JL. The 3A protein from multiple picornaviruses utilizes the golgi adaptor protein ACBD3 to recruit PI4KIIIbeta. Journal of virology. 2012;86:3605–3616. doi: 10.1128/JVI.06778-11. PubMed DOI PMC
Greninger AL, Knudsen GM, Betegon M, Burlingame AL, DeRisi JL. ACBD3 interaction with TBC1 domain 22 protein is differentially affected by enteroviral and kobuviral 3A protein binding. mBio. 2013;4:e00098–00013. doi: 10.1128/mBio.00098-13. PubMed DOI PMC
Lama J, Paul AV, Harris KS, Wimmer E. Properties of purified recombinant poliovirus protein 3aB as substrate for viral proteinases and as co-factor for RNA polymerase 3Dpol. The Journal of biological chemistry. 1994;269:66–70. PubMed
Arita M. Mechanism of Poliovirus Resistance to Host Phosphatidylinositol-4 Kinase III beta Inhibitor. ACS Infect Dis. 2016;2:140–148. doi: 10.1021/acsinfecdis.5b00122. PubMed DOI
Lyle JM, et al. Similar structural basis for membrane localization and protein priming by an RNA-dependent RNA polymerase. The Journal of biological chemistry. 2002;277:16324–16331. doi: 10.1074/jbc.M112429200. PubMed DOI
Fujita K, et al. Membrane topography of the hydrophobic anchor sequence of poliovirus 3A and 3AB proteins and the functional effect of 3A/3AB membrane association upon RNA replication. Biochemistry. 2007;46:5185–5199. doi: 10.1021/bi6024758. PubMed DOI PMC
Plotch SJ, Palant O. Poliovirus protein 3AB forms a complex with and stimulates the activity of the viral RNA polymerase, 3Dpol. Journal of virology. 1995;69:7169–7179. PubMed PMC
Paul AV, van Boom JH, Filippov D, Wimmer E. Protein-primed RNA synthesis by purified poliovirus RNA polymerase. Nature. 1998;393:280–284. doi: 10.1038/30529. PubMed DOI
Peersen OB. Picornaviral polymerase structure, function, and fidelity modulation. Virus research. 2017;234:4–20. doi: 10.1016/j.virusres.2017.01.026. PubMed DOI PMC
Tong J, Yang H, Yang H, Eom SH, Im YJ. Structure of Osh3 reveals a conserved mode of phosphoinositide binding in oxysterol-binding proteins. Structure. 2013;21:1203–1213. doi: 10.1016/j.str.2013.05.007. PubMed DOI
Arita M. Phosphatidylinositol-4 kinase III beta and oxysterol-binding protein accumulate unesterified cholesterol on poliovirus-induced membrane structure. Microbiol Immunol. 2014;58:239–256. doi: 10.1111/1348-0421.12144. PubMed DOI
Roulin PS, et al. Rhinovirus uses a phosphatidylinositol 4-phosphate/cholesterol counter-current for the formation of replication compartments at the ER-Golgi interface. Cell host & microbe. 2014;16:677–690. doi: 10.1016/j.chom.2014.10.003. PubMed DOI
Chung J, et al. Intracellular Transport. PI4P/phosphatidylserine countertransport at ORP5- and ORP8-mediated ER-plasma membrane contacts. Science. 2015;349:428–432. doi: 10.1126/science.aab1370. PubMed DOI PMC
Moser von Filseck J, Vanni S, Mesmin B, Antonny B, Drin G. A phosphatidylinositol-4-phosphate powered exchange mechanism to create a lipid gradient between membranes. Nature communications. 2015;6:6671. doi: 10.1038/ncomms7671. PubMed DOI
Dolinsky S, et al. The Legionella longbeachae Icm/Dot substrate SidC selectively binds phosphatidylinositol 4-phosphate with nanomolar affinity and promotes pathogen vacuole-endoplasmic reticulum interactions. Infection and immunity. 2014;82:4021–4033. doi: 10.1128/IAI.01685-14. PubMed DOI PMC
Hsu NY, et al. Viral reorganization of the secretory pathway generates distinct organelles for RNA replication. Cell. 2010;141:799–811. doi: 10.1016/j.cell.2010.03.050. PubMed DOI PMC
Hurley JH, Boura E, Carlson LA, Rozycki B. Membrane budding. Cell. 2010;143:875–887. doi: 10.1016/j.cell.2010.11.030. PubMed DOI PMC
McCullough J, Colf LA, Sundquist WI. Membrane fission reactions of the mammalian ESCRT pathway. Annual review of biochemistry. 2013;82:663–692. doi: 10.1146/annurev-biochem-072909-101058. PubMed DOI PMC
Rozycki B, Boura E, Hurley JH, Hummer G. Membrane-elasticity model of Coatless vesicle budding induced by ESCRT complexes. PLoS computational biology. 2012;8:e1002736. doi: 10.1371/journal.pcbi.1002736. PubMed DOI PMC
Wollert T, Wunder C, Lippincott-Schwartz J, Hurley JH. Membrane scission by the ESCRT-III complex. Nature. 2009;458:172–177. doi: 10.1038/nature07836. PubMed DOI PMC
Carlson LA, Hurley JH. In vitro reconstitution of the ordered assembly of the endosomal sorting complex required for transport at membrane-bound HIV-1 Gag clusters. Proceedings of the National Academy of Sciences of the United States of America. 2012;109:16928–16933. doi: 10.1073/pnas.1211759109. PubMed DOI PMC
Carlson, L. A., Bai, Y., Keane, S. C., Doudna, J. A. & Hurley, J. H. Reconstitution of selective HIV-1 RNA packaging in vitro by membrane-bound Gag assemblies. eLife5, 10.7554/eLife.14663 (2016). PubMed PMC
Saleem M, et al. A balance between membrane elasticity and polymerization energy sets the shape of spherical clathrin coats. Nature communications. 2015;6:6249. doi: 10.1038/ncomms7249. PubMed DOI PMC
Renard HF, et al. Endophilin-A2 functions in membrane scission in clathrin-independent endocytosis. Nature. 2015;517:493–496. doi: 10.1038/nature14064. PubMed DOI PMC
Pabst, G., Kucerka, N., Nieh, M. P. & Katsaras, J. Liposomes, Lipid Bilayers and ModelMembranes From Basic Research to Application Preface. Liposomes, Lipid Bilayers and Model Membranes: From Basic Research to Application, Ix–X, 10.1201/b16617 (2014).
Klima M, et al. Kobuviral Non-structural 3A Proteins Act as Molecular Harnesses to Hijack the Host ACBD3 Protein. Structure. 2017;25:219–230. doi: 10.1016/j.str.2016.11.021. PubMed DOI
McPhail JA, Ottosen EH, Jenkins ML, Burke JE. The Molecular Basis of Aichi Virus 3A Protein Activation of Phosphatidylinositol 4 Kinase IIIbeta, PI4KB, through ACBD3. Structure. 2017;25:121–131. doi: 10.1016/j.str.2016.11.016. PubMed DOI
Wang J, Ptacek JB, Kirkegaard K, Bullitt E. Double-membraned liposomes sculpted by poliovirus 3AB protein. The Journal of biological chemistry. 2013;288:27287–27298. doi: 10.1074/jbc.M113.498899. PubMed DOI PMC
Fan J, Liu J, Culty M, Papadopoulos V. Acyl-coenzyme A binding domain containing 3 (ACBD3; PAP7; GCP60): an emerging signaling molecule. Progress in lipid research. 2010;49:218–234. doi: 10.1016/j.plipres.2009.12.003. PubMed DOI PMC
Teoule F, et al. The Golgi protein ACBD3, an interactor for poliovirus protein 3A, modulates poliovirus replication. Journal of virology. 2013;87:11031–11046. doi: 10.1128/JVI.00304-13. PubMed DOI PMC
Wollert T, Hurley JH. Molecular mechanism of multivesicular body biogenesis by ESCRT complexes. Nature. 2010;464:864–869. doi: 10.1038/nature08849. PubMed DOI PMC
Mejdrova I, et al. Rational Design of Novel Highly Potent and Selective Phosphatidylinositol 4-Kinase IIIbeta (PI4KB) Inhibitors as Broad-Spectrum Antiviral Agents and Tools for Chemical Biology. Journal of medicinal chemistry. 2017;60:100–118. doi: 10.1021/acs.jmedchem.6b01465. PubMed DOI
Humpolickova J, Mejdrova I, Matousova M, Nencka R, Boura E. Fluorescent Inhibitors as Tools To Characterize Enzymes: Case Study of the Lipid Kinase Phosphatidylinositol 4-Kinase IIIbeta (PI4KB) Journal of medicinal chemistry. 2017;60:119–127. doi: 10.1021/acs.jmedchem.6b01466. PubMed DOI
Spagnolo JF, Rossignol E, Bullitt E, Kirkegaard K. Enzymatic and nonenzymatic functions of viral RNA-dependent RNA polymerases within oligomeric arrays. Rna. 2010;16:382–393. doi: 10.1261/rna.1955410. PubMed DOI PMC
Pathak HB, Arnold JJ, Wiegand PN, Hargittai MR, Cameron CE. Picornavirus genome replication: assembly and organization of the VPg uridylylation ribonucleoprotein (initiation) complex. The Journal of biological chemistry. 2007;282:16202–16213. doi: 10.1074/jbc.M610608200. PubMed DOI PMC
Altan-Bonnet N. Lipid Tales of Viral Replication and Transmission. Trends in cell biology. 2017;27:201–213. doi: 10.1016/j.tcb.2016.09.011. PubMed DOI PMC
Marcotte LL, et al. Crystal structure of poliovirus 3CD protein: virally encoded protease and precursor to the RNA-dependent RNA polymerase. Journal of virology. 2007;81:3583–3596. doi: 10.1128/JVI.02306-06. PubMed DOI PMC
Paul AV, Rieder E, Kim DW, van Boom JH, Wimmer E. Identification of an RNA hairpin in poliovirus RNA that serves as the primary template in the in vitro uridylylation of VPg. Journal of virology. 2000;74:10359–10370. doi: 10.1128/JVI.74.22.10359-10370.2000. PubMed DOI PMC
Hope DA, Diamond SE, Kirkegaard K. Genetic dissection of interaction between poliovirus 3D polymerase and viral protein 3AB. Journal of virology. 1997;71:9490–9498. PubMed PMC
Gong P, Kortus MG, Nix JC, Davis RE, Peersen OB. Structures of coxsackievirus, rhinovirus, and poliovirus polymerase elongation complexes solved by engineering RNA mediated crystal contacts. PloS one. 2013;8:e60272. doi: 10.1371/journal.pone.0060272. PubMed DOI PMC
Nemecek D, et al. Subunit folds and maturation pathway of a dsRNA virus capsid. Structure. 2013;21:1374–1383. doi: 10.1016/j.str.2013.06.007. PubMed DOI PMC
Rezabkova L, et al. 14-3-3 protein interacts with and affects the structure of RGS domain of regulator of G protein signaling 3 (RGS3) Journal of structural biology. 2010;170:451–461. doi: 10.1016/j.jsb.2010.03.009. PubMed DOI
Boura E, Ivanov V, Carlson LA, Mizuuchi K, Hurley JH. Endosomal sorting complex required for transport (ESCRT) complexes induce phase-separated microdomains in supported lipid bilayers. The Journal of biological chemistry. 2012;287:28144–28151. doi: 10.1074/jbc.M112.378646. PubMed DOI PMC
Schindelin J, Rueden CT, Hiner MC, Eliceiri KW. The ImageJ ecosystem: An open platform for biomedical image analysis. Molecular reproduction and development. 2015;82:518–529. doi: 10.1002/mrd.22489. PubMed DOI PMC
Boura E, Hurley JH. Structural basis for membrane targeting by the MVB12-associated beta-prism domain of the human ESCRT-I MVB12 subunit. Proceedings of the National Academy of Sciences of the United States of America. 2012;109:1901–1906. doi: 10.1073/pnas.1117597109. PubMed DOI PMC
Wahl M, Gregor I, Patting M, Enderlein J. Fast calculation of fluorescence correlation data with asynchronous time-correlated single-photon counting. Optics express. 2003;11:3583–3591. doi: 10.1364/OE.11.003583. PubMed DOI
Gregor I, Enderlein J. Time-resolved methods in biophysics. 3. Fluorescence lifetime correlation spectroscopy. Photochem Photobiol Sci. 2007;6:13–18. doi: 10.1039/B610310C. PubMed DOI
Structure of monkeypox virus poxin: implications for drug design
A Helquat-like Compound as a Potent Inhibitor of Flaviviral and Coronaviral Polymerases
Osh6 Revisited: Control of PS Transport by the Concerted Actions of PI4P and Sac1 Phosphatase
Localization of SARS-CoV-2 Capping Enzymes Revealed by an Antibody against the nsp10 Subunit
Structural analysis of the putative SARS-CoV-2 primase complex
Membrane Protein Dimerization in Cell-Derived Lipid Membranes Measured by FRET with MC Simulations
Convergent evolution in the mechanisms of ACBD3 recruitment to picornavirus replication sites