Crystal structures of a yeast 14-3-3 protein from Lachancea thermotolerans in the unliganded form and bound to a human lipid kinase PI4KB-derived peptide reveal high evolutionary conservation
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
27827352
PubMed Central
PMC5101580
DOI
10.1107/s2053230x16015053
PII: S2053230X16015053
Knihovny.cz E-zdroje
- Klíčová slova
- 14-3-3 proteins, Bmh1, Bmh2, Lachancea thermotolerans, PI4KB, crystal structure, phosphopeptide,
- MeSH
- 1-fosfatidylinositol-4-kinasa chemie genetika metabolismus MeSH
- Escherichia coli genetika metabolismus MeSH
- exprese genu MeSH
- fosfoproteiny chemie genetika metabolismus MeSH
- fungální proteiny chemie genetika metabolismus MeSH
- klonování DNA MeSH
- konformace proteinů, alfa-helix MeSH
- konzervovaná sekvence MeSH
- krystalografie rentgenová MeSH
- lidé MeSH
- ligandy MeSH
- molekulární evoluce MeSH
- molekulární modely MeSH
- plazmidy chemie metabolismus MeSH
- protein - isoformy chemie genetika metabolismus MeSH
- proteiny 14-3-3 chemie genetika metabolismus MeSH
- rekombinantní proteiny chemie genetika metabolismus MeSH
- Saccharomycetales chemie metabolismus MeSH
- sekvence aminokyselin MeSH
- sekvenční seřazení MeSH
- strukturní homologie proteinů MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 1-fosfatidylinositol-4-kinasa MeSH
- fosfoproteiny MeSH
- fungální proteiny MeSH
- ligandy MeSH
- protein - isoformy MeSH
- proteiny 14-3-3 MeSH
- rekombinantní proteiny MeSH
14-3-3 proteins bind phosphorylated binding partners to regulate several of their properties, including enzymatic activity, stability and subcellular localization. Here, two crystal structures are presented: the crystal structures of the 14-3-3 protein (also known as Bmh1) from the yeast Lachancea thermotolerans in the unliganded form and bound to a phosphopeptide derived from human PI4KB (phosphatidylinositol 4-kinase B). The structures demonstrate the high evolutionary conservation of ligand recognition by 14-3-3 proteins. The structural analysis suggests that ligand recognition by 14-3-3 proteins evolved very early in the evolution of eukaryotes and remained conserved, underlying the importance of 14-3-3 proteins in physiology.
Zobrazit více v PubMed
Adams, P. D. et al. (2010). Acta Cryst. D66, 213–221. PubMed
Baumlova, A., Chalupska, D., Róźycki, B., Jovic, M., Wisniewski, E., Klima, M., Dubankova, A., Kloer, D. P., Nencka, R., Balla, T. & Boura, E. (2014). EMBO Rep. 15, 1085–1092. PubMed PMC
Boura, E. & Hurley, J. H. (2012). Proc. Natl Acad. Sci. USA, 109, 1901–1906. PubMed PMC
Boura, E. & Nencka, R. (2015). Exp. Cell Res. 337, 136–145. PubMed
Boura, E., Rezabkova, L., Brynda, J., Obsilova, V. & Obsil, T. (2010). Acta Cryst. D66, 1351–1357. PubMed
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. (2010). Acta Cryst. D66, 486–501. PubMed PMC
Ganguly, S., Gastel, J. A., Weller, J. L., Schwartz, C., Jaffe, H., Namboodiri, M. A., Coon, S. L., Hickman, A. B., Rollag, M., Obsil, T., Beauverger, P., Ferry, G., Boutin, J. A. & Klein, D. C. (2001). Proc. Natl Acad. Sci. USA, 98, 8083–8088. PubMed PMC
Hausser, A., Link, G., Hoene, M., Russo, C., Selchow, O. & Pfizenmaier, K. (2006). J. Cell Sci. 119, 3613–3621. PubMed
Hausser, A., Storz, P., Märtens, S., Link, G., Toker, A. & Pfizenmaier, K. (2005). Nature Cell Biol. 7, 880–886. PubMed PMC
Krug, M., Weiss, M. S., Heinemann, U. & Mueller, U. (2012). J. Appl. Cryst. 45, 568–572.
Lai, S., O’Callaghan, B., Zoghbi, H. Y. & Orr, H. T. (2011). J. Biol. Chem. 286, 34606–34616. PubMed PMC
Lambeck, I. C., Fischer-Schrader, K., Niks, D., Roeper, J., Chi, J.-C., Hille, R. & Schwarz, G. (2012). J. Biol. Chem. 287, 4562–4571. PubMed PMC
Liu, D., Bienkowska, J., Petosa, C., Collier, R. J., Fu, H. & Liddington, R. (1995). Nature (London), 376, 191–194. PubMed
McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C. & Read, R. J. (2007). J. Appl. Cryst. 40, 658–674. PubMed PMC
Mejdrová, I. et al. (2015). J. Med. Chem. 58, 3767–3793. PubMed
Mueller, U., Darowski, N., Fuchs, M. R., Förster, R., Hellmig, M., Paithankar, K. S., Pühringer, S., Steffien, M., Zocher, G. & Weiss, M. S. (2012). J. Synchrotron Rad. 19, 442–449. PubMed PMC
Obsil, T., Ghirlando, R., Klein, D. C., Ganguly, S. & Dyda, F. (2001). Cell, 105, 257–267. PubMed
Obsil, T. & Obsilova, V. (2011). Semin. Cell Dev. Biol. 22, 663–672. PubMed
Obsilova, V., Kopecka, M., Kosek, D., Kacirova, M., Kylarova, S., Rezabkova, L. & Obsil, T. (2014). Physiol. Res. 63, S155–S164. PubMed
Obsilova, V., Nedbalkova, E., Silhan, J., Boura, E., Herman, P., Vecer, J., Sulc, M., Teisinger, J., Dyda, F. & Obsil, T. (2008). Biochemistry, 47, 1768–1777. PubMed
Obsilova, V., Silhan, J., Boura, E., Teisinger, J. & Obsil, T. (2008). Physiol. Res. 57, S11–S21. PubMed
Obsilova, V., Vecer, J., Herman, P., Pabianova, A., Sulc, M., Teisinger, J., Boura, E. & Obsil, T. (2005). Biochemistry, 44, 11608–11617. PubMed
Rezabkova, L., Boura, E., Herman, P., Vecer, J., Bourova, L., Sulc, M., Svoboda, P., Obsilova, V. & Obsil, T. (2010). J. Struct. Biol. 170, 451–461. PubMed
Schiebel, J., Radeva, N., Krimmer, S. G., Wang, X., Stieler, M., Ehrmann, F. R., Fu, K., Metz, A., Huschmann, F. U., Weiss, M. S., Mueller, U., Heine, A. & Klebe, G. (2016). ACS Chem. Biol. 11, 1693–1701. PubMed
Silhan, J., Obsilova, V., Vecer, J., Herman, P., Sulc, M., Teisinger, J. & Obsil, T. (2004). J. Biol. Chem. 279, 49113–49119. PubMed
Taoka, K., Ohki, I., Tsuji, H., Furuita, K., Hayashi, K., Yanase, T., Yamaguchi, M., Nakashima, C., Purwestri, Y. A., Tamaki, S., Ogaki, Y., Shimada, C., Nakagawa, A., Kojima, C. & Shimamoto, K. (2011). Nature (London), 476, 332–335. PubMed
Uhart, M. & Bustos, D. M. (2014). Front. Genet. 5, 10. PubMed PMC
Yaffe, M. B. (2002). FEBS Lett. 513, 53–57. PubMed
Yang, X., Lee, W. H., Sobott, F., Papagrigoriou, E., Robinson, C. V., Grossmann, J. G., Sundstrom, M., Doyle, D. A. & Elkins, J. M. (2006). Proc. Natl Acad. Sci. USA, 103, 17237–17242. PubMed PMC
The yeast 14-3-3 proteins Bmh1 and Bmh2 regulate key signaling pathways
Structural basis for SARS-CoV-2 nucleocapsid (N) protein recognition by 14-3-3 proteins
The 14-3-3 Proteins as Important Allosteric Regulators of Protein Kinases
Molecular basis of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1