Crystal structures of a yeast 14-3-3 protein from Lachancea thermotolerans in the unliganded form and bound to a human lipid kinase PI4KB-derived peptide reveal high evolutionary conservation
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
27827352
PubMed Central
PMC5101580
DOI
10.1107/s2053230x16015053
PII: S2053230X16015053
Knihovny.cz E-resources
- Keywords
- 14-3-3 proteins, Bmh1, Bmh2, Lachancea thermotolerans, PI4KB, crystal structure, phosphopeptide,
- MeSH
- 1-Phosphatidylinositol 4-Kinase chemistry genetics metabolism MeSH
- Escherichia coli genetics metabolism MeSH
- Gene Expression MeSH
- Phosphoproteins chemistry genetics metabolism MeSH
- Fungal Proteins chemistry genetics metabolism MeSH
- Cloning, Molecular MeSH
- Protein Conformation, alpha-Helical MeSH
- Conserved Sequence MeSH
- Crystallography, X-Ray MeSH
- Humans MeSH
- Ligands MeSH
- Evolution, Molecular MeSH
- Models, Molecular MeSH
- Plasmids chemistry metabolism MeSH
- Protein Isoforms chemistry genetics metabolism MeSH
- 14-3-3 Proteins chemistry genetics metabolism MeSH
- Recombinant Proteins chemistry genetics metabolism MeSH
- Saccharomycetales chemistry metabolism MeSH
- Amino Acid Sequence MeSH
- Sequence Alignment MeSH
- Structural Homology, Protein MeSH
- Protein Binding MeSH
- Binding Sites MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- 1-Phosphatidylinositol 4-Kinase MeSH
- Phosphoproteins MeSH
- Fungal Proteins MeSH
- Ligands MeSH
- Protein Isoforms MeSH
- 14-3-3 Proteins MeSH
- Recombinant Proteins MeSH
14-3-3 proteins bind phosphorylated binding partners to regulate several of their properties, including enzymatic activity, stability and subcellular localization. Here, two crystal structures are presented: the crystal structures of the 14-3-3 protein (also known as Bmh1) from the yeast Lachancea thermotolerans in the unliganded form and bound to a phosphopeptide derived from human PI4KB (phosphatidylinositol 4-kinase B). The structures demonstrate the high evolutionary conservation of ligand recognition by 14-3-3 proteins. The structural analysis suggests that ligand recognition by 14-3-3 proteins evolved very early in the evolution of eukaryotes and remained conserved, underlying the importance of 14-3-3 proteins in physiology.
See more in PubMed
Adams, P. D. et al. (2010). Acta Cryst. D66, 213–221. PubMed
Baumlova, A., Chalupska, D., Róźycki, B., Jovic, M., Wisniewski, E., Klima, M., Dubankova, A., Kloer, D. P., Nencka, R., Balla, T. & Boura, E. (2014). EMBO Rep. 15, 1085–1092. PubMed PMC
Boura, E. & Hurley, J. H. (2012). Proc. Natl Acad. Sci. USA, 109, 1901–1906. PubMed PMC
Boura, E. & Nencka, R. (2015). Exp. Cell Res. 337, 136–145. PubMed
Boura, E., Rezabkova, L., Brynda, J., Obsilova, V. & Obsil, T. (2010). Acta Cryst. D66, 1351–1357. PubMed
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. (2010). Acta Cryst. D66, 486–501. PubMed PMC
Ganguly, S., Gastel, J. A., Weller, J. L., Schwartz, C., Jaffe, H., Namboodiri, M. A., Coon, S. L., Hickman, A. B., Rollag, M., Obsil, T., Beauverger, P., Ferry, G., Boutin, J. A. & Klein, D. C. (2001). Proc. Natl Acad. Sci. USA, 98, 8083–8088. PubMed PMC
Hausser, A., Link, G., Hoene, M., Russo, C., Selchow, O. & Pfizenmaier, K. (2006). J. Cell Sci. 119, 3613–3621. PubMed
Hausser, A., Storz, P., Märtens, S., Link, G., Toker, A. & Pfizenmaier, K. (2005). Nature Cell Biol. 7, 880–886. PubMed PMC
Krug, M., Weiss, M. S., Heinemann, U. & Mueller, U. (2012). J. Appl. Cryst. 45, 568–572.
Lai, S., O’Callaghan, B., Zoghbi, H. Y. & Orr, H. T. (2011). J. Biol. Chem. 286, 34606–34616. PubMed PMC
Lambeck, I. C., Fischer-Schrader, K., Niks, D., Roeper, J., Chi, J.-C., Hille, R. & Schwarz, G. (2012). J. Biol. Chem. 287, 4562–4571. PubMed PMC
Liu, D., Bienkowska, J., Petosa, C., Collier, R. J., Fu, H. & Liddington, R. (1995). Nature (London), 376, 191–194. PubMed
McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C. & Read, R. J. (2007). J. Appl. Cryst. 40, 658–674. PubMed PMC
Mejdrová, I. et al. (2015). J. Med. Chem. 58, 3767–3793. PubMed
Mueller, U., Darowski, N., Fuchs, M. R., Förster, R., Hellmig, M., Paithankar, K. S., Pühringer, S., Steffien, M., Zocher, G. & Weiss, M. S. (2012). J. Synchrotron Rad. 19, 442–449. PubMed PMC
Obsil, T., Ghirlando, R., Klein, D. C., Ganguly, S. & Dyda, F. (2001). Cell, 105, 257–267. PubMed
Obsil, T. & Obsilova, V. (2011). Semin. Cell Dev. Biol. 22, 663–672. PubMed
Obsilova, V., Kopecka, M., Kosek, D., Kacirova, M., Kylarova, S., Rezabkova, L. & Obsil, T. (2014). Physiol. Res. 63, S155–S164. PubMed
Obsilova, V., Nedbalkova, E., Silhan, J., Boura, E., Herman, P., Vecer, J., Sulc, M., Teisinger, J., Dyda, F. & Obsil, T. (2008). Biochemistry, 47, 1768–1777. PubMed
Obsilova, V., Silhan, J., Boura, E., Teisinger, J. & Obsil, T. (2008). Physiol. Res. 57, S11–S21. PubMed
Obsilova, V., Vecer, J., Herman, P., Pabianova, A., Sulc, M., Teisinger, J., Boura, E. & Obsil, T. (2005). Biochemistry, 44, 11608–11617. PubMed
Rezabkova, L., Boura, E., Herman, P., Vecer, J., Bourova, L., Sulc, M., Svoboda, P., Obsilova, V. & Obsil, T. (2010). J. Struct. Biol. 170, 451–461. PubMed
Schiebel, J., Radeva, N., Krimmer, S. G., Wang, X., Stieler, M., Ehrmann, F. R., Fu, K., Metz, A., Huschmann, F. U., Weiss, M. S., Mueller, U., Heine, A. & Klebe, G. (2016). ACS Chem. Biol. 11, 1693–1701. PubMed
Silhan, J., Obsilova, V., Vecer, J., Herman, P., Sulc, M., Teisinger, J. & Obsil, T. (2004). J. Biol. Chem. 279, 49113–49119. PubMed
Taoka, K., Ohki, I., Tsuji, H., Furuita, K., Hayashi, K., Yanase, T., Yamaguchi, M., Nakashima, C., Purwestri, Y. A., Tamaki, S., Ogaki, Y., Shimada, C., Nakagawa, A., Kojima, C. & Shimamoto, K. (2011). Nature (London), 476, 332–335. PubMed
Uhart, M. & Bustos, D. M. (2014). Front. Genet. 5, 10. PubMed PMC
Yaffe, M. B. (2002). FEBS Lett. 513, 53–57. PubMed
Yang, X., Lee, W. H., Sobott, F., Papagrigoriou, E., Robinson, C. V., Grossmann, J. G., Sundstrom, M., Doyle, D. A. & Elkins, J. M. (2006). Proc. Natl Acad. Sci. USA, 103, 17237–17242. PubMed PMC
The yeast 14-3-3 proteins Bmh1 and Bmh2 regulate key signaling pathways
Structural basis for SARS-CoV-2 nucleocapsid (N) protein recognition by 14-3-3 proteins
The 14-3-3 Proteins as Important Allosteric Regulators of Protein Kinases
Molecular basis of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1