14-3-3 protein interacts with and affects the structure of RGS domain of regulator of G protein signaling 3 (RGS3)
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
20347994
DOI
10.1016/j.jsb.2010.03.009
PII: S1047-8477(10)00086-9
Knihovny.cz E-zdroje
- MeSH
- fluorescenční spektrometrie MeSH
- fosforylace MeSH
- interakční proteinové domény a motivy MeSH
- krystalografie rentgenová MeSH
- lidé MeSH
- molekulární modely MeSH
- multiproteinové komplexy MeSH
- mutageneze cílená MeSH
- podjednotky proteinů MeSH
- proteiny 14-3-3 chemie metabolismus MeSH
- proteiny aktivující GTPasu chemie genetika metabolismus MeSH
- proteiny RGS MeSH
- proteiny vázající GTP chemie genetika metabolismus MeSH
- rekombinantní proteiny chemie genetika metabolismus MeSH
- rezonanční přenos fluorescenční energie MeSH
- sekvence aminokyselin MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice MeSH
- stabilita proteinů MeSH
- substituce aminokyselin MeSH
- techniky in vitro MeSH
- terciární struktura proteinů MeSH
- tryptofan chemie MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- multiproteinové komplexy MeSH
- podjednotky proteinů MeSH
- proteiny 14-3-3 MeSH
- proteiny aktivující GTPasu MeSH
- proteiny RGS MeSH
- proteiny vázající GTP MeSH
- rekombinantní proteiny MeSH
- RGS3 protein, human MeSH Prohlížeč
- tryptofan MeSH
Regulator of G protein signaling (RGS) proteins function as GTPase-activating proteins (GAPs) for the alpha-subunit of heterotrimeric G proteins. Several RGS proteins have been found to interact with 14-3-3 proteins. The 14-3-3 protein binding inhibits the GAP function of RGS proteins presumably by blocking their interaction with G(alpha) subunit. Since RGS proteins interact with G(alpha) subunits through their RGS domains, it is reasonable to assume that the 14-3-3 protein can either sterically occlude the G(alpha) interaction surface of RGS domain and/or change its structure. In this work, we investigated whether the 14-3-3 protein binding affects the structure of RGS3 using the time-resolved tryptophan fluorescence spectroscopy. Two single-tryptophan mutants of RGS3 were used to study conformational changes of RGS3 molecule. Our measurements revealed that the 14-3-3 protein binding induces structural changes in both the N-terminal part and the C-terminal RGS domain of phosphorylated RGS3 molecule. Experiments with the isolated RGS domain of RGS3 suggest that this domain alone can, to some extent, interact with the 14-3-3 protein in a phosphorylation-independent manner. In addition, a crystal structure of the RGS domain of RGS3 was solved at 2.3A resolution. The data obtained from the resolution of the structure of the RGS domain suggest that the 14-3-3 protein-induced conformational change affects the region within the G(alpha)-interacting portion of the RGS domain. This can explain the inhibitory effect of the 14-3-3 protein on GAP activity of RGS3.
Citace poskytuje Crossref.org
Structural basis for SARS-CoV-2 nucleocapsid (N) protein recognition by 14-3-3 proteins
The crystal structure of the phosphatidylinositol 4-kinase IIα
Structural modulation of phosducin by phosphorylation and 14-3-3 protein binding