Structural modulation of phosducin by phosphorylation and 14-3-3 protein binding
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23199924
PubMed Central
PMC3491691
DOI
10.1016/j.bpj.2012.09.021
PII: S0006-3495(12)01058-2
Knihovny.cz E-zdroje
- MeSH
- fluorescenční spektrometrie MeSH
- fosfatidylcholiny MeSH
- fosfoproteiny chemie metabolismus MeSH
- fosforylace MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- molekulární sekvence - údaje MeSH
- oční proteiny chemie metabolismus MeSH
- proteiny 14-3-3 metabolismus MeSH
- proteiny vázající GTP - regulátory chemie metabolismus MeSH
- sekvence aminokyselin MeSH
- serin metabolismus MeSH
- terciární struktura proteinů MeSH
- tryptofan MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 1-myristoyl-2-(12-((5-dimethylamino-1-naphthalenesulfonyl)amino)dodecanoyl)-sn-glycero-3-phosphocholine MeSH Prohlížeč
- fosfatidylcholiny MeSH
- fosfoproteiny MeSH
- oční proteiny MeSH
- phosducin MeSH Prohlížeč
- proteiny 14-3-3 MeSH
- proteiny vázající GTP - regulátory MeSH
- serin MeSH
- tryptofan MeSH
- YWHAZ protein, human MeSH Prohlížeč
Phosducin (Pdc), a highly conserved phosphoprotein, plays an important role in the regulation of G protein signaling, transcriptional control, and modulation of blood pressure. Pdc is negatively regulated by phosphorylation followed by binding to the 14-3-3 protein, whose role is still unclear. To gain insight into the role of 14-3-3 in the regulation of Pdc function, we studied structural changes of Pdc induced by phosphorylation and 14-3-3 protein binding using time-resolved fluorescence spectroscopy. Our data show that the phosphorylation of the N-terminal domain of Pdc at Ser-54 and Ser-73 affects the structure of the whole Pdc molecule. Complex formation with 14-3-3 reduces the flexibility of both the N- and C-terminal domains of phosphorylated Pdc, as determined by time-resolved tryptophan and dansyl fluorescence. Therefore, our data suggest that phosphorylated Pdc undergoes a conformational change when binding to 14-3-3. These changes involve the G(t)βγ binding surface within the N-terminal domain of Pdc, and thus could explain the inhibitory effect of 14-3-3 on Pdc function.
Zobrazit více v PubMed
Lee R.H., Lieberman B.S., Lolley R.N. A novel complex from bovine visual cells of a 33,000-dalton phosphoprotein with β- and γ-transducin: purification and subunit structure. Biochemistry. 1987;26:3983–3990. PubMed
Bauer P.H., Müller S., Lohse M.J. Phosducin is a protein kinase A-regulated G-protein regulator. Nature. 1992;358:73–76. PubMed
Zhu X., Craft C.M. Modulation of CRX transactivation activity by phosducin isoforms. Mol. Cell. Biol. 2000;20:5216–5226. PubMed PMC
Herrmann R., Lobanova E.S., Arshavsky V.Y. Phosducin regulates transmission at the photoreceptor-to-ON-bipolar cell synapse. J. Neurosci. 2010;30:3239–3253. PubMed PMC
Willardson B.M., Howlett A.C. Function of phosducin-like proteins in G protein signaling and chaperone-assisted protein folding. Cell. Signal. 2007;19:2417–2427. PubMed PMC
Beetz N., Hein L. The physiological roles of phosducin: from retinal function to stress-dependent hypertension. Cell. Mol. Life Sci. 2011;68:599–612. PubMed PMC
Beetz N., Harrison M.D., Hein L. Phosducin influences sympathetic activity and prevents stress-induced hypertension in humans and mice. J. Clin. Invest. 2009;119:3597–3612. (Erratum in J. Clin. Invest. 2011. 121:454) PubMed PMC
Gaudet R., Bohm A., Sigler P.B. Crystal structure at 2.4 angstroms resolution of the complex of transducin βγ and its regulator, phosducin. Cell. 1996;87:577–588. PubMed
Loew A., Ho Y.K., Bax B. Phosducin induces a structural change in transducin β γ. Structure. 1998;6:1007–1019. PubMed
Thulin C.D., Savage J.R., Willardson B.M. Modulation of the G protein regulator phosducin by Ca2+/calmodulin-dependent protein kinase II phosphorylation and 14-3-3 protein binding. J. Biol. Chem. 2001;276:23805–23815. PubMed
Lee B.Y., Thulin C.D., Willardson B.M. Site-specific phosphorylation of phosducin in intact retina. Dynamics of phosphorylation and effects on G protein β γ dimer binding. J. Biol. Chem. 2004;279:54008–54017. PubMed
Yoshida T., Willardson B.M., Bitensky M.W. The phosphorylation state of phosducin determines its ability to block transducin subunit interactions and inhibit transducin binding to activated rhodopsin. J. Biol. Chem. 1994;269:24050–24057. PubMed
Chen F., Lee R.H. Phosducin and βγ-transducin interaction I: effects of post-translational modifications. Biochem. Biophys. Res. Commun. 1997;233:370–374. PubMed
Nakano K., Chen J., Bitensky M.W. Rethinking the role of phosducin: light-regulated binding of phosducin to 14-3-3 in rod inner segments. Proc. Natl. Acad. Sci. USA. 2001;98:4693–4698. PubMed PMC
Obsil T., Obsilova V. Structural basis of 14-3-3 protein functions. Semin. Cell Dev. Biol. 2011;22:663–672. PubMed
Gardino A.K., Smerdon S.J., Yaffe M.B. Structural determinants of 14-3-3 binding specificities and regulation of subcellular localization of 14-3-3-ligand complexes: a comparison of the X-ray crystal structures of all human 14-3-3 isoforms. Semin. Cancer Biol. 2006;16:173–182. PubMed
Muslin A.J., Tanner J.W., Shaw A.S. Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell. 1996;84:889–897. PubMed
Yaffe M.B., Rittinger K., Cantley L.C. The structural basis for 14-3-3:phosphopeptide binding specificity. Cell. 1997;91:961–971. PubMed
Rittinger K., Budman J., Yaffe M.B. Structural analysis of 14-3-3 phosphopeptide complexes identifies a dual role for the nuclear export signal of 14-3-3 in ligand binding. Mol. Cell. 1999;4:153–166. PubMed
Yaffe M.B. How do 14-3-3 proteins work?—Gatekeeper phosphorylation and the molecular anvil hypothesis. FEBS Lett. 2002;513:53–57. PubMed
Johnson C., Crowther S., MacKintosh C. Bioinformatic and experimental survey of 14-3-3-binding sites. Biochem. J. 2010;427:69–78. PubMed PMC
Zha J., Harada H., Korsmeyer S.J. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L) Cell. 1996;87:619–628. PubMed
Rezabkova L., Boura E., Obsil T. 14-3-3 protein interacts with and affects the structure of RGS domain of regulator of G protein signaling 3 (RGS3) J. Struct. Biol. 2010;170:451–461. PubMed
Rezabkova L., Man P., Obsil T. Structural basis for the 14-3-3 protein-dependent inhibition of the regulator of G protein signaling 3 (RGS3) function. J. Biol. Chem. 2011;286:43527–43536. PubMed PMC
Silhan J., Vacha P., Obsil T. 14-3-3 protein masks the DNA binding interface of forkhead transcription factor FOXO4. J. Biol. Chem. 2009;284:19349–19360. PubMed PMC
Zhu X., Craft C.M. Interaction of phosducin and phosducin isoforms with a 26S proteasomal subunit, SUG1. Mol. Vis. 1998;4:13. PubMed
Obsilova V., Herman P., Obsil T. 14-3-3zeta C-terminal stretch changes its conformation upon ligand binding and phosphorylation at Thr232. J. Biol. Chem. 2004;279:4531–4540. PubMed
Obsilova V., Nedbalkova E., Obsil T. The 14-3-3 protein affects the conformation of the regulatory domain of human tyrosine hydroxylase. Biochemistry. 2008;47:1768–1777. PubMed
Prochazkova K., Osicka R., Sebo P. The Neisseria meningitidis outer membrane lipoprotein FrpD binds the RTX protein FrpC. J. Biol. Chem. 2005;280:3251–3258. PubMed
Schuck P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys. J. 2000;78:1606–1619. PubMed PMC
Schuck P. On the analysis of protein self-association by sedimentation velocity analytical ultracentrifugation. Anal. Biochem. 2003;320:104–124. PubMed
Veisova D., Rezabkova L., Obsilova V. The C-terminal segment of yeast BMH proteins exhibits different structure compared to other 14-3-3 protein isoforms. Biochemistry. 2010;49:3853–3861. PubMed
Vecer J., Herman P. Maximum entropy analysis of analytically simulated complex fluorescence decays. J. Fluoresc. 2011;21:873–881. PubMed
Ozbabacan S.E., Engin H.B., Keskin O. Transient protein-protein interactions. Protein Eng. Des. Sel. 2011;24:635–648. PubMed
Truong A.B., Masters S.C., Fu H. Role of the 14-3-3 C-terminal loop in ligand interaction. Proteins. 2002;49:321–325. PubMed
Silhan J., Obsilova V., Obsil T. 14-3-3 protein C-terminal stretch occupies ligand binding groove and is displaced by phosphopeptide binding. J. Biol. Chem. 2004;279:49113–49119. PubMed
Ottmann C., Marco S., Oecking C. Structure of a 14-3-3 coordinated hexamer of the plant plasma membrane H+-ATPase by combining X-ray crystallography and electron cryomicroscopy. Mol. Cell. 2007;25:427–440. PubMed
Gaudet R., Savage J.R., Sigler P.B. A molecular mechanism for the phosphorylation-dependent regulation of heterotrimeric G proteins by phosducin. Mol. Cell. 1999;3:649–660. PubMed
Klenk C., Humrich J., Lohse M.J. SUMO-1 controls the protein stability and the biological function of phosducin. J. Biol. Chem. 2006;281:8357–8364. PubMed
Bajzer Z., Prendergast F.G. A model for multiexponential tryptophan fluorescence intensity decay in proteins. Biophys. J. 1993;65:2313–2323. PubMed PMC
Chen Y., Barkley M.D. Toward understanding tryptophan fluorescence in proteins. Biochemistry. 1998;37:9976–9982. PubMed
Obsilova V., Vecer J., Obsil T. 14-3-3 Protein interacts with nuclear localization sequence of forkhead transcription factor FoxO4. Biochemistry. 2005;44:11608–11617. PubMed
Rothe G.M. Determination of molecular mass, Stokes’ radius, frictional coefficient and isomer-type of non-denatured proteins by time-dependent pore gradient gel electrophoresis. Electrophoresis. 1988;9:307–316. PubMed
Structural Basis for the 14-3-3 Protein-Dependent Inhibition of Phosducin Function
Structural Characterization of Phosducin and Its Complex with the 14-3-3 Protein