Structural modulation of phosducin by phosphorylation and 14-3-3 protein binding

. 2012 Nov 07 ; 103 (9) : 1960-9.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid23199924
Odkazy

PubMed 23199924
PubMed Central PMC3491691
DOI 10.1016/j.bpj.2012.09.021
PII: S0006-3495(12)01058-2
Knihovny.cz E-zdroje

Phosducin (Pdc), a highly conserved phosphoprotein, plays an important role in the regulation of G protein signaling, transcriptional control, and modulation of blood pressure. Pdc is negatively regulated by phosphorylation followed by binding to the 14-3-3 protein, whose role is still unclear. To gain insight into the role of 14-3-3 in the regulation of Pdc function, we studied structural changes of Pdc induced by phosphorylation and 14-3-3 protein binding using time-resolved fluorescence spectroscopy. Our data show that the phosphorylation of the N-terminal domain of Pdc at Ser-54 and Ser-73 affects the structure of the whole Pdc molecule. Complex formation with 14-3-3 reduces the flexibility of both the N- and C-terminal domains of phosphorylated Pdc, as determined by time-resolved tryptophan and dansyl fluorescence. Therefore, our data suggest that phosphorylated Pdc undergoes a conformational change when binding to 14-3-3. These changes involve the G(t)βγ binding surface within the N-terminal domain of Pdc, and thus could explain the inhibitory effect of 14-3-3 on Pdc function.

Zobrazit více v PubMed

Lee R.H., Lieberman B.S., Lolley R.N. A novel complex from bovine visual cells of a 33,000-dalton phosphoprotein with β- and γ-transducin: purification and subunit structure. Biochemistry. 1987;26:3983–3990. PubMed

Bauer P.H., Müller S., Lohse M.J. Phosducin is a protein kinase A-regulated G-protein regulator. Nature. 1992;358:73–76. PubMed

Zhu X., Craft C.M. Modulation of CRX transactivation activity by phosducin isoforms. Mol. Cell. Biol. 2000;20:5216–5226. PubMed PMC

Herrmann R., Lobanova E.S., Arshavsky V.Y. Phosducin regulates transmission at the photoreceptor-to-ON-bipolar cell synapse. J. Neurosci. 2010;30:3239–3253. PubMed PMC

Willardson B.M., Howlett A.C. Function of phosducin-like proteins in G protein signaling and chaperone-assisted protein folding. Cell. Signal. 2007;19:2417–2427. PubMed PMC

Beetz N., Hein L. The physiological roles of phosducin: from retinal function to stress-dependent hypertension. Cell. Mol. Life Sci. 2011;68:599–612. PubMed PMC

Beetz N., Harrison M.D., Hein L. Phosducin influences sympathetic activity and prevents stress-induced hypertension in humans and mice. J. Clin. Invest. 2009;119:3597–3612. (Erratum in J. Clin. Invest. 2011. 121:454) PubMed PMC

Gaudet R., Bohm A., Sigler P.B. Crystal structure at 2.4 angstroms resolution of the complex of transducin βγ and its regulator, phosducin. Cell. 1996;87:577–588. PubMed

Loew A., Ho Y.K., Bax B. Phosducin induces a structural change in transducin β γ. Structure. 1998;6:1007–1019. PubMed

Thulin C.D., Savage J.R., Willardson B.M. Modulation of the G protein regulator phosducin by Ca2+/calmodulin-dependent protein kinase II phosphorylation and 14-3-3 protein binding. J. Biol. Chem. 2001;276:23805–23815. PubMed

Lee B.Y., Thulin C.D., Willardson B.M. Site-specific phosphorylation of phosducin in intact retina. Dynamics of phosphorylation and effects on G protein β γ dimer binding. J. Biol. Chem. 2004;279:54008–54017. PubMed

Yoshida T., Willardson B.M., Bitensky M.W. The phosphorylation state of phosducin determines its ability to block transducin subunit interactions and inhibit transducin binding to activated rhodopsin. J. Biol. Chem. 1994;269:24050–24057. PubMed

Chen F., Lee R.H. Phosducin and βγ-transducin interaction I: effects of post-translational modifications. Biochem. Biophys. Res. Commun. 1997;233:370–374. PubMed

Nakano K., Chen J., Bitensky M.W. Rethinking the role of phosducin: light-regulated binding of phosducin to 14-3-3 in rod inner segments. Proc. Natl. Acad. Sci. USA. 2001;98:4693–4698. PubMed PMC

Obsil T., Obsilova V. Structural basis of 14-3-3 protein functions. Semin. Cell Dev. Biol. 2011;22:663–672. PubMed

Gardino A.K., Smerdon S.J., Yaffe M.B. Structural determinants of 14-3-3 binding specificities and regulation of subcellular localization of 14-3-3-ligand complexes: a comparison of the X-ray crystal structures of all human 14-3-3 isoforms. Semin. Cancer Biol. 2006;16:173–182. PubMed

Muslin A.J., Tanner J.W., Shaw A.S. Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell. 1996;84:889–897. PubMed

Yaffe M.B., Rittinger K., Cantley L.C. The structural basis for 14-3-3:phosphopeptide binding specificity. Cell. 1997;91:961–971. PubMed

Rittinger K., Budman J., Yaffe M.B. Structural analysis of 14-3-3 phosphopeptide complexes identifies a dual role for the nuclear export signal of 14-3-3 in ligand binding. Mol. Cell. 1999;4:153–166. PubMed

Yaffe M.B. How do 14-3-3 proteins work?—Gatekeeper phosphorylation and the molecular anvil hypothesis. FEBS Lett. 2002;513:53–57. PubMed

Johnson C., Crowther S., MacKintosh C. Bioinformatic and experimental survey of 14-3-3-binding sites. Biochem. J. 2010;427:69–78. PubMed PMC

Zha J., Harada H., Korsmeyer S.J. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L) Cell. 1996;87:619–628. PubMed

Rezabkova L., Boura E., Obsil T. 14-3-3 protein interacts with and affects the structure of RGS domain of regulator of G protein signaling 3 (RGS3) J. Struct. Biol. 2010;170:451–461. PubMed

Rezabkova L., Man P., Obsil T. Structural basis for the 14-3-3 protein-dependent inhibition of the regulator of G protein signaling 3 (RGS3) function. J. Biol. Chem. 2011;286:43527–43536. PubMed PMC

Silhan J., Vacha P., Obsil T. 14-3-3 protein masks the DNA binding interface of forkhead transcription factor FOXO4. J. Biol. Chem. 2009;284:19349–19360. PubMed PMC

Zhu X., Craft C.M. Interaction of phosducin and phosducin isoforms with a 26S proteasomal subunit, SUG1. Mol. Vis. 1998;4:13. PubMed

Obsilova V., Herman P., Obsil T. 14-3-3zeta C-terminal stretch changes its conformation upon ligand binding and phosphorylation at Thr232. J. Biol. Chem. 2004;279:4531–4540. PubMed

Obsilova V., Nedbalkova E., Obsil T. The 14-3-3 protein affects the conformation of the regulatory domain of human tyrosine hydroxylase. Biochemistry. 2008;47:1768–1777. PubMed

Prochazkova K., Osicka R., Sebo P. The Neisseria meningitidis outer membrane lipoprotein FrpD binds the RTX protein FrpC. J. Biol. Chem. 2005;280:3251–3258. PubMed

Schuck P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys. J. 2000;78:1606–1619. PubMed PMC

Schuck P. On the analysis of protein self-association by sedimentation velocity analytical ultracentrifugation. Anal. Biochem. 2003;320:104–124. PubMed

Veisova D., Rezabkova L., Obsilova V. The C-terminal segment of yeast BMH proteins exhibits different structure compared to other 14-3-3 protein isoforms. Biochemistry. 2010;49:3853–3861. PubMed

Vecer J., Herman P. Maximum entropy analysis of analytically simulated complex fluorescence decays. J. Fluoresc. 2011;21:873–881. PubMed

Ozbabacan S.E., Engin H.B., Keskin O. Transient protein-protein interactions. Protein Eng. Des. Sel. 2011;24:635–648. PubMed

Truong A.B., Masters S.C., Fu H. Role of the 14-3-3 C-terminal loop in ligand interaction. Proteins. 2002;49:321–325. PubMed

Silhan J., Obsilova V., Obsil T. 14-3-3 protein C-terminal stretch occupies ligand binding groove and is displaced by phosphopeptide binding. J. Biol. Chem. 2004;279:49113–49119. PubMed

Ottmann C., Marco S., Oecking C. Structure of a 14-3-3 coordinated hexamer of the plant plasma membrane H+-ATPase by combining X-ray crystallography and electron cryomicroscopy. Mol. Cell. 2007;25:427–440. PubMed

Gaudet R., Savage J.R., Sigler P.B. A molecular mechanism for the phosphorylation-dependent regulation of heterotrimeric G proteins by phosducin. Mol. Cell. 1999;3:649–660. PubMed

Klenk C., Humrich J., Lohse M.J. SUMO-1 controls the protein stability and the biological function of phosducin. J. Biol. Chem. 2006;281:8357–8364. PubMed

Bajzer Z., Prendergast F.G. A model for multiexponential tryptophan fluorescence intensity decay in proteins. Biophys. J. 1993;65:2313–2323. PubMed PMC

Chen Y., Barkley M.D. Toward understanding tryptophan fluorescence in proteins. Biochemistry. 1998;37:9976–9982. PubMed

Obsilova V., Vecer J., Obsil T. 14-3-3 Protein interacts with nuclear localization sequence of forkhead transcription factor FoxO4. Biochemistry. 2005;44:11608–11617. PubMed

Rothe G.M. Determination of molecular mass, Stokes’ radius, frictional coefficient and isomer-type of non-denatured proteins by time-dependent pore gradient gel electrophoresis. Electrophoresis. 1988;9:307–316. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace