Structural Basis for the 14-3-3 Protein-Dependent Inhibition of Phosducin Function

. 2017 Apr 11 ; 112 (7) : 1339-1349.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28402877
Odkazy

PubMed 28402877
PubMed Central PMC5390052
DOI 10.1016/j.bpj.2017.02.036
PII: S0006-3495(17)30251-5
Knihovny.cz E-zdroje

Phosducin (Pdc) is a conserved phosphoprotein that, when unphosphorylated, binds with high affinity to the complex of βγ-subunits of G protein transducin (Gtβγ). The ability of Pdc to bind to Gtβγ is inhibited through its phosphorylation at S54 and S73 within the N-terminal domain (Pdc-ND) followed by association with the scaffolding protein 14-3-3. However, the molecular basis for the 14-3-3-dependent inhibition of Pdc binding to Gtβγ is unclear. By using small-angle x-ray scattering, high-resolution NMR spectroscopy, and limited proteolysis coupled with mass spectrometry, we show that phosphorylated Pdc and 14-3-3 form a complex in which the Pdc-ND region 45-80, which forms a part of Pdc's Gtβγ binding surface and contains both phosphorylation sites, is restrained within the central channel of the 14-3-3 dimer, with both 14-3-3 binding motifs simultaneously participating in protein association. The N-terminal part of Pdc-ND is likely located outside the central channel of the 14-3-3 dimer, but Pdc residues 20-30, which are also involved in Gtβγ binding, are positioned close to the surface of the 14-3-3 dimer. The C-terminal domain of Pdc is located outside the central channel and its structure is unaffected by the complex formation. These results indicate that the 14-3-3 protein-mediated inhibition of Pdc binding to Gtβγ is based on steric occlusion of Pdc's Gtβγ binding surface.

Zobrazit více v PubMed

Lee R.H., Lieberman B.S., Lolley R.N. A novel complex from bovine visual cells of a 33,000-dalton phosphoprotein with beta- and gamma-transducin: purification and subunit structure. Biochemistry. 1987;26:3983–3990. PubMed

Bauer P.H., Müller S., Lohse M.J. Phosducin is a protein kinase A-regulated G-protein regulator. Nature. 1992;358:73–76. PubMed

Gaudet R., Bohm A., Sigler P.B. Crystal structure at 2.4 angstroms resolution of the complex of transducin betagamma and its regulator, phosducin. Cell. 1996;87:577–588. PubMed

Danner S., Lohse M.J. Phosducin is a ubiquitous G-protein regulator. Proc. Natl. Acad. Sci. USA. 1996;93:10145–10150. PubMed PMC

Yoshida T., Willardson B.M., Bitensky M.W. The phosphorylation state of phosducin determines its ability to block transducin subunit interactions and inhibit transducin binding to activated rhodopsin. J. Biol. Chem. 1994;269:24050–24057. PubMed

Lee R.H., Ting T.D., Ho Y.K. Regulation of retinal cGMP cascade by phosducin in bovine rod photoreceptor cells. Interaction of phosducin and transducin. J. Biol. Chem. 1992;267:25104–25112. PubMed

Krispel C.M., Sokolov M., Burns M.E. Phosducin regulates the expression of transducin betagamma subunits in rod photoreceptors and does not contribute to phototransduction adaptation. J. Gen. Physiol. 2007;130:303–312. PubMed PMC

Herrmann R., Lobanova E.S., Arshavsky V.Y. Phosducin regulates transmission at the photoreceptor-to-ON-bipolar cell synapse. J. Neurosci. 2010;30:3239–3253. PubMed PMC

Beetz N., Harrison M.D., Hein L. Phosducin influences sympathetic activity and prevents stress-induced hypertension in humans and mice. J. Clin. Invest. 2009;119:3597–3612. PubMed PMC

Gaudet R., Savage J.R., Sigler P.B. A molecular mechanism for the phosphorylation-dependent regulation of heterotrimeric G proteins by phosducin. Mol. Cell. 1999;3:649–660. PubMed

Kacirova M., Kosek D., Obsil T. Structural characterization of phosducin and its complex with the 14-3-3 protein. J. Biol. Chem. 2015;290:16246–16260. PubMed PMC

Nakano K., Chen J., Bitensky M.W. Rethinking the role of phosducin: light-regulated binding of phosducin to 14-3-3 in rod inner segments. Proc. Natl. Acad. Sci. USA. 2001;98:4693–4698. PubMed PMC

Thulin C.D., Savage J.R., Willardson B.M. Modulation of the G protein regulator phosducin by Ca2+/calmodulin-dependent protein kinase II phosphorylation and 14-3-3 protein binding. J. Biol. Chem. 2001;276:23805–23815. PubMed

Lee B.Y., Thulin C.D., Willardson B.M. Site-specific phosphorylation of phosducin in intact retina. Dynamics of phosphorylation and effects on G protein beta gamma dimer binding. J. Biol. Chem. 2004;279:54008–54017. PubMed

Muslin A.J., Tanner J.W., Shaw A.S. Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell. 1996;84:889–897. PubMed

Tzivion G., Avruch J. 14-3-3 proteins: active cofactors in cellular regulation by serine/threonine phosphorylation. J. Biol. Chem. 2002;277:3061–3064. PubMed

Obsil T., Obsilova V. Structural basis of 14-3-3 protein functions. Semin. Cell Dev. Biol. 2011;22:663–672. PubMed

Bustos D.M. The role of protein disorder in the 14-3-3 interaction network. Mol. Biosyst. 2012;8:178–184. PubMed

Collins M.O., Yu L., Choudhary J.S. Phosphoproteomic analysis of the mouse brain cytosol reveals a predominance of protein phosphorylation in regions of intrinsic sequence disorder. Mol. Cell. Proteomics. 2008;7:1331–1348. PubMed

Rezabkova L., Kacirova M., Obsil T. Structural modulation of phosducin by phosphorylation and 14-3-3 protein binding. Biophys. J. 2012;103:1960–1969. PubMed PMC

Zhu X., Craft C.M. Modulation of CRX transactivation activity by phosducin isoforms. Mol. Cell. Biol. 2000;20:5216–5226. PubMed PMC

Zhu X., Craft C.M. Interaction of phosducin and phosducin isoforms with a 26S proteasomal subunit, SUG1. Mol. Vis. 1998;4:13. PubMed

Obsilova V., Herman P., Obsil T. 14-3-3zeta C-terminal stretch changes its conformation upon ligand binding and phosphorylation at Thr232. J. Biol. Chem. 2004;279:4531–4540. PubMed

Silhan J., Obsilova V., Obsil T. 14-3-3 protein C-terminal stretch occupies ligand binding groove and is displaced by phosphopeptide binding. J. Biol. Chem. 2004;279:49113–49119. PubMed

Guinier A. La diffraction des rayons X aux très faibles angles: applications à l’etude des phénomènes ultra-microscopies. Ann. Phys. (Paris) 1939;12:161–237.

Svergun D.I. Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J. Appl. Cryst. 1992;25:495–503.

Porod G. General theory. In: Glatter O., Kratky O., editors. Small-Angle X-Ray Scattering. Academic Press; London: 1982. pp. 17–51.

Franke D., Svergun D.I. DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering. J. Appl. Crystallogr. 2009;42:342–346. PubMed PMC

Volkov V.V., Svergun D.I. Uniqueness of ab initio shape determination in small-angle scattering. J. Appl. Cryst. 2003;36:860–864. PubMed PMC

Kozin M.B., Svergun D.I. Automated matching of high- and low-resolution structural models. J. Appl. Cryst. 2001;34:33–41.

Svergun D., Barberato C., Koch M.H.J. CRYSOL—a program to evaluate x-ray solution scattering of biological macromolecules from atomic coordinates. J. Appl. Cryst. 1995;28:768–773.

Schneidman-Duhovny D., Hammel M., Sali A. Accurate SAXS profile computation and its assessment by contrast variation experiments. Biophys. J. 2013;105:962–974. PubMed PMC

Weinkam P., Pons J., Sali A. Structure-based model of allostery predicts coupling between distant sites. Proc. Natl. Acad. Sci. USA. 2012;109:4875–4880. PubMed PMC

Schneidman-Duhovny D., Hammel M., Sali A. FoXS: a web server for rapid computation and fitting of SAXS profiles. Nucleic Acids Res. 2010;38:W540–W544. PubMed PMC

Rittinger K., Budman J., Yaffe M.B. Structural analysis of 14-3-3 phosphopeptide complexes identifies a dual role for the nuclear export signal of 14-3-3 in ligand binding. Mol. Cell. 1999;4:153–166. PubMed

Wang L., Pan H., Smith D.L. Hydrogen exchange-mass spectrometry: optimization of digestion conditions. Mol. Cell. Proteomics. 2002;1:132–138. PubMed

Rey M., Man P., Pelosi L. Recombinant immobilized rhizopuspepsin as a new tool for protein digestion in hydrogen/deuterium exchange mass spectrometry. Rapid Commun. Mass Spectrom. 2009;23:3431–3438. PubMed

Strohalm M., Kavan D., Havlícek V. mMass 3: a cross-platform software environment for precise analysis of mass spectrometric data. Anal. Chem. 2010;82:4648–4651. PubMed

Marsh J.A., Singh V.K., Forman-Kay J.D. Sensitivity of secondary structure propensities to sequence differences between alpha- and gamma-synuclein: implications for fibrillation. Protein Sci. 2006;15:2795–2804. PubMed PMC

Tamiola K., Acar B., Mulder F.A. Sequence-specific random coil chemical shifts of intrinsically disordered proteins. J. Am. Chem. Soc. 2010;132:18000–18003. PubMed

Fischer H., Neto M.D., Craievich A.F. Determination of the molecular weight of proteins in solution from a single small-angle X-ray scattering measurement on a relative scale. J. Appl. Cryst. 2010;43:101–109.

Receveur-Brechot V., Durand D. How random are intrinsically disordered proteins? A small angle scattering perspective. Curr. Protein Pept. Sci. 2012;13:55–75. PubMed PMC

Rambo R.P., Tainer J.A. Characterizing flexible and intrinsically unstructured biological macromolecules by SAS using the Porod-Debye law. Biopolymers. 2011;95:559–571. PubMed PMC

Reyes F.E., Schwartz C.R., Rambo R.P. Methods for using new conceptual tools and parameters to assess RNA structure by small-angle X-ray scattering. Methods Enzymol. 2014;549:235–263. PubMed

Bernadó P., Svergun D.I. Structural analysis of intrinsically disordered proteins by small-angle X-ray scattering. Mol. Biosyst. 2012;8:151–167. PubMed

Pagh-Roehl K., Lin D., Burnside B. Phosducin and PP33 are in vivo targets of PKA and type 1 or 2A phosphatases, regulators of cell elongation in teleost rod inner-outer segments. J. Neurosci. 1995;15:6475–6488. PubMed PMC

Kadek A., Mrazek H., Man P. Aspartic protease nepenthesin-1 as a tool for digestion in hydrogen/deuterium exchange mass spectrometry. Anal. Chem. 2014;86:4287–4294. PubMed

Lai S., O’Callaghan B., Orr H.T. 14-3-3 binding to ataxin-1(ATXN1) regulates its dephosphorylation at Ser-776 and transport to the nucleus. J. Biol. Chem. 2011;286:34606–34616. PubMed PMC

Margolis S.S., Walsh S., Kornbluth S. PP1 control of M phase entry exerted through 14-3-3-regulated Cdc25 dephosphorylation. EMBO J. 2003;22:5734–5745. PubMed PMC

Shi Y., Manley J.L. A complex signaling pathway regulates SRp38 phosphorylation and pre-mRNA splicing in response to heat shock. Mol. Cell. 2007;28:79–90. PubMed

Xu J., Wu D., Simon M.I. The N terminus of phosducin is involved in binding of beta gamma subunits of G protein. Proc. Natl. Acad. Sci. USA. 1995;92:2086–2090. PubMed PMC

Schröder S., Lohse M.J. Inhibition of G-protein betagamma-subunit functions by phosducin-like protein. Proc. Natl. Acad. Sci. USA. 1996;93:2100–2104. PubMed PMC

Chen F., Lee R.H. Phosducin and betagamma-transducin interaction I: effects of post-translational modifications. Biochem. Biophys. Res. Commun. 1997;233:370–374. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Structural insights into the functional roles of 14-3-3 proteins

. 2022 ; 9 () : 1016071. [epub] 20220916

Interaction of an IκBα Peptide with 14-3-3

. 2020 Mar 17 ; 5 (10) : 5380-5388. [epub] 20200306

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...