Interaction of an IκBα Peptide with 14-3-3
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32201828
PubMed Central
PMC7081424
DOI
10.1021/acsomega.9b04413
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Inflammatory responses mediated by the transcription factor nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) play key roles in immunity, autoimmune diseases, and cancer. NF-κB is directly regulated through protein-protein interactions, including those with IκB and 14-3-3 proteins. These two important regulatory proteins have been reported to interact with each other, although little is known about this interaction. We analyzed the inhibitor of nuclear factor kappa B α (IκBα)/14-3-3σ interaction via a peptide/protein-based approach. Structural data were acquired via X-ray crystallography, while binding affinities were measured with fluorescence polarization assays and time-resolved tryptophan fluorescence. A high-resolution crystal structure (1.13 Å) of the uncommon 14-3-3 interaction motif of IκBα (IκBαpS63) in a complex with 14-3-3σ was evaluated. This motif harbors a tryptophan that makes this crystal structure the first one with such a residue visible in the electron density at that position. We used this tryptophan to determine the binding affinity of the unlabeled IκBα peptide to 14-3-3 via tryptophan fluorescence decay measurements.
Zobrazit více v PubMed
Hayden M. S.; Ghosh S. NF-κB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev. 2012, 26, 203–234. 10.1101/gad.183434.111. PubMed DOI PMC
Viatour P.; Merville M.-P.; Bours V.; Chariot A. Phosphorylation of NF-κB and IκB proteins: implications in cancer and inflammation. Trends Biochem. Sci. 2005, 30, 43–52. 10.1016/j.tibs.2004.11.009. PubMed DOI
Ghosh S.; May M. J.; Kopp E. B. NF-κB AND REL PROTEINS: Evolutionarily Conserved Mediators of Immune Responses. Annu. Rev. Immunol. 1998, 16, 225–260. 10.1146/annurev.immunol.16.1.225. PubMed DOI
Baldwin A. S. Jr. The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu. Rev. Immunol. 1996, 14, 649–683. 10.1146/annurev.immunol.14.1.649. PubMed DOI
Gupta S. C.; Sundaram C.; Reuter S.; Aggarwal B. B. Inhibiting NF-κB activation by small molecules as a therapeutic strategy. Biochim. Biophys. Acta, Gene Regul. Mech. 2010, 1799, 775–787. 10.1016/j.bbagrm.2010.05.004. PubMed DOI PMC
Mulero M. C.; Bigas A.; Espinosa L. IκBα beyond the NF-kB dogma. Oncotarget 2013, 4, 1550–1551. 10.18632/oncotarget.1325. PubMed DOI PMC
DiDonato J.; Mercurio F.; Roette C.; Wu-Li J.; Suyang H.; Ghosh S.; Karin M. Mapping of the Inducible IκB Phosphorylation Sites That Signal Its Ubiquitination and Degradation. Mol. Cell. Biol. 1996, 16, 1295–1304. 10.1128/MCB.16.4.1295. PubMed DOI PMC
Gonen H.; Bercovich B.; Orian A.; Carrano A.; Takizawa C.; Yamanaka K.; Pagano M.; Iwai K.; Ciechanover A. Identification of the Ubiquitin Carrier Proteins, E2s, Involved in Signal-induced Conjugation and Subsequent Degradation of IκBα. J. Biol. Chem. 1999, 274, 14823–14830. 10.1074/jbc.274.21.14823. PubMed DOI
Simeonidis S.; Liang S.; Chen G.; Thanos D. Cloning and functional characterization of mouse IκBε. Proc. Natl. Acad. Sci. U.S.A. 1997, 94, 14372–14377. 10.1073/pnas.94.26.14372. PubMed DOI PMC
Malek S.; Chen Y.; Huxford T.; Ghosh G. IκBβ, but not IκBα, functions as a classical cytoplasmic inhibitor of NF-κB dimers by masking both NF-κB nuclear localization sequences in resting cells. J. Biol. Chem. 2001, 267, 45225–45235. 10.1074/jbc.M105865200. PubMed DOI
Tran K.; Merika M.; Thanos D. Distinct Functional Properties of IκBα and IκBε. Mol. Cell. Biol. 1997, 17, 5386–5399. 10.1128/MCB.17.9.5386. PubMed DOI PMC
Aguilera C.; Fernández-Majada V.; Inglés-Esteve J.; Rodilla V.; Bigas A.; Espinosa L. Efficient nuclear export of p65-IκBα complexes requires 14-3-3 proteins. J. Cell Sci. 2016, 129, 2472.10.1242/jcs.192641. PubMed DOI
Johnson C.; Tinti M.; Wood N. T.; Campbell D. G.; Toth R.; Dubois F.; Geraghty K. M.; Wong B. H. C.; Brown L. J.; Tyler J.; Gernez A.; Chen S.; Synowsky S.; MacKintosh C. Visualization and Biochemical Analyses of the Emerging Mammalian 14-3-3-Phosphoproteome. Mol. Cell. Proteomics 2011, 10, M110.00575110.1074/mcp.M110.005751. PubMed DOI PMC
Fu H.; Subramanian R. R.; Masters S. C. 14-3-3 Proteins: Structure, Function, and Regulation. Annu. Rev. Pharmacol. Toxicol. 2000, 40, 617–647. 10.1146/annurev.pharmtox.40.1.617. PubMed DOI
Aitken A. 14-3-3 proteins: A historic overview. Semin. Cancer Biol. 2006, 16, 162–172. 10.1016/j.semcancer.2006.03.005. PubMed DOI
Yaffe M. B.; Rittinger K.; Volinia S.; Caron P. R.; Aitken A.; Leffers H.; Gamblin S. J.; Smerdon S. J.; Cantley L. C. The Structural Basis for 14-3-3:Phosphopeptide Binding Specificity. Cell 1997, 91, 961–971. 10.1016/S0092-8674(00)80487-0. PubMed DOI
Palmer D.; Jimmo S. L.; Raymond D. R.; Wilson L. S.; Carter R. L.; Maurice D. H. Protein Kinase A Phosphorylation of Human Phosphodiesterase 3B Promotes 14-3-3 Protein Binding and Inhibits Phosphatase-catalyzed Inactivation. J. Biol. Chem. 2007, 282, 9411–9419. 10.1074/jbc.M606936200. PubMed DOI
Sun L.; Stoecklin G.; Way S. V.; Hinkovska-Galcheva V.; Guo R.-F.; Anderson P.; Shanley T. P. Tristetraprolin (TTP)-14-3-3 Complex Formation Protects TTP from Dephosphorylation by Protein Phosphatase 2a and Stabilizes Tumor Necrosis Factor-α mRNA. J. Biol. Chem. 2007, 282, 3766–3777. 10.1074/jbc.M607347200. PubMed DOI
Zhang J.; Chen F.; Li W.; Xiong Q.; Yang M.; Zheng P.; Li C.; Pei J.; Ge F. 14-3-3ζ Interacts with Stat3 and Regulates Its Constitutive Activation in Multiple Myeloma Cells. PLoS One 2012, 7, e2955410.1371/journal.pone.0029554. PubMed DOI PMC
Obsilova V.; Nedbalkova E.; Silhan J.; Boura E.; Herman P.; Vecer J.; Sulc M.; Teisinger J.; Dyda F.; Obsil T. The 14-3-3 Protein Affects the Conformation of the Regulatory Domain of Human Tyrosine Hydroxylase. Biochemistry 2008, 47, 1768–1777. 10.1021/bi7019468. PubMed DOI
Herman P.; Lee J. C. Functional Energetic Landscape in the Allosteric Regulation of Muscle Pyruvate Kinase. 2. Fluorescence Study. Biochemistry 2009, 48, 9456–9465. 10.1021/bi900280u. PubMed DOI PMC
Herman P.; Vecer J.; Scognamiglio V.; Staiano M.; Rossi M.; D’Auria S. A Recombinant Glutamine-Binding Protein from Escherichia coli: Effect of Ligand-Binding on Protein Conformational Dynamics. Biotechnol. Prog. 2004, 20, 1847–1854. 10.1021/bp049956u. PubMed DOI
Eftink M. R.Intrinsic Fluorescence of Proteins. In Topics in Fluorescence Spectroscopy; Lakowicz J. R., Ed.; Springer: US, Boston, MA, 2000; Vol. 6, pp 1–15.
Principles of Fluorescence Spectroscopy; Lakowicz J. R., Ed.; Springer: US, Boston, MA, 2006.
Gryczynski I.; Wiczk W.; Johnson M. L.; Lakowicz J. R. Lifetime distributions and anisotropy decays of indole fluorescence in cyclohexane/ethanol mixtures by frequency-domain fluorometry. Biophys. Chem. 1988, 32, 173–185. 10.1016/0301-4622(88)87005-4. PubMed DOI
Stevers L. M.; de Vries R. M. J. M.; Doveston R.; Milroy L.-G.; Brunsveld L.; Ottmann C. Structural interface between LRRK2 and 14-3-3 protein. Biochem. J. 2017, 7, 1273–1287. 10.1042/BCJ20161078. PubMed DOI
Stevers L. M.; Lam C. V.; Leysen S. F. R.; Meijer F. A.; van Scheppingen D. S.; de Vries R. M. J. M.; Carlile G. W.; Milroy L. G.; Thomas D. Y.; Brunsveld L.; Ottmann C. Characterization and small-molecule stabilization of the multisite tandem binding between 14-3-3 and the R domain of CFTR. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, E1152–E1161. 10.1073/pnas.1516631113. PubMed DOI PMC
Kalabova D.; Smidova A.; Petrvalska O.; Alblova M.; Kosek D.; Man P.; Obsil T.; Obsilova V. Human procaspase-2 phosphorylation at both S139 and S164 is required for 14-3-3 binding. Biochem. Biophys. Res. Commun. 2017, 493, 940–945. 10.1016/j.bbrc.2017.09.116. PubMed DOI
Madeira F.; Tinti M.; Murugesan G.; Berrett E.; Stafford M.; Toth R.; Cole C.; MacKintosh C.; Barton G. J. 14-3-3-Pred: improved methods to predict 14-3-3-binding phosphopeptides. Bioinformatics 2015, 31, 2276–2283. 10.1093/bioinformatics/btv133. PubMed DOI PMC
Alblova M.; Smidova A.; Docekal V.; Vesely J.; Herman P.; Obsilova V.; Obsil T. Molecular basis of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, E9811–E9820. 10.1073/pnas.1714491114. PubMed DOI PMC
Joo Y.; Schumacher B.; Landrieu I.; Bartel M.; Smet-Nocca C.; Jang A.; Choi H. S.; Jeon N. L.; Chang K.-A.; Kim H.-S.; Ottmann C.; Suh Y.-H. Involvement of 14-3-3 in tubulin instability and impaired axon development is mediated by Tau. FASEB J. 2015, 29, 4133–4144. 10.1096/fj.14-265009. PubMed DOI
Kacirova M.; Novacek J.; Man P.; Obsilova V.; Obsil T. Structural Basis for the 14-3-3 Protein-Dependent Inhibition of Phosducin Function. Biophys. J. 2017, 112, 1339–1349. 10.1016/j.bpj.2017.02.036. PubMed DOI PMC
Psenakova K.; Petrvalska O.; Kylarova S.; Lentini Santo D.; Kalabova D.; Herman P.; Obsilova V.; Obsil T. 14-3-3 protein directly interacts with the kinase domain of calcium/calmodulin-dependent protein kinase kinase (CaMKK2). Biochim. Biophys. Acta, Gen. Subj. 2018, 1862, 1612–1625. 10.1016/j.bbagen.2018.04.006. PubMed DOI
Park E.; Rawson S.; Li K.; Kim B.-W.; Ficarro S. B.; Pino G. G.-D.; Sharif H.; Marto J. A.; Jeon H.; Eck M. J. Architecture of autoinhibited and active BRAF–MEK1–14-3-3 complexes. Nature 2019, 575, 545–550. 10.1038/s41586-019-1660-y. PubMed DOI PMC
Sluchanko N. N.; Beelen S.; Kulikova A. A.; Weeks S. D.; Antson A. A.; Gusev N. B.; Strelkov S. V. Structural Basis for the Interaction of a Human Small Heat Shock Protein with the 14-3-3 Universal Signaling Regulator. Structure 2017, 25, 305–316. 10.1016/j.str.2016.12.005. PubMed DOI PMC
Tugaeva K. V.; Kalacheva D. I.; Cooley R. B.; Strelkov S. V.; Sluchanko N. N. Concatenation of 14-3-3 with partner phosphoproteins as a tool to study their interaction. Sci. Rep. 2019, 9, 1500710.1038/s41598-019-50941-3. PubMed DOI PMC
Vincenz C.; Dixit V. M. 14-3-3 Proteins Associate with A20 in an Isoform-specific Manner and Function Both as Chaperone and Adapter Molecules. J. Biol. Chem. 1996, 271, 20029–20034. 10.1074/jbc.271.33.20029. PubMed DOI
Agarwal-Mawal A.; Qureshi H. Y.; Cafferty P. W.; Yuan Z.; Han D.; Lin R.; Paudel H. K. 14-3-3 Connects Glycogen Synthase Kinase-3β to Tau within a Brain Microtubule-associated Tau Phosphorylation Complex. J. Biol. Chem. 2003, 278, 12722–12728. 10.1074/jbc.M211491200. PubMed DOI
Saline M.; Badertscher L.; Wolter M.; Lau R.; Gunnarsson A.; Jacso T.; Norris T.; Ottmann C.; Snijder A. AMPK and AKT protein kinases hierarchically phosphorylate the N-terminus of the FOXO1 transcription factor, modulating interactions with 14-3-3 proteins. J. Biol. Chem. 2019, 294, 13106–13116. 10.1074/jbc.RA119.008649. PubMed DOI PMC
Centorrino F.; Ballone A.; Wolter M.; Ottmann C. Biophysical and structural insight into the USP8/14-3-3 interaction. FEBS Lett. 2018, 592, 1211–1220. 10.1002/1873-3468.13017. PubMed DOI
Ottmann C.; Weyand M.; Sassa T.; Inoue T.; Kato N.; Wittinghofer A.; Oecking C. A Structural Rationale for Selective Stabilization of Anti-tumor Interactions of 14-3-3 proteins by Cotylenin A. J. Mol. Biol. 2009, 386, 913–919. 10.1016/j.jmb.2009.01.005. PubMed DOI
Würtele M.; Jelich-Ottmann C.; Wittinghofer A.; Oecking C. Structural view of a fungal toxin acting on a 14-3-3 regulatory complex. EMBO J. 2003, 22, 987–994. 10.1093/emboj/cdg104. PubMed DOI PMC
Rose R.; Rose M.; Ottmann C. Identification and structural characterization of two 14-3-3 binding sites in the human peptidylarginine deiminase type VI. J. Struct. Biol. 2012, 180, 65–72. 10.1016/j.jsb.2012.05.010. PubMed DOI
Smidova A.; Alblova M.; Kalabova D.; Psenakova K.; Rosulek M.; Herman P.; Obsil T.; Obsilova V. 14-3-3 protein masks the nuclear localization sequence of caspase-2. FEBS J. 2018, 285, 4196–4213. 10.1111/febs.14670. PubMed DOI
Molzan M.; Weyand M.; Rose R.; Ottmann C. Structural insights of the MLF1/14-3-3 interaction. FEBS J. 2012, 279, 563–571. 10.1111/j.1742-4658.2011.08445.x. PubMed DOI
Kim Y.-W.; Grossmann T. N.; Verdine G. L. Synthesis of all-hydrocarbon stapled α-helical peptides by ring-closing olefin metathesis. Nat. Protoc. 2011, 6, 761–771. 10.1038/nprot.2011.324. PubMed DOI
Winn M. D.; Ballard C. C.; Cowtan K. D.; Dodson E. J.; Emsley P.; Evans P. R.; Keegan R. M.; Krissinel E. B.; Leslie A. G. W.; McCoy A.; McNicholas S. J.; Murshudov G. N.; Pannu N. S.; Potterton E. A.; Powell H. R.; Read R. J.; Vagin A.; Wilson K. S. Overview of the CCP 4 suite and current developments. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2011, 67, 235–242. 10.1107/S0907444910045749. PubMed DOI PMC
Battye T. G. G.; Kontogiannis L.; Johnson O.; Powell H. R.; Leslie A. G. W. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2011, 67, 271–281. 10.1107/S0907444910048675. PubMed DOI PMC
Evans P. Scaling and assessment of data quality. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2006, 62, 72–82. 10.1107/S0907444905036693. PubMed DOI
Evans P. R.; Murshudov G. N. How good are my data and what is the resolution?. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2013, 69, 1204–1214. 10.1107/S0907444913000061. PubMed DOI PMC
Lebedev A. A.; Vagin A. A.; Murshudov G. N. Model preparation in MOLREP and examples of model improvement using X-ray data. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2008, 64, 33–39. 10.1107/S0907444907049839. PubMed DOI PMC
Vagin A.; Teplyakov A. Molecular replacement with MOLREP. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2010, 66, 22–25. 10.1107/S0907444909042589. PubMed DOI
Adams P. D.; Afonine P. V.; Bunkóczi G.; Chen V. B.; Davis I. W.; Echols N.; Headd J. J.; Hung L.-W.; Kapral G. J.; Grosse-Kunstleve R. W.; McCoy A. J.; Moriarty N. W.; Oeffner R.; Read R. J.; Richardson D. C.; Richardson J. S.; Terwilliger T. C.; Zwart P. H. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2010, 66, 213–221. 10.1107/S0907444909052925. PubMed DOI PMC
Emsley P.; Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2004, 60, 2126–2132. 10.1107/S0907444904019158. PubMed DOI
Vecer J.; Herman P. Maximum Entropy Analysis of Analytically Simulated Complex Fluorescence Decays. J. Fluoresc. 2011, 21, 873–881. 10.1007/s10895-009-0589-1. PubMed DOI