Structural insights into the functional roles of 14-3-3 proteins

. 2022 ; 9 () : 1016071. [epub] 20220916

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36188227

Signal transduction cascades efficiently transmit chemical and/or physical signals from the extracellular environment to intracellular compartments, thereby eliciting an appropriate cellular response. Most often, these signaling processes are mediated by specific protein-protein interactions involving hundreds of different receptors, enzymes, transcription factors, and signaling, adaptor and scaffolding proteins. Among them, 14-3-3 proteins are a family of highly conserved scaffolding molecules expressed in all eukaryotes, where they modulate the function of other proteins, primarily in a phosphorylation-dependent manner. Through these binding interactions, 14-3-3 proteins participate in key cellular processes, such as cell-cycle control, apoptosis, signal transduction, energy metabolism, and protein trafficking. To date, several hundreds of 14-3-3 binding partners have been identified, including protein kinases, phosphatases, receptors and transcription factors, which have been implicated in the onset of various diseases. As such, 14-3-3 proteins are promising targets for pharmaceutical interventions. However, despite intensive research into their protein-protein interactions, our understanding of the molecular mechanisms whereby 14-3-3 proteins regulate the functions of their binding partners remains insufficient. This review article provides an overview of the current state of the art of the molecular mechanisms whereby 14-3-3 proteins regulate their binding partners, focusing on recent structural studies of 14-3-3 protein complexes.

Zobrazit více v PubMed

Acevedo S. F., Tsigkari K. K., Grammenoudi S., Skoulakis E. M. C. (2007). In vivo functional specificity and homeostasis of Drosophila 14-3-3 proteins. Genetics 177 (1), 239–253. 10.1534/genetics.107.072280 PubMed DOI PMC

Aitken A., Baxter H., Dubois T., Clokie S., Mackie S., Mitchell K., et al. (2002). Specificity of 14-3-3 isoform dimer interactions and phosphorylation. Biochem. Soc. Trans. 30 (4), 351–360. 10.1042/bst0300351 PubMed DOI

Alblova M., Smidova A., Docekal V., Vesely J., Herman P., Obsilova V., et al. (2017). Molecular basis of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1. Proc. Natl. Acad. Sci. U. S. A. 114 (46), E9811–E9820. 10.1073/pnas.1714491114 PubMed DOI PMC

Baliga B. C., Read S. H., Kumar S. (2004). The biochemical mechanism of caspase-2 activation. Cell Death Differ. 11 (11), 1234–1241. 10.1038/sj.cdd.4401492 PubMed DOI

Bhalla V., Daidie D., Li H., Pao A. C., LaGrange L. P., Wang J., et al. (2005). Serum- and glucocorticoid-regulated kinase 1 regulates ubiquitin ligase neural precursor cell-expressed, developmentally down-regulated protein 4-2 by inducing interaction with 14-3-3. Mol. Endocrinol. 19 (12), 3073–3084. 10.1210/me.2005-0193 PubMed DOI

Bialik S., Kimchi A. (2006). The death-associated protein kinases: Structure, function, and beyond. Annu. Rev. Biochem. 75, 189–210. 10.1146/annurev.biochem.75.103004.142615 PubMed DOI

Bridges D., Moorhead G. B. (2004). 14-3-3 proteins: A number of functions for a numbered protein. Sci. STKE 2004 (242), re10. 10.1126/stke.2962005re10 PubMed DOI

Brunet A., Bonni A., Zigmond M. J., Lin M. Z., Juo P., Hu L. S., et al. (1999). Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96 (6), 857–868. 10.1016/s0092-8674(00)80595-4 PubMed DOI

Brunet A., Kanai F., Stehn J., Xu J., Sarbassova D., Frangioni J. V., et al. (2002). 14-3-3 transits to the nucleus and participates in dynamic nucleocytoplasmic transport. J. Cell Biol. 156 (5), 817–828. 10.1083/jcb.200112059 PubMed DOI PMC

Cao W. D., Yang X. L., Zhou J., Teng Z. H., Cao L., Zhang X., et al. (2010). Targeting 14-3-3 protein, difopein induces apoptosis of human glioma cells and suppresses tumor growth in mice. Apoptosis 15 (2), 230–241. 10.1007/s10495-009-0437-4 PubMed DOI

Chandran S., Li H., Dong W., Krasinska K., Adams C., Alexandrova L., et al. (2011). Neural precursor cell-expressed developmentally down-regulated protein 4-2 (Nedd4-2) regulation by 14-3-3 protein binding at canonical serum and glucocorticoid kinase 1 (SGK1) phosphorylation sites. J. Biol. Chem. 286 (43), 37830–37840. 10.1074/jbc.M111.293233 PubMed DOI PMC

Chen H. K., Fernandez-Funez P., Acevedo S. F., Lam Y. C., Kaytor M. D., Fernandez M. H., et al. (2003). Interaction of Akt-phosphorylated ataxin-1 with 14-3-3 mediates neurodegeneration in spinocerebellar ataxia type 1. Cell 113 (4), 457–468. 10.1016/s0092-8674(03)00349-0 PubMed DOI

Corradi V., Mancini M., Manetti F., Petta S., Santucci M. A., Botta M. (2010). Identification of the first non-peptidic small molecule inhibitor of the c-Abl/14-3-3 protein-protein interactions able to drive sensitive and Imatinib-resistant leukemia cells to apoptosis. Bioorg. Med. Chem. Lett. 20 (20), 6133–6137. 10.1016/j.bmcl.2010.08.019 PubMed DOI

Das A. K., Cohen P. W., Barford D. (1998). The structure of the tetratricopeptide repeats of protein phosphatase 5: Implications for TPR-mediated protein-protein interactions. EMBO J. 17 (5), 1192–1199. 10.1093/emboj/17.5.1192 PubMed DOI PMC

Datta S. R., Katsov A., Hu L., Petros A., Fesik S. W., Yaffe M. B., et al. (2000). 14-3-3 proteins and survival kinases cooperate to inactivate BAD by BH3 domain phosphorylation. Mol. Cell 6 (1), 41–51. 10.1016/s1097-2765(05)00012-2 PubMed DOI

Davare M. A., Saneyoshi T., Guire E. S., Nygaard S. C., Soderling T. R. (2004). Inhibition of calcium/calmodulin-dependent protein kinase kinase by protein 14-3-3. J. Biol. Chem. 279 (50), 52191–52199. 10.1074/jbc.M409873200 PubMed DOI

Davezac N., Baldin V., Gabrielli B., Forrest A., Theis-Febvre N., Yashida M., et al. (2000). Regulation of CDC25B phosphatases subcellular localization. Oncogene 19 (18), 2179–2185. 10.1038/sj.onc.1203545 PubMed DOI

Dreiza C. M., Brophy C. M., Komalavilas P., Furnish E. J., Joshi L., Pallero M. A., et al. (2005). Transducible heat shock protein 20 (HSP20) phosphopeptide alters cytoskeletal dynamics. FASEB J. 19 (2), 261–263. 10.1096/fj.04-2911fje PubMed DOI

Edinger R. S., Lebowitz J., Li H., Alzamora R., Wang H., Johnson J. P., et al. (2009). Functional regulation of the epithelial Na+ channel by IkappaB kinase-beta occurs via phosphorylation of the ubiquitin ligase Nedd4-2. J. Biol. Chem. 284 (1), 150–157. 10.1074/jbc.M807358200 PubMed DOI PMC

Ewald J. C., Kuehne A., Zamboni N., Skotheim J. M. (2016). The yeast cyclin-dependent kinase routes carbon fluxes to fuel cell cycle progression. Mol. Cell 62 (4), 532–545. 10.1016/j.molcel.2016.02.017 PubMed DOI PMC

Fantl W. J., Muslin A. J., Kikuchi A., Martin J. A., MacNicol A. M., Gross R. W., et al. (1994). Activation of Raf-1 by 14-3-3 proteins. Nature 371 (6498), 612–614. 10.1038/371612a0 PubMed DOI

Ferguson A. T., Evron E., Umbricht C. B., Pandita T. K., Chan T. A., Hermeking H., et al. (2000). High frequency of hypermethylation at the 14-3-3 sigma locus leads to gene silencing in breast cancer. Proc. Natl. Acad. Sci. U. S. A. 97 (11), 6049–6054. 10.1073/pnas.100566997 PubMed DOI PMC

Fu H., Coburn J., Collier R. J. (1993). The eukaryotic host factor that activates exoenzyme S of Pseudomonas aeruginosa is a member of the 14-3-3 protein family. Proc. Natl. Acad. Sci. U. S. A. 90 (6), 2320–2324. 10.1073/pnas.90.6.2320 PubMed DOI PMC

Fu H., Xia K., Pallas D. C., Cui C., Conroy K., Narsimhan R. P., et al. (1994). Interaction of the protein kinase Raf-1 with 14-3-3 proteins. Science 266 (5182), 126–129. 10.1126/science.7939632 PubMed DOI

Fu H., Subramanian R. R., Masters S. C. (2000). 14-3-3 proteins: Structure, function, and regulation. Annu. Rev. Pharmacol. Toxicol. 40, 617–647. 10.1146/annurev.pharmtox.40.1.617 PubMed DOI

Ganguly S., Gastel J. A., Weller J. L., Schwartz C., Jaffe H., Namboodiri M. A., et al. (2001). Role of a pineal cAMP-operated arylalkylamine N-acetyltransferase/14-3-3-binding switch in melatonin synthesis. Proc. Natl. Acad. Sci. U. S. A. 98 (14), 8083–8088. 10.1073/pnas.141118798 PubMed DOI PMC

Ganguly S., Weller J. L., Ho A., Chemineau P., Malpaux B., Klein D. C. (2005). Melatonin synthesis: 14-3-3-dependent activation and inhibition of arylalkylamine N-acetyltransferase mediated by phosphoserine-205. Proc. Natl. Acad. Sci. U. S. A. 102 (4), 1222–1227. 10.1073/pnas.0406871102 PubMed DOI PMC

Gardino A. K., Smerdon S. J., Yaffe M. B. (2006). Structural determinants of 14-3-3 binding specificities and regulation of subcellular localization of 14-3-3-ligand complexes: A comparison of the X-ray crystal structures of all human 14-3-3 isoforms. Semin. Cancer Biol. 16 (3), 173–182. 10.1016/j.semcancer.2006.03.007 PubMed DOI

Gerst F., Kaiser G., Panse M., Sartorius T., Pujol A., Hennige A. M., et al. (2015). Protein kinase Cδ regulates nuclear export of FOXO1 through phosphorylation of the chaperone 14-3-3ζ. Diabetologia 58 (12), 2819–2831. 10.1007/s00125-015-3744-z PubMed DOI

Gilad Y., Shiloh R., Ber Y., Bialik S., Kimchi A. (2014). Discovering protein-protein interactions within the programmed cell death network using a protein-fragment complementation screen. Cell Rep. 8 (3), 909–921. 10.1016/j.celrep.2014.06.049 PubMed DOI

Glas A., Bier D., Hahne G., Rademacher C., Ottmann C., Grossmann T. N. (2014). Constrained peptides with target-adapted cross-links as inhibitors of a pathogenic protein-protein interaction. Angew. Chem. Int. Ed. Engl. 53 (9), 2489–2493. 10.1002/anie.201310082 PubMed DOI

Gogl G., Tugaeva K. V., Eberling P., Kostmann C., Trave G., Sluchanko N. N. (2021). Hierarchized phosphotarget binding by the seven human 14-3-3 isoforms. Nat. Commun. 12 (1), 1677. 10.1038/s41467-021-21908-8 PubMed DOI PMC

Graves P. R., Lovly C. M., Uy G. L., Piwnica-Worms H. (2001). Localization of human Cdc25C is regulated both by nuclear export and 14-3-3 protein binding. Oncogene 20 (15), 1839–1851. 10.1038/sj.onc.1204259 PubMed DOI

Grozinger C. M., Schreiber S. L. (2000). Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3-dependent cellular localization. Proc. Natl. Acad. Sci. U. S. A. 97 (14), 7835–7840. 10.1073/pnas.140199597 PubMed DOI PMC

Gu Y. M., Jin Y. H., Choi J. K., Baek K. H., Yeo C. Y., Lee K. Y. (2006). Protein kinase A phosphorylates and regulates dimerization of 14-3-3 epsilon. FEBS Lett. 580 (1), 305–310. 10.1016/j.febslet.2005.12.024 PubMed DOI

Gu Y., Xu K., Torre C., Samur M., Barwick B. G., Rupji M., et al. (2018). 14-3-3ζ binds the proteasome, limits proteolytic function and enhances sensitivity to proteasome inhibitors. Leukemia 32 (3), 744–751. 10.1038/leu.2017.288 PubMed DOI

Gui T., Burgering B. M. T. (2021). FOXOs: Masters of the equilibrium. FEBS J. 1. 1. 10.1111/febs.16221 PubMed DOI PMC

Haladova K., Mrazek H., Jecmen T., Halada P., Man P., Novak P., et al. (2012). The combination of hydrogen/deuterium exchange or chemical cross-linking techniques with mass spectrometry: Mapping of human 14-3-3ζ homodimer interface. J. Struct. Biol. 179 (1), 10–17. 10.1016/j.jsb.2012.04.016 PubMed DOI

Hickman A. B., Klein D. C., Dyda F. (1999a). Melatonin biosynthesis: The structure of serotonin N-acetyltransferase at 2.5 A resolution suggests a catalytic mechanism. Mol. Cell 3 (1), 23–32. 10.1016/s1097-2765(00)80171-9 PubMed DOI

Hickman A. B., Namboodiri M. A., Klein D. C., Dyda F. (1999b). The structural basis of ordered substrate binding by serotonin N-acetyltransferase: Enzyme complex at 1.8 A resolution with a bisubstrate analog. Cell 97 (3), 361–369. 10.1016/s0092-8674(00)80745-x PubMed DOI

Horvath M., Petrvalska O., Herman P., Obsilova V., Obsil T. (2021). 14-3-3 proteins inactivate DAPK2 by promoting its dimerization and protecting key regulatory phosphosites. Commun. Biol. 4 (1), 986. 10.1038/s42003-021-02518-y PubMed DOI PMC

Ichimura T., Isobe T., Okuyama T., Yamauchi T., Fujisawa H. (1987). Brain 14-3-3 protein is an activator protein that activates tryptophan 5-monooxygenase and tyrosine 3-monooxygenase in the presence of Ca2+, calmodulin-dependent protein kinase II. FEBS Lett. 219 (1), 79–82. 10.1016/0014-5793(87)81194-8 PubMed DOI

Ichimura T., Isobe T., Okuyama T., Takahashi N., Araki K., Kuwano R., et al. (1988). Molecular cloning of cDNA coding for brain-specific 14-3-3 protein, a protein kinase-dependent activator of tyrosine and tryptophan hydroxylases. Proc. Natl. Acad. Sci. U. S. A. 85 (19), 7084–7088. 10.1073/pnas.85.19.7084 PubMed DOI PMC

Ichimura T., Yamamura H., Sasamoto K., Tominaga Y., Taoka M., Kakiuchi K., et al. (2005). 14-3-3 proteins modulate the expression of epithelial Na+ channels by phosphorylation-dependent interaction with Nedd4-2 ubiquitin ligase. J. Biol. Chem. 280 (13), 13187–13194. 10.1074/jbc.M412884200 PubMed DOI

Ichimura T., Taoka M., Hozumi Y., Goto K., Tokumitsu H. (2008). 14-3-3 Proteins directly regulate Ca(2+)/calmodulin-dependent protein kinase kinase alpha through phosphorylation-dependent multisite binding. FEBS Lett. 582 (5), 661–665. 10.1016/j.febslet.2008.01.037 PubMed DOI

Jagemann L. R., Perez-Rivas L. G., Ruiz E. J., Ranea J. A., Sanchez-Jimenez F., Nebreda A. R., et al. (2008). The functional interaction of 14-3-3 proteins with the ERK1/2 scaffold KSR1 occurs in an isoform-specific manner. J. Biol. Chem. 283 (25), 17450–17462. 10.1074/jbc.M709185200 PubMed DOI

Johnson C., Crowther S., Stafford M. J., Campbell D. G., Toth R., MacKintosh C. (2010). Bioinformatic and experimental survey of 14-3-3-binding sites. Biochem. J. 427, 69–78. 10.1042/Bj20091834 PubMed DOI PMC

Jones D. H., Ley S., Aitken A. (1995). Isoforms of 14-3-3 protein can form homo- and heterodimers in vivo and in vitro: Implications for function as adapter proteins. FEBS Lett. 368 (1), 55–58. 10.1016/0014-5793(95)00598-4 PubMed DOI

Joshi R., Pohl P., Strachotova D., Herman P., Obsil T., Obsilova V. (2022). Nedd4-2 binding to 14-3-3 modulates the accessibility of its catalytic site and WW domains. Biophys. J. 121 (7), 1299–1311. 10.1016/j.bpj.2022.02.025 PubMed DOI PMC

Kacirova M., Kosek D., Kadek A., Man P., Vecer J., Herman P., et al. (2015). Structural characterization of phosducin and its complex with the 14-3-3 protein. J. Biol. Chem. 290 (26), 16246–16260. 10.1074/jbc.M115.636563 PubMed DOI PMC

Kacirova M., Novacek J., Man P., Obsilova V., Obsil T. (2017). Structural basis for the 14-3-3 protein-dependent inhibition of phosducin function. Biophys. J. 112 (7), 1339–1349. 10.1016/j.bpj.2017.02.036 PubMed DOI PMC

Kalabova D., Smidova A., Petrvalska O., Alblova M., Kosek D., Man P., et al. (2017). Human procaspase-2 phosphorylation at both S139 and S164 is required for 14-3-3 binding. Biochem. Biophys. Res. Commun. 493 (2), 940–945. 10.1016/j.bbrc.2017.09.116 PubMed DOI

Kalabova D., Filandr F., Alblova M., Petrvalska O., Horvath M., Man P., et al. (2020). 14-3-3 protein binding blocks the dimerization interface of caspase-2. FEBS J. 287 (16), 3494–3510. 10.1111/febs.15215 PubMed DOI

Kanno T., Nishizaki T. (2011). Sphingosine induces apoptosis in hippocampal neurons and astrocytes by activating caspase-3/-9 via a mitochondrial pathway linked to SDK/14-3-3 protein/Bax/cytochrome c. J. Cell. Physiol. 226 (9), 2329–2337. 10.1002/jcp.22571 PubMed DOI

Karlberg T., Hornyak P., Pinto A. F., Milanova S., Ebrahimi M., Lindberg M., et al. (2018). 14-3-3 proteins activate Pseudomonas exotoxins-S and -T by chaperoning a hydrophobic surface. Nat. Commun. 9 (1), 3785. 10.1038/s41467-018-06194-1 PubMed DOI PMC

Kligys K., Yao J., Yu D. H., Jones J. C. R. (2009). 14-3-3 zeta/tau heterodimers regulate Slingshot activity in migrating keratinocytes. Biochem. Biophys. Res. Commun. 383 (4), 450–454. 10.1016/j.bbrc.2009.04.031 PubMed DOI PMC

Kondo Y., Ognjenovic J., Banerjee S., Karandur D., Merk A., Kulhanek K., et al. (2019). Cryo-EM structure of a dimeric B-Raf:14-3-3 complex reveals asymmetry in the active sites of B-Raf kinases. Science 366 (6461), 109–115. 10.1126/science.aay0543 PubMed DOI PMC

Kopecka M., Kosek D., Kukacka Z., Rezabkova L., Man P., Novak P., et al. (2014). Role of the EF-hand-like motif in the 14-3-3 protein-mediated activation of yeast neutral trehalase Nth1. J. Biol. Chem. 289 (20), 13948–13961. 10.1074/jbc.M113.544551 PubMed DOI PMC

Lage-Vickers S., Bizzotto J., Valacco M. P., Sanchis P., Nemirovsky S., Labanca E., et al. (2021). The expression of YWHAZ and NDRG1 predicts aggressive outcome in human prostate cancer. Commun. Biol. 4 (1), 103. 10.1038/s42003-020-01645-2 PubMed DOI PMC

Layfield R., Fergusson J., Aitken A., Lowe J., Landon M., Mayer R. J. (1996). Neurofibrillary tangles of Alzheimer's disease brains contain 14-3-3 proteins. Neurosci. Lett. 209 (1), 57–60. 10.1016/0304-3940(96)12598-2 PubMed DOI

Lee I. H., Dinudom A., Sanchez-Perez A., Kumar S., Cook D. I. (2007). Akt mediates the effect of insulin on epithelial sodium channels by inhibiting Nedd4-2. J. Biol. Chem. 282 (41), 29866–29873. 10.1074/jbc.M701923200 PubMed DOI

Lee G. S., Zhang J., Wu Y., Zhou Y. (2021). 14-3-3 proteins promote synaptic localization of N-methyl d-aspartate receptors (NMDARs) in mouse hippocampal and cortical neurons. PLoS One 16 (12), e0261791. 10.1371/journal.pone.0261791 PubMed DOI PMC

Liang X., Butterworth M. B., Peters K. W., Walker W. H., Frizzell R. A. (2008). An obligatory heterodimer of 14-3-3beta and 14-3-3epsilon is required for aldosterone regulation of the epithelial sodium channel. J. Biol. Chem. 283 (41), 27418–27425. 10.1074/jbc.M803687200 PubMed DOI PMC

Liau N. P. D., Venkatanarayan A., Quinn J. G., Phung W., Malek S., Hymowitz S. G., et al. (2020a). Dimerization induced by C-terminal 14-3-3 binding is sufficient for BRAF kinase activation. Biochemistry 59 (41), 3982–3992. 10.1021/acs.biochem.0c00517 PubMed DOI

Liau N. P. D., Wendorff T. J., Quinn J. G., Steffek M., Phung W., Liu P., et al. (2020b). Negative regulation of RAF kinase activity by ATP is overcome by 14-3-3-induced dimerization. Nat. Struct. Mol. Biol. 27 (2), 134–141. 10.1038/s41594-019-0365-0 PubMed DOI

Liu D., Bienkowska J., Petosa C., Collier R. J., Fu H., Liddington R. (1995). Crystal structure of the zeta isoform of the 14-3-3 protein. Nature 376 (6536), 191–194. 10.1038/376191a0 PubMed DOI

Lu J., Guo H., Treekitkarnmongkol W., Li P., Zhang J., Shi B., et al. (2009). 14-3-3zeta Cooperates with ErbB2 to promote ductal carcinoma in situ progression to invasive breast cancer by inducing epithelial-mesenchymal transition. Cancer Cell 16 (3), 195–207. 10.1016/j.ccr.2009.08.010 PubMed DOI PMC

Lukacs G. L., Chang X. B., Bear C., Kartner N., Mohamed A., Riordan J. R., et al. (1993). The delta F508 mutation decreases the stability of cystic fibrosis transmembrane conductance regulator in the plasma membrane. Determination of functional half-lives on transfected cells. J. Biol. Chem. 268 (29), 21592–21598. 10.1016/s0021-9258(20)80582-1 PubMed DOI

Macakova E., Kopecka M., Kukacka Z., Veisova D., Novak P., Man P., et al. (2013). Structural basis of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1. Biochim. Biophys. Acta 1830 (10), 4491–4499. 10.1016/j.bbagen.2013.05.025 PubMed DOI

Mackintosh C. (2004). Dynamic interactions between 14-3-3 proteins and phosphoproteins regulate diverse cellular processes. Biochem. J. 381 (2), 329–342. 10.1042/BJ20031332 PubMed DOI PMC

Margolis S. S., Perry J. A., Weitzel D. H., Freel C. D., Yoshida M., Haystead T. A., et al. (2006). A role for PP1 in the Cdc2/Cyclin B-mediated positive feedback activation of Cdc25. Mol. Biol. Cell 17 (4), 1779–1789. 10.1091/mbc.e05-08-0751 PubMed DOI PMC

Masters S. C., Fu H. (2001). 14-3-3 proteins mediate an essential anti-apoptotic signal. J. Biol. Chem. 276 (48), 45193–45200. 10.1074/jbc.M105971200 PubMed DOI

Masters S. C., Pederson K. J., Zhang L., Barbieri J. T., Fu H. (1999). Interaction of 14-3-3 with a nonphosphorylated protein ligand, exoenzyme S of Pseudomonas aeruginosa . Biochemistry 38 (16), 5216–5221. 10.1021/bi982492m PubMed DOI

McKinsey T. A., Zhang C. L., Olson E. N. (2000). Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14-3-3 to histone deacetylase 5. Proc. Natl. Acad. Sci. U. S. A. 97 (26), 14400–14405. 10.1073/pnas.260501497 PubMed DOI PMC

McKinsey T. A., Zhang C. L., Olson E. N. (2001). Identification of a signal-responsive nuclear export sequence in class II histone deacetylases. Mol. Cell. Biol. 21 (18), 6312–6321. 10.1128/mcb.21.18.6312-6321.2001 PubMed DOI PMC

Molzan M., Kasper S., Roglin L., Skwarczynska M., Sassa T., Inoue T., et al. (2013). Stabilization of physical RAF/14-3-3 interaction by cotylenin A as treatment strategy for RAS mutant cancers. ACS Chem. Biol. 8 (9), 1869–1875. 10.1021/cb4003464 PubMed DOI

Moore B. W., Perez V. J. (1967). “Specific acidic proteins of the nervous system,” in Physiological and biochemical aspects of nervous integration. Editor Carlson F. D. (Woods Hole, MA: Prentice-Hall, Inc, The Marine Biological Laboratory; ), 343–359.

Muslin A. J., Xing H. (2000). 14-3-3 proteins: Regulation of subcellular localization by molecular interference. Cell. Signal. 12 (11-12), 703–709. 10.1016/s0898-6568(00)00131-5 PubMed DOI

Muslin A. J., Tanner J. W., Allen P. M., Shaw A. S. (1996). Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell 84 (6), 889–897. 10.1016/s0092-8674(00)81067-3 PubMed DOI

Nakano K., Chen J., Tarr G. E., Yoshida T., Flynn J. M., Bitensky M. W. (2001). Rethinking the role of phosducin: Light-regulated binding of phosducin to 14-3-3 in rod inner segments. Proc. Natl. Acad. Sci. U. S. A. 98 (8), 4693–4698. 10.1073/pnas.071067198 PubMed DOI PMC

Nakazawa K., Jeevakumar V., Nakao K. (2017). Spatial and temporal boundaries of NMDA receptor hypofunction leading to schizophrenia. NPJ Schizophr. 3, 7. 10.1038/s41537-016-0003-3 PubMed DOI PMC

Neves J. F., Petrvalska O., Bosica F., Cantrelle F. X., Merzougui H., O'Mahony G., et al. (2021). Phosphorylated full-length Tau interacts with 14-3-3 proteins via two short phosphorylated sequences, each occupying a binding groove of 14-3-3 dimer. FEBS J. 288 (6), 1918–1934. 10.1111/febs.15574 PubMed DOI

Nutt L. K., Buchakjian M. R., Gan E., Darbandi R., Yoon S. Y., Wu J. Q., et al. (2009). Metabolic control of oocyte apoptosis mediated by 14-3-3zeta-regulated dephosphorylation of caspase-2. Dev. Cell 16 (6), 856–866. 10.1016/j.devcel.2009.04.005 PubMed DOI PMC

Obsil T., Ghirlando R., Klein D. C., Ganguly S., Dyda F. (2001). Crystal structure of the 14-3-3zeta:serotonin N-acetyltransferase complex. a role for scaffolding in enzyme regulation. Cell 105 (2), 257–267. 10.1016/s0092-8674(01)00316-6 PubMed DOI

Obsil T., Ghirlando R., Anderson D. E., Hickman A. B., Dyda F. (2003). Two 14-3-3 binding motifs are required for stable association of Forkhead transcription factor FOXO4 with 14-3-3 proteins and inhibition of DNA binding. Biochemistry 42 (51), 15264–15272. 10.1021/bi0352724 PubMed DOI

Obsilova V., Herman P., Vecer J., Sulc M., Teisinger J., Obsil T. (2004). 14-3-3zeta C-terminal stretch changes its conformation upon ligand binding and phosphorylation at Thr232. J. Biol. Chem. 279 (6), 4531–4540. 10.1074/jbc.M306939200 PubMed DOI

Obsilova V., Vecer J., Herman P., Pabianova A., Sulc M., Teisinger J., et al. (2005). 14-3-3 Protein interacts with nuclear localization sequence of forkhead transcription factor FoxO4. Biochemistry 44 (34), 11608–11617. 10.1021/bi050618r PubMed DOI

Oecking C., Eckerskorn C., Weiler E. W. (1994). The fusicoccin receptor of plants is a member of the 14-3-3 superfamily of eukaryotic regulatory proteins. FEBS Lett. 352 (2), 163–166. 10.1016/0014-5793(94)00949-x PubMed DOI

Ostrerova N., Petrucelli L., Farrer M., Mehta N., Choi P., Hardy J., et al. (1999). α-Synuclein shares physical and functional homology with 14-3-3 proteins. J. Neurosci. 19 (14), 5782–5791. 10.1523/jneurosci.19-14-05782.1999 PubMed DOI PMC

Ottmann C., Marco S., Jaspert N., Marcon C., Schauer N., Weyand M., et al. (2007a). Structure of a 14-3-3 coordinated hexamer of the plant plasma membrane H+ -ATPase by combining X-ray crystallography and electron cryomicroscopy. Mol. Cell 25 (3), 427–440. 10.1016/j.molcel.2006.12.017 PubMed DOI

Ottmann C., Yasmin L., Weyand M., Veesenmeyer J. L., Diaz M. H., Palmer R. H., et al. (2007b). Phosphorylation-independent interaction between 14-3-3 and exoenzyme S: From structure to pathogenesis. Embo J. 26 (3), 902–913. 10.1038/sj.emboj.7601530 PubMed DOI PMC

Ottmann C. (2013). Small-molecule modulators of 14-3-3 protein-protein interactions. Bioorg. Med. Chem. 21 (14), 4058–4062. 10.1016/j.bmc.2012.11.028 PubMed DOI

Panni S., Landgraf C., Volkmer-Engert R., Cesareni G., Castagnoli L. (2008). Role of 14-3-3 proteins in the regulation of neutral trehalase in the yeast Saccharomyces cerevisiae . FEMS Yeast Res. 8 (1), 53–63. 10.1111/j.1567-1364.2007.00312.x PubMed DOI

Park E., Rawson S., Li K., Kim B. W., Ficarro S. B., Pino G. G., et al. (2019). Architecture of autoinhibited and active BRAF-MEK1-14-3-3 complexes. Nature 575 (7783), 545–550. 10.1038/s41586-019-1660-y PubMed DOI PMC

Patel A. K., Yadav R. P., Majava V., Kursula I., Kursula P. (2011). Structure of the dimeric autoinhibited conformation of DAPK2, a pro-apoptotic protein kinase. J. Mol. Biol. 409 (3), 369–383. 10.1016/j.jmb.2011.03.065 PubMed DOI

Pennington K. L., Chan T. Y., Torres M. P., Andersen J. L. (2018). The dynamic and stress-adaptive signaling hub of 14-3-3: Emerging mechanisms of regulation and context-dependent protein-protein interactions. Oncogene 37 (42), 5587–5604. 10.1038/s41388-018-0348-3 PubMed DOI PMC

Petosa C., Masters S. C., Bankston L. A., Pohl J., Wang B., Fu H., et al. (1998). 14-3-3zeta binds a phosphorylated Raf peptide and an unphosphorylated peptide via its conserved amphipathic groove. J. Biol. Chem. 273 (26), 16305–16310. 10.1074/jbc.273.26.16305 PubMed DOI

Plotegher N., Kumar D., Tessari I., Brucale M., Munari F., Tosatto L., et al. (2014). The chaperone-like protein 14-3-3η interacts with human α-synuclein aggregation intermediates rerouting the amyloidogenic pathway and reducing α-synuclein cellular toxicity. Hum. Mol. Genet. 23 (21), 5615–5629. 10.1093/hmg/ddu275 PubMed DOI

Pohl P., Joshi R., Petrvalska O., Obsil T., Obsilova V. (2021). 14-3-3-protein regulates Nedd4-2 by modulating interactions between HECT and WW domains. Commun. Biol. 4 (1), 899. 10.1038/s42003-021-02419-0 PubMed DOI PMC

Pollack J. R., Sorlie T., Perou C. M., Rees C. A., Jeffrey S. S., Lonning P. E., et al. (2002). Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors. Proc. Natl. Acad. Sci. U. S. A. 99 (20), 12963–12968. 10.1073/pnas.162471999 PubMed DOI PMC

Powell D. W., Rane M. J., Chen Q., Singh S., McLeish K. R. (2002). Identification of 14-3-3zeta as a protein kinase B/Akt substrate. J. Biol. Chem. 277 (24), 21639–21642. 10.1074/jbc.M203167200 PubMed DOI

Psenakova K., Petrvalska O., Kylarova S., Lentini Santo D., Kalabova D., Herman P., et al. (2018). 14-3-3 protein directly interacts with the kinase domain of calcium/calmodulin-dependent protein kinase kinase (CaMKK2). Biochim. Biophys. Acta. Gen. Subj. 1862 (7), 1612–1625. 10.1016/j.bbagen.2018.04.006 PubMed DOI

Qiao H., Foote M., Graham K., Wu Y., Zhou Y. (2014). 14-3-3 proteins are required for hippocampal long-term potentiation and associative learning and memory. J. Neurosci. 34 (14), 4801–4808. 10.1523/JNEUROSCI.4393-13.2014 PubMed DOI PMC

Qureshi H. Y., Li T., MacDonald R., Cho C. M., Leclerc N., Paudel H. K. (2013). Interaction of 14-3-3ζ with microtubule-associated protein tau within Alzheimer's disease neurofibrillary tangles. Biochemistry 52 (37), 6445–6455. 10.1021/bi400442d PubMed DOI

Rajakulendran T., Sahmi M., Lefrancois M., Sicheri F., Therrien M. (2009). A dimerization-dependent mechanism drives RAF catalytic activation. Nature 461 (7263), 542–545. 10.1038/nature08314 PubMed DOI

Rittinger K., Budman J., Xu J., Volinia S., Cantley L. C., Smerdon S. J., et al. (1999). Structural analysis of 14-3-3 phosphopeptide complexes identifies a dual role for the nuclear export signal of 14-3-3 in ligand binding. Mol. Cell 4 (2), 153–166. 10.1016/s1097-2765(00)80363-9 PubMed DOI

Rose R., Erdmann S., Bovens S., Wolf A., Rose M., Hennig S., et al. (2010). Identification and structure of small-molecule stabilizers of 14-3-3 protein- protein interactions. Angew. Chem. Int. Ed. Engl. 49 (24), 4129–4132. 10.1002/anie.200907203 PubMed DOI

Sadik G., Tanaka T., Kato K., Yamamori H., Nessa B. N., Morihara T., et al. (2009). Phosphorylation of tau at Ser214 mediates its interaction with 14-3-3 protein: Implications for the mechanism of tau aggregation. J. Neurochem. 108 (1), 33–43. 10.1111/j.1471-4159.2008.05716.x PubMed DOI

Sato S., Jung H., Nakagawa T., Pawlosky R., Takeshima T., Lee W. R., et al. (2016). Metabolite regulation of nuclear localization of carbohydrate-response element-binding protein (ChREBP): Role of amp as an allosteric inhibitor. J. Biol. Chem. 291 (20), 10515–10527. 10.1074/jbc.M115.708982 PubMed DOI PMC

Seimiya H., Sawada H., Muramatsu Y., Shimizu M., Ohko K., Yamane K., et al. (2000). Involvement of 14-3-3 proteins in nuclear localization of telomerase. Embo J. 19 (11), 2652–2661. 10.1093/emboj/19.11.2652 PubMed DOI PMC

Sijbesma E., Visser E., Plitzko K., Thiel P., Milroy L. G., Kaiser M., et al. (2020). Structure-based evolution of a promiscuous inhibitor to a selective stabilizer of protein-protein interactions. Nat. Commun. 11 (1), 3954. 10.1038/s41467-020-17741-0 PubMed DOI PMC

Silhan J., Obsilova V., Vecer J., Herman P., Sulc M., Teisinger J., et al. (2004). 14-3-3 protein C-terminal stretch occupies ligand binding groove and is displaced by phosphopeptide binding. J. Biol. Chem. 279 (47), 49113–49119. 10.1074/jbc.M408671200 PubMed DOI

Silhan J., Vacha P., Strnadova P., Vecer J., Herman P., Sulc M., et al. (2009). 14-3-3 protein masks the DNA binding interface of forkhead transcription factor FOXO4. J. Biol. Chem. 284 (29), 19349–19360. 10.1074/jbc.M109.002725 PubMed DOI PMC

Simon B., Huart A. S., Temmerman K., Vahokoski J., Mertens H. D., Komadina D., et al. (2016). Death-associated protein kinase activity is regulated by coupled calcium/calmodulin binding to two distinct sites. Structure 24 (6), 851–861. 10.1016/j.str.2016.03.020 PubMed DOI PMC

Sluchanko N. N., Bustos D. M. (2019). Intrinsic disorder associated with 14-3-3 proteins and their partners. Prog. Mol. Biol. Transl. Sci. 166, 19–61. 10.1016/bs.pmbts.2019.03.007 PubMed DOI

Sluchanko N. N., Gusev N. B. (2011). Probable participation of 14-3-3 in tau protein oligomerization and aggregation. J. Alzheimers Dis. 27 (3), 467–476. 10.3233/JAD-2011-110692 PubMed DOI

Sluchanko N. N., Gusev N. B. (2012). Oligomeric structure of 14-3-3 protein: What do we know about monomers? FEBS Lett. 586 (24), 4249–4256. 10.1016/j.febslet.2012.10.048 PubMed DOI

Sluchanko N. N., Gusev N. B. (2017). Moonlighting chaperone-like activity of the universal regulatory 14-3-3 proteins. FEBS J. 284 (9), 1279–1295. 10.1111/febs.13986 PubMed DOI

Sluchanko N. N., Sudnitsyna M. V., Seit-Nebi A. S., Antson A. A., Gusev N. B. (2011). Properties of the monomeric form of human 14-3-3ζ protein and its interaction with tau and HspB6. Biochemistry 50 (45), 9797–9808. 10.1021/bi201374s PubMed DOI

Sluchanko N. N., Beelen S., Kulikova A. A., Weeks S. D., Antson A. A., Gusev N. B., et al. (2017). Structural basis for the interaction of a human small heat shock protein with the 14-3-3 universal signaling regulator. Structure 25, 305–316. 10.1016/j.str.2016.12.005 PubMed DOI PMC

Sluchanko N. N. (2022). Recent advances in structural studies of 14-3-3 protein complexes. Adv. Protein Chem. Struct. Biol. 130, 289–324. 10.1016/bs.apcsb.2021.12.004 PubMed DOI

Smidova A., Alblova M., Kalabova D., Psenakova K., Rosulek M., Herman P., et al. (2018). 14-3-3 protein masks the nuclear localization sequence of caspase-2. FEBS J. 285 (22), 4196–4213. 10.1111/febs.14670 PubMed DOI

Soderling T. R. (1999). The Ca-calmodulin-dependent protein kinase cascade. Trends biochem. Sci. 24 (6), 232–236. 10.1016/s0968-0004(99)01383-3 PubMed DOI

Stevers L. M., Lam C. V., Leysen S. F., Meijer F. A., van Scheppingen D. S., de Vries R. M., et al. (2016). Characterization and small-molecule stabilization of the multisite tandem binding between 14-3-3 and the R domain of CFTR. Proc. Natl. Acad. Sci. U. S. A. 113 (9), E1152–E1161. 10.1073/pnas.1516631113 PubMed DOI PMC

Stevers L. M., Sijbesma E., Botta M., MacKintosh C., Obsil T., Landrieu I., et al. (2018). Modulators of 14-3-3 protein-protein interactions. J. Med. Chem. 61 (9), 3755–3778. 10.1021/acs.jmedchem.7b00574 PubMed DOI PMC

Stevers L. M., Wolter M., Carlile G. W., Macdonald D., Richard L., Gielkens F., et al. (2022). Macrocycle-stabilization of its interaction with 14-3-3 increases plasma membrane localization and activity of CFTR. Nat. Commun. 13 (1), 3586. 10.1038/s41467-022-31206-6 PubMed DOI PMC

Takemoto Y., Watanabe H., Uchida K., Matsumura K., Nakae K., Tashiro E., et al. (2005). Chemistry and biology of moverastins, inhibitors of cancer cell migration, produced by Aspergillus. Chem. Biol. 12 (12), 1337–1347. 10.1016/j.chembiol.2005.09.017 PubMed DOI

Tan Y., Demeter M. R., Ruan H., Comb M. J. (2000). BAD Ser-155 phosphorylation regulates BAD/Bcl-XL interaction and cell survival. J. Biol. Chem. 275 (33), 25865–25869. 10.1074/jbc.M004199200 PubMed DOI

Tashiro E., Imoto M. (2016). Screening and target identification of bioactive compounds that modulate cell migration and autophagy. Bioorg. Med. Chem. 24 (15), 3283–3290. 10.1016/j.bmc.2016.04.014 PubMed DOI

Thulin C. D., Savage J. R., McLaughlin J. N., Truscott S. M., Old W. M., Ahn N. G., et al. (2001). Modulation of the G protein regulator phosducin by Ca2+/calmodulin-dependent protein kinase II phosphorylation and 14-3-3 protein binding. J. Biol. Chem. 276 (26), 23805–23815. 10.1074/jbc.M101482200 PubMed DOI

Toker A., Ellis C. A., Sellers L. A., Aitken A. (1990). Protein kinase C inhibitor proteins. Purification from sheep brain and sequence similarity to lipocortins and 14-3-3 protein. Eur. J. Biochem. 191 (2), 421–429. 10.1111/j.1432-1033.1990.tb19138.x PubMed DOI

Toleman C. A., Schumacher M. A., Yu S. H., Zeng W., Cox N. J., Smith T. J., et al. (2018). Structural basis of O-GlcNAc recognition by mammalian 14-3-3 proteins. Proc. Natl. Acad. Sci. U. S. A. 115 (23), 5956–5961. 10.1073/pnas.1722437115 PubMed DOI PMC

Trosanova Z., Lousa P., Kozelekova A., Brom T., Gasparik N., Tungli J., et al. (2022). Quantitation of human 14-3-3ζ dimerization and the effect of phosphorylation on dimer-monomer equilibria. J. Mol. Biol. 434 (7), 167479. 10.1016/j.jmb.2022.167479 PubMed DOI

Truong A. B., Masters S. C., Yang H., Fu H. (2002). Role of the 14-3-3 C-terminal loop in ligand interaction. Proteins 49 (3), 321–325. 10.1002/prot.10210 PubMed DOI

van Hemert M. J., Steensma H. Y., van Heusden G. P. (2001). 14-3-3 proteins: Key regulators of cell division, signalling and apoptosis. Bioessays 23 (10), 936–946. 10.1002/bies.1134 PubMed DOI

Veisova D., Rezabkova L., Stepanek M., Novotna P., Herman P., Vecer J., et al. (2010). The C-terminal segment of yeast BMH proteins exhibits different structure compared to other 14-3-3 protein isoforms. Biochemistry 49 (18), 3853–3861. 10.1021/bi100273k PubMed DOI

Veisova D., Macakova E., Rezabkova L., Sulc M., Vacha P., Sychrova H., et al. (2012). Role of individual phosphorylation sites for the 14-3-3-protein-dependent activation of yeast neutral trehalase Nth1. Biochem. J. 443 (3), 663–670. 10.1042/BJ20111615 PubMed DOI

Verdoodt B., Benzinger A., Popowicz G. M., Holak T. A., Hermeking H. (2006). Characterization of 14-3-3sigma dimerization determinants: Requirement of homodimerization for inhibition of cell proliferation. Cell Cycle 5 (24), 2920–2926. 10.4161/cc.5.24.3571 PubMed DOI

Wang B., Yang H., Liu Y. C., Jelinek T., Zhang L., Ruoslahti E., et al. (1999). Isolation of high-affinity peptide antagonists of 14-3-3 proteins by phage display. Biochemistry 38 (38), 12499–12504. 10.1021/bi991353h PubMed DOI

Wiltfang J., Otto M., Baxter H. C., Bodemer M., Steinacker P., Bahn E., et al. (1999). Isoform pattern of 14-3-3 proteins in the cerebrospinal fluid of patients with Creutzfeldt-Jakob disease. J. Neurochem. 73 (6), 2485–2490. 10.1046/j.1471-4159.1999.0732485.x PubMed DOI

Woodcock J. M., Murphy J., Stomski F. C., Berndt M. C., Lopez A. F. (2003). The dimeric versus monomeric status of 14-3-3zeta is controlled by phosphorylation of Ser58 at the dimer interface. J. Biol. Chem. 278 (38), 36323–36327. 10.1074/jbc.M304689200 PubMed DOI

Wurtele M., Jelich-Ottmann C., Wittinghofer A., Oecking C. (2003). Structural view of a fungal toxin acting on a 14-3-3 regulatory complex. EMBO J. 22 (5), 987–994. 10.1093/emboj/cdg104 PubMed DOI PMC

Xiao B., Smerdon S. J., Jones D. H., Dodson G. G., Soneji Y., Aitken A., et al. (1995). Structure of a 14-3-3 protein and implications for coordination of multiple signalling pathways. Nature 376 (6536), 188–191. 10.1038/376188a0 PubMed DOI

Xu J., Acharya S., Sahin O., Zhang Q., Saito Y., Yao J., et al. (2015). 14-3-3ζ turns TGF-β's function from tumor suppressor to metastasis promoter in breast cancer by contextual changes of Smad partners from p53 to Gli2. Cancer Cell 27 (2), 177–192. 10.1016/j.ccell.2014.11.025 PubMed DOI PMC

Yaffe M. B., Rittinger K., Volinia S., Caron P. R., Aitken A., Leffers H., et al. (1997). The structural basis for 14-3-3:phosphopeptide binding specificity. Cell 91 (7), 961–971. 10.1016/s0092-8674(00)80487-0 PubMed DOI

Yang H. Y., Wen Y. Y., Chen C. H., Lozano G., Lee M. H. (2003). 14-3-3 sigma positively regulates p53 and suppresses tumor growth. Mol. Cell. Biol. 23 (20), 7096–7107. 10.1128/MCB.23.20.7096-7107.2003 PubMed DOI PMC

Yang X., Lee W. H., Sobott F., Papagrigoriou E., Robinson C. V., Grossmann J. G., et al. (2006). Structural basis for protein-protein interactions in the 14-3-3 protein family. Proc. Natl. Acad. Sci. U. S. A. 103 (46), 17237–17242. 10.1073/pnas.0605779103 PubMed DOI PMC

Yoshida T., Willardson B. M., Wilkins J. F., Jensen G. J., Thornton B. D., Bitensky M. W. (1994). The phosphorylation state of phosducin determines its ability to block transducin subunit interactions and inhibit transducin binding to activated rhodopsin. J. Biol. Chem. 269 (39), 24050–24057. 10.1016/s0021-9258(19)51046-8 PubMed DOI

Yuasa K., Ota R., Matsuda S., Isshiki K., Inoue M., Tsuji A. (2015). Suppression of death-associated protein kinase 2 by interaction with 14-3-3 proteins. Biochem. Biophys. Res. Commun. 464 (1), 70–75. 10.1016/j.bbrc.2015.05.105 PubMed DOI

Zha J., Harada H., Yang E., Jockel J., Korsmeyer S. J. (1996). Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell 87 (4), 619–628. 10.1016/s0092-8674(00)81382-3 PubMed DOI

Zhang M., Jang H., Li Z., Sacks D. B., Nussinov R. (2021). B-Raf autoinhibition in the presence and absence of 14-3-3. Structure 29 (7), 768–777.e2. 10.1016/j.str.2021.02.005 PubMed DOI PMC

Zhao X., Gan L., Pan H., Kan D., Majeski M., Adam S. A., et al. (2004). Multiple elements regulate nuclear/cytoplasmic shuttling of FOXO1: Characterization of phosphorylation- and 14-3-3-dependent and -independent mechanisms. Biochem. J. 378 (3), 839–849. 10.1042/BJ20031450 PubMed DOI PMC

Zhao J., Du Y., Horton J. R., Upadhyay A. K., Lou B., Bai Y., et al. (2011). Discovery and structural characterization of a small molecule 14-3-3 protein-protein interaction inhibitor. Proc. Natl. Acad. Sci. U. S. A. 108 (39), 16212–16216. 10.1073/pnas.1100012108 PubMed DOI PMC

Zhou J. B., Shao Z. L., Kerkela R., Ichijo H., Muslin A. J., Pombo C., et al. (2009). Serine 58 of 14-3-3zeta is a molecular switch regulating ASK1 and oxidant stress-induced cell death. Mol. Cell. Biol. 29 (15), 4167–4176. 10.1128/Mcb.01067-08 PubMed DOI PMC

Zhu H., Sepulveda E., Hartmann M. D., Kogenaru M., Ursinus A., Sulz E., et al. (2016). Origin of a folded repeat protein from an intrinsically disordered ancestor. Elife 5, e16761. 10.7554/eLife.16761 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...