Nedd4-2 binding to 14-3-3 modulates the accessibility of its catalytic site and WW domains
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35189105
PubMed Central
PMC9034186
DOI
10.1016/j.bpj.2022.02.025
PII: S0006-3495(22)00149-7
Knihovny.cz E-zdroje
- MeSH
- endozomální třídící komplexy pro transport * metabolismus MeSH
- katalytická doména MeSH
- nervové kmenové buňky * metabolismus MeSH
- proteiny 14-3-3 metabolismus MeSH
- ubikvitinligasy Nedd4 metabolismus MeSH
- ubikvitinligasy metabolismus MeSH
- vazba proteinů MeSH
- WW domény MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- endozomální třídící komplexy pro transport * MeSH
- proteiny 14-3-3 MeSH
- ubikvitinligasy Nedd4 MeSH
- ubikvitinligasy MeSH
Neural precursor cells expressed developmentally downregulated protein 4-2 (Nedd4-2), a homologous to the E6-AP carboxyl terminus (HECT) ubiquitin ligase, triggers the endocytosis and degradation of its downstream target molecules by regulating signal transduction through interactions with other targets, including 14-3-3 proteins. In our previous study, we found that 14-3-3 binding induces a structural rearrangement of Nedd4-2 by inhibiting interactions between its structured domains. Here, we used time-resolved fluorescence intensity and anisotropy decay measurements, together with fluorescence quenching and mass spectrometry, to further characterize interactions between Nedd4-2 and 14-3-3 proteins. The results showed that 14-3-3 binding affects the emission properties of AEDANS-labeled WW3, WW4, and, to a lesser extent, WW2 domains, and reduces their mobility, but not those of the WW1 domain, which remains mobile. In contrast, 14-3-3 binding has the opposite effect on the active site of the HECT domain, which is more solvent exposed and mobile in the complexed form than in the apo form of Nedd4-2. Overall, our results suggest that steric hindrance of the WW3 and WW4 domains combined with conformational changes in the catalytic domain may account for the 14-3-3 binding-mediated regulation of Nedd4-2.
Zobrazit více v PubMed
Yang B., Kumar S. Nedd4 and Nedd4-2: closely related ubiquitin-protein ligases with distinct physiological functions. Cell Death Differ. 2010;17:68–77. PubMed PMC
Itani O.A., Campbell J.R., et al. Thomas C.P. Alternate promoters and variable splicing lead to hNedd4-2 isoforms with a C2 domain and varying number of WW domains. Am. J. Physiol. Ren. Physiol. 2003;285:F916–F929. PubMed
Fotia A.B., Ekberg J., et al. Kumar S. Regulation of neuronal voltage-gated sodium channels by the ubiquitin-protein ligases Nedd4 and Nedd4-2. J. Biol. Chem. 2004;279:28930–28935. PubMed
Arroyo J.P., Lagnaz D., et al. Staub O. Nedd4-2 modulates renal Na+-Cl- cotransporter via the aldosterone-SGK1-Nedd4-2 pathway. J. Am. Soc. Nephrol. 2011;22:1707–1719. PubMed PMC
Kamynina E., Debonneville C., Bens M., Vandewalle A., Staub O. A novel mouse Nedd4 protein suppresses the activity of the epithelial Na+ channel. FASEB J. 2001;15:204–214. PubMed
Ekberg J., Schuetz F., et al. Adams D.J. Regulation of the voltage-gated K(+) channels KCNQ2/3 and KCNQ3/5 by ubiquitination. Novel role for Nedd4-2. J. Biol. Chem. 2007;282:12135–12142. PubMed
Zhu J., Lee K.Y., et al. Tsai N.P. Epilepsy-associated gene Nedd4-2 mediates neuronal activity and seizure susceptibility through AMPA receptors. PLoS Genet. 2017;13:e1006634. PubMed PMC
Broix L., Jagline H., et al. Chelly J. Mutations in the HECT domain of NEDD4L lead to AKT-mTOR pathway deregulation and cause periventricular nodular heterotopia. Nat. Genet. 2016;48:1349–1358. PubMed PMC
Popovic D., Vucic D., Dikic I. Ubiquitination in disease pathogenesis and treatment. Nat. Med. 2014;20:1242–1253. PubMed
Rizzo F., Staub O. NEDD4-2 and salt-sensitive hypertension. Curr. Opin. Nephrol. Hypertens. 2015;24:111–116. PubMed
Vanli-Yavuz E.N., Ozdemir O., et al. Baykan B. Investigation of the possible association of NEDD4-2 (NEDD4L) gene with idiopathic photosensitive epilepsy. Acta Neurol. Belg. 2015;115:241–245. PubMed
Corbalan-Garcia S., Gomez-Fernandez J.C. Signaling through C2 domains: more than one lipid target. Biochim. Biophys. Acta. 2014;1838:1536–1547. PubMed
Bork P., Sudol M. The WW domain: a signalling site in dystrophin? Trends Biochem. Sci. 1994;19:531–533. PubMed
Chen H.I., Sudol M. The WW domain of Yes-associated protein binds a proline-rich ligand that differs from the consensus established for Src homology 3-binding modules. Proc. Natl. Acad. Sci. U S A. 1995;92:7819–7823. PubMed PMC
Todaro D.R., Augustus-Wallace A.C., et al. Haas A.L. The mechanism of neural precursor cell expressed developmentally down-regulated 4-2 (Nedd4-2)/NEDD4L-catalyzed polyubiquitin chain assembly. J. Biol. Chem. 2017;292:19521–19536. PubMed PMC
French M.E., Klosowiak J.L., et al. Hunter T. Mechanism of ubiquitin chain synthesis employed by a HECT domain ubiquitin ligase. J. Biol. Chem. 2017;292:10398–10413. PubMed PMC
Fotia A.B., Dinudom A., et al. Kumar S. The role of individual Nedd4-2 (KIAA0439) WW domains in binding and regulating epithelial sodium channels. FASEB J. 2003;17:70–72. PubMed
Harvey K.F., Dinudom A., et al. Kumar S. All three WW domains of murine Nedd4 are involved in the regulation of epithelial sodium channels by intracellular Na+ J. Biol. Chem. 1999;274:12525–12530. PubMed
Snyder P.M., Olson D.R., et al. Bucher D.B. Multiple WW domains, but not the C2 domain, are required for inhibition of the epithelial Na+ channel by human Nedd4. J. Biol. Chem. 2001;276:28321–28326. PubMed
Bruce M.C., Kanelis V., et al. Rotin D. Regulation of Nedd4-2 self-ubiquitination and stability by a PY motif located within its HECT-domain. Biochem. J. 2008;415:155–163. PubMed
Zhang W., Na T., et al. Peng J.B. Down-regulation of intestinal apical calcium entry channel TRPV6 by ubiquitin E3 ligase Nedd4-2. J. Biol. Chem. 2010;285:36586–36596. PubMed PMC
Ichimura T., Yamamura H., et al. Isobe T. 14-3-3 proteins modulate the expression of epithelial Na+ channels by phosphorylation-dependent interaction with Nedd4-2 ubiquitin ligase. J. Biol. Chem. 2005;280:13187–13194. PubMed
Snyder P.M., Olson D.R., et al. Steines J.C. cAMP and serum and glucocorticoid-inducible kinase (SGK) regulate the epithelial Na(+) channel through convergent phosphorylation of Nedd4-2. J. Biol. Chem. 2004;279:45753–45758. PubMed
Bhalla V., Daidie D., et al. Pearce D. Serum- and glucocorticoid-regulated kinase 1 regulates ubiquitin ligase neural precursor cell-expressed, developmentally down-regulated protein 4-2 by inducing interaction with 14-3-3. Mol. Endocrinol. 2005;19:3073–3084. PubMed
Lee I.H., Dinudom A., et al. Cook D.I. Akt mediates the effect of insulin on epithelial sodium channels by inhibiting Nedd4-2. J. Biol. Chem. 2007;282:29866–29873. PubMed
Hallows K.R., Bhalla V., et al. Pearce D. Phosphopeptide screen uncovers novel phosphorylation sites of Nedd4-2 that potentiate its inhibition of the epithelial Na+ channel. J. Biol. Chem. 2010;285:21671–21678. PubMed PMC
Edinger R.S., Lebowitz J., et al. Hallows K.R. Functional regulation of the epithelial Na+ channel by IkappaB kinase-beta occurs via phosphorylation of the ubiquitin ligase Nedd4-2. J. Biol. Chem. 2009;284:150–157. PubMed PMC
Nagaki K., Yamamura H., et al. Ichimura T. 14-3-3 Mediates phosphorylation-dependent inhibition of the interaction between the ubiquitin E3 ligase Nedd4-2 and epithelial Na+ channels. Biochemistry. 2006;45:6733–6740. PubMed
Chandran S., Li H., et al. Bhalla V. Neural precursor cell-expressed developmentally down-regulated protein 4-2 (Nedd4-2) regulation by 14-3-3 protein binding at canonical serum and glucocorticoid kinase 1 (SGK1) phosphorylation sites. J. Biol. Chem. 2011;286:37830–37840. PubMed PMC
Pohl P., Joshi R., et al. Obsilova V. 14-3-3-protein regulates Nedd4-2 by modulating interactions between HECT and WW domains. Commun. Biol. 2021;4:899. PubMed PMC
Mackintosh C. Dynamic interactions between 14-3-3 proteins and phosphoproteins regulate diverse cellular processes. Biochem. J. 2004;381(Pt 2):329–342. PubMed PMC
Obsilova V., Obsil T. The 14-3-3 proteins as important allosteric regulators of protein kinases. Int. J. Mol. Sci. 2020;21:8824. PubMed PMC
Sluchanko N.N. Association of multiple phosphorylated proteins with the 14-3-3 regulatory hubs: problems and perspectives. J. Mol. Biol. 2018;430:20–26. PubMed
Gogl G., Tugaeva K.V., et al. Sluchanko N.N. Hierarchized phosphotarget binding by the seven human 14-3-3 isoforms. Nat. Commun. 2021;12:1677. PubMed PMC
Sluchanko N.N., Bustos D.M. Intrinsic disorder associated with 14-3-3 proteins and their partners. Prog. Mol. Biol. Transl Sci. 2019;166:19–61. PubMed
Bustos D.M. The role of protein disorder in the 14-3-3 interaction network. Mol. Biosyst. 2012;8:178–184. PubMed
Horvath M., Petrvalska O., et al. Obsil T. 14-3-3 proteins inactivate DAPK2 by promoting its dimerization and protecting key regulatory phosphosites. Commun. Biol. 2021;4:986. PubMed PMC
Rotin D., Staub O. Nedd4-2 and the regulation of epithelial sodium transport. Front Physiol. 2012;3:212. PubMed PMC
Obsil T., Ghirlando R., et al. Dyda F. Crystal structure of the 14-3-3zeta:serotonin N-acetyltransferase complex. a role for scaffolding in enzyme regulation. Cell. 2001;105:257–267. PubMed
Obsilova V., Herman P., et al. Obsil T. 14-3-3zeta C-terminal stretch changes its conformation upon ligand binding and phosphorylation at Thr232. J. Biol. Chem. 2004;279:4531–4540. PubMed
Boura E., Silhan J., et al. Obsil T. Both the N-terminal loop and wing W2 of the forkhead domain of transcription factor Foxo4 are important for DNA binding. J. Biol. Chem. 2007;282:8265–8275. PubMed
Niesen F.H., Berglund H., Vedadi M. The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat. Protoc. 2007;2:2212–2221. PubMed
Ballone A., Centorrino F., et al. Ottmann C. Protein X-ray crystallography of the 14-3-3zeta/SOS1 complex. Data Brief. 2018;19:1683–1687. PubMed PMC
Kacirova M., Kosek D., et al. Obsil T. Structural characterization of phosducin and its complex with the 14-3-3 protein. J. Biol. Chem. 2015;290:16246–16260. PubMed PMC
Vecer J., Herman P. Maximum entropy analysis of analytically simulated complex fluorescence decays. J. Fluorescence. 2011;21:873–881. PubMed
Lakowicz J.R. Springer; 2006. Principles of Fluorescence Spectroscopy.
Lakowicz J.R. Plenum Press; 1983. Principles of Fluorescence Spectroscopy.
Lehrer S.S. Solute perturbation of protein fluorescence. The quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry. 1971;10:3254–3263. PubMed
Yong W., Tsukasa I., et al. Fujio T. Dansyl-β-cyclodextrins as fluorescent sensors responsive to organic compounds. Bull. Chem. Soc. Jpn. 1994;67:1598–1607.
Sudol M., Chen H.I., et al. Bork P. Characterization of a novel protein-binding module--the WW domain. FEBS Lett. 1995;369:67–71. PubMed
Staub O., Rotin D. WW domains. Structure. 1996;4:495–499. PubMed
Snyder P.M., Olson D.R., Thomas B.C. Serum and glucocorticoid-regulated kinase modulates Nedd4-2-mediated inhibition of the epithelial Na+ channel. J. Biol. Chem. 2002;277:5–8. PubMed
Chan W., Tian R., et al. Manser E. Down-regulation of active ACK1 is mediated by association with the E3 ubiquitin ligase Nedd4-2. J. Biol. Chem. 2009;284:8185–8194. PubMed PMC
Roy A., Al-Qusairi L., et al. Subramanya A.R. Alternatively spliced proline-rich cassettes link WNK1 to aldosterone action. J. Clin. Invest. 2015;125:3433–3448. PubMed PMC
Asher C., Sinha I., Garty H. Characterization of the interactions between Nedd4-2, ENaC, and sgk-1 using surface plasmon resonance. Biochim. Biophys. Acta. 2003;1612:59–64. PubMed
Wiemuth D., Lott J.S., et al. McDonald F.J. Interaction of serum- and glucocorticoid regulated kinase 1 (SGK1) with the WW-domains of Nedd4-2 is required for epithelial sodium channel regulation. PLoS One. 2010;5:e12163. PubMed PMC
Bhalla V., Hallows K.R. Mechanisms of ENaC regulation and clinical implications. J. Am. Soc. Nephrol. 2008;19:1845–1854. PubMed
Snyder P.M. Down-regulating destruction: phosphorylation regulates the E3 ubiquitin ligase Nedd4-2. Sci. Signal. 2009;2:pe41. PubMed
Manning J.A., Kumar S. Physiological functions of Nedd4-2: lessons from knockout mouse models. Trends Biochem. Sci. 2018;43:635–647. PubMed
Wu P.Y., Hanlon M., et al. Pickart C.M. A conserved catalytic residue in the ubiquitin-conjugating enzyme family. EMBO J. 2003;22:5241–5250. PubMed PMC
Soini L., Redhead M., et al. Ottmann C. Identification of molecular glues of the SLP76/14-3-3 protein-protein interaction. RSC Med. Chem. 2021;12:1555–1564. PubMed PMC
Wolter M., Valenti D., et al. Ottmann C. An exploration of chemical properties required for cooperative stabilization of the 14-3-3 interaction with NF-kappaB-Utilizing a reversible covalent tethering approach. J. Med. Chem. 2021;64:8423–8436. PubMed PMC
Bryan R.K. Maximum entropy analysis of oversampled data problems. Eur. Biophys. J. 1990;18:165–174.
Marquardt D.W. An algorithm for least-squares estimation of Nonlinear parameters. J. Soc. Ind. Appl. Math. 1963;11:431–441.
Look for the Scaffold: Multifaceted Regulation of Enzyme Activity by 14-3-3 Proteins
Structural insights into the functional roles of 14-3-3 proteins