Look for the Scaffold: Multifaceted Regulation of Enzyme Activity by 14-3-3 Proteins
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
38647170
PubMed Central
PMC11412345
DOI
10.33549/physiolres.935306
PII: 935306
Knihovny.cz E-zdroje
- MeSH
- fosforylace MeSH
- lidé MeSH
- proteiny 14-3-3 * metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- proteiny 14-3-3 * MeSH
Enzyme activity is regulated by several mechanisms, including phosphorylation. Phosphorylation is a key signal transduction process in all eukaryotic cells and is thus crucial for virtually all cellular processes. In addition to its direct effect on protein structure, phosphorylation also affects protein-protein interactions, such as binding to scaffolding 14-3-3 proteins, which selectively recognize phosphorylated motifs. These interactions then modulate the catalytic activity, cellular localisation and interactions of phosphorylated enzymes through different mechanisms. The aim of this mini-review is to highlight several examples of 14-3-3 protein-dependent mechanisms of enzyme regulation previously studied in our laboratory over the past decade. More specifically, we address here the regulation of the human enzymes ubiquitin ligase Nedd4-2, procaspase-2, calcium-calmodulin dependent kinases CaMKK1/2, and death-associated protein kinase 2 (DAPK2) and yeast neutral trehalase Nth1.
Zobrazit více v PubMed
Choi KY, Satterberg B, Lyons DM, Elion EA. Ste5 tethers multiple protein kinases in the MAP kinase cascade required for mating in S. cerevisiae. Cell. 1994;78:499–512. doi: 10.1016/0092-8674(94)90427-8. PubMed DOI
Rubin CS, Rosen OM. Protein phosphorylation. Annu Rev Biochem. 1975;44:831–887. doi: 10.1146/annurev.bi.44.070175.004151. PubMed DOI
Reinhardt HC, Yaffe MB. Phospho-Ser/Thr-binding domains: navigating the cell cycle and DNA damage response. Nat Rev Mol Cell Biol. 2013;14:563–580. doi: 10.1038/nrm3640. PubMed DOI
Furukawa Y, Ikuta N, Omata S, Yamauchi T, Isobe T, Ichimura T. Demonstration of the phosphorylation-dependent interaction of tryptophan hydroxylase with the 14-3-3 protein. Biochem Biophys Res Commun. 1993;194:144–149. doi: 10.1006/bbrc.1993.1796. PubMed DOI
Fantl WJ, Muslin AJ, Kikuchi A, Martin JA, MacNicol AM, Gross RW, Williams LT. Activation of Raf-1 by 14-3-3 proteins. Nature. 1994;371:612–614. doi: 10.1038/371612a0. PubMed DOI
Freed E, Symons M, Macdonald SG, McCormick F, Ruggieri R. Binding of 14-3-3 proteins to the protein kinase Raf and effects on its activation. Science. 1994;265:1713–1716. doi: 10.1126/science.8085158. PubMed DOI
Fu H, Xia K, Pallas DC, Cui C, Conroy K, Narsimhan RP, Mamon H, Collier RJ, Roberts TM. Interaction of the protein kinase Raf-1 with 14-3-3 proteins. Science. 1994;266:126–129. doi: 10.1126/science.7939632. PubMed DOI
Yaffe MB, Rittinger K, Volinia S, Caron PR, Aitken A, Leffers H, Gamblin SJ, Smerdon SJ, Cantley LC. The structural basis for 14-3-3:phosphopeptide binding specificity. Cell. 1997;91:961–971. doi: 10.1016/S0092-8674(00)80487-0. PubMed DOI
Yaffe MB, Elia AE. Phosphoserine/threonine-binding domains. Curr Opin Cell Biol. 2001;13:131–138. doi: 10.1016/S0955-0674(00)00189-7. PubMed DOI
Aitken A. 14-3-3 proteins: a historic overview. Semin Cancer Biol. 2006;16:162–172. doi: 10.1016/j.semcancer.2006.03.005. PubMed DOI
Obsil T, Obsilova V. Structural basis of 14-3-3 protein functions. Semin Cell Dev Biol. 2011;22:663–672. doi: 10.1016/j.semcdb.2011.09.001. PubMed DOI
Sluchanko NN. Association of Multiple Phosphorylated Proteins with the 14-3-3 Regulatory Hubs: Problems and Perspectives. J Mol Biol. 2018;430:20–26. doi: 10.1016/j.jmb.2017.11.010. PubMed DOI
Obsilova V, Obsil T. Structural insights into the functional roles of 14-3-3 proteins. Front Mol Biosci. 2022;9:1016071. doi: 10.3389/fmolb.2022.1016071. PubMed DOI PMC
Liu D, Bienkowska J, Petosa C, Collier RJ, Fu H, Liddington R. Crystal structure of the zeta isoform of the 14-3-3 protein. Nature. 1995;376:191–194. doi: 10.1038/376191a0. PubMed DOI
Xiao B, Smerdon SJ, Jones DH, Dodson GG, Soneji Y, Aitken A, Gamblin SJ. Structure of a 14-3-3 protein and implications for coordination of multiple signalling pathways. Nature. 1995;376:188–191. doi: 10.1038/376188a0. PubMed DOI
Yang X, Lee WH, Sobott F, Papagrigoriou E, Robinson CV, Grossmann JG, Sundstrom M, Doyle DA, Elkins JM. Structural basis for protein-protein interactions in the 14-3-3 protein family. Proc Natl Acad Sci U S A. 2006;103:17237–17242. doi: 10.1073/pnas.0605779103. PubMed DOI PMC
Rittinger K, Budman J, Xu J, Volinia S, Cantley LC, Smerdon SJ, Gamblin SJ, Yaffe MB. Structural analysis of 14-3-3 phosphopeptide complexes identifies a dual role for the nuclear export signal of 14-3-3 in ligand binding. Mol Cell. 1999;4:153–166. doi: 10.1016/S1097-2765(00)80363-9. PubMed DOI
Bustos DM, Iglesias AA. Intrinsic disorder is a key characteristic in partners that bind 14-3-3 proteins. Proteins. 2006;63:35–42. doi: 10.1002/prot.20888. PubMed DOI
Sluchanko NN, Bustos DM. Intrinsic disorder associated with 14-3-3 proteins and their partners. Prog Mol Biol Transl Sci. 2019;166:19–61. doi: 10.1016/bs.pmbts.2019.03.007. PubMed DOI
Tinti M, Johnson C, Toth R, Ferrier DE, Mackintosh C. Evolution of signal multiplexing by 14-3-3-binding 2R-ohnologue protein families in the vertebrates. Open Biol. 2012;2:120103. doi: 10.1098/rsob.120103. PubMed DOI PMC
Ganguly S, Weller JL, Ho A, Chemineau P, Malpaux B, Klein DC. Melatonin synthesis: 14-3-3-dependent activation and inhibition of arylalkylamine N-acetyltransferase mediated by phosphoserine-205. Proc Natl Acad Sci U S A. 2005;102:1222–1227. doi: 10.1073/pnas.0406871102. PubMed DOI PMC
Eisenreichova A, Boura E. Structural basis for SARS-CoV-2 nucleocapsid (N) protein recognition by 14-3-3 proteins. J Struct Biol. 2022;214:107879. doi: 10.1016/j.jsb.2022.107879. PubMed DOI PMC
Tugaeva KV, Hawkins D, Smith JLR, Bayfield OW, Ker DS, Sysoev AA, Klychnikov OI, Antson AA, Sluchanko NN. The Mechanism of SARS-CoV-2 Nucleocapsid Protein Recognition by the Human 14-3-3 Proteins. J Mol Biol. 2021;433:166875. doi: 10.1016/j.jmb.2021.166875. PubMed DOI PMC
Tugaeva KV, Sysoev AA, Kapitonova AA, Smith JLR, Zhu P, Cooley RB, Antson AA, Sluchanko NN. Human 14-3-3 Proteins Site-selectively Bind the Mutational Hotspot Region of SARS-CoV-2 Nucleoprotein Modulating its Phosphoregulation. J Mol Biol. 2023;435:167891. doi: 10.1016/j.jmb.2022.167891. PubMed DOI PMC
Fu H, Subramanian RR, Masters SC. 14-3-3 proteins: structure, function, and regulation. Annu Rev Pharmacol Toxicol. 2000;40:617–647. doi: 10.1146/annurev.pharmtox.40.1.617. PubMed DOI
Tzivion G, Avruch J. 14-3-3 proteins: active cofactors in cellular regulation by serine/threonine phosphorylation. J Biol Chem. 2002;277:3061–3064. doi: 10.1074/jbc.R100059200. PubMed DOI
Bridges D, Moorhead GB. 14-3-3 proteins: a number of functions for a numbered protein. Sci STKE. 2004;2004:re10. doi: 10.1126/stke.2422004re10. PubMed DOI
Sluchanko NN. Reading the phosphorylation code: binding of the 14-3-3 protein to multivalent client phosphoproteins. Biochem J. 2020;477:1219–1225. doi: 10.1042/BCJ20200084. PubMed DOI
Kopp M, Muller H, Holzer H. Molecular analysis of the neutral trehalase gene from Saccharomyces cerevisiae. J Biol Chem. 1993;268:4766–4774. doi: 10.1016/S0021-9258(18)53463-3. PubMed DOI
Kopp M, Nwaka S, Holzer H. Corrected sequence of the yeast neutral trehalase-encoding gene (NTH1): biological implications. Gene. 1994;150:403–404. doi: 10.1016/0378-1119(94)90462-6. PubMed DOI
Nwaka S, Holzer H. Molecular biology of trehalose and the trehalases in the yeast Saccharomyces cerevisiae. Prog Nucleic Acid Res Mol Biol. 1998;58:197–237. doi: 10.1016/S0079-6603(08)60037-9. PubMed DOI
Wera S, De Schrijver E, Geyskens I, Nwaka S, Thevelein JM. Opposite roles of trehalase activity in heat-shock recovery and heat-shock survival in Saccharomyces cerevisiae. Biochem J. 1999;343(Pt 3):621–626. doi: 10.1042/bj3430621. PubMed DOI PMC
Uno I, Matsumoto K, Adachi K, Ishikawa T. Genetic and biochemical evidence that trehalase is a substrate of cAMP-dependent protein kinase in yeast. J Biol Chem. 1983;258:10867–10872. doi: 10.1016/S0021-9258(17)44356-0. PubMed DOI
Ortiz CH, Maia JC, Tenan MN, Braz-Padrao GR, Mattoon JR, Panek AD. Regulation of yeast trehalase by a monocyclic, cyclic AMP-dependent phosphorylation-dephosphorylation cascade system. J Bacteriol. 1983;153:644–651. doi: 10.1128/jb.153.2.644-651.1983. PubMed DOI PMC
Panni S, Landgraf C, Volkmer-Engert R, Cesareni G, Castagnoli L. Role of 14-3-3 proteins in the regulation of neutral trehalase in the yeast Saccharomyces cerevisiae. FEMS Yeast Res. 2008;8:53–63. doi: 10.1111/j.1567-1364.2007.00312.x. PubMed DOI
Veisova D, Macakova E, Rezabkova L, Sulc M, Vacha P, Sychrova H, Obsil T, Obsilova V. Role of individual phosphorylation sites for the 14-3-3-protein-dependent activation of yeast neutral trehalase Nth1. Biochem J. 2012;443:663–670. doi: 10.1042/BJ20111615. PubMed DOI
Franco A, Soto T, Vicente-Soler J, Paredes V, Madrid M, Gacto M, Cansado J. A role for calcium in the regulation of neutral trehalase activity in the fission yeast Schizosaccharomyces pombe. Biochem J. 2003;376:209–217. doi: 10.1042/bj20030825. PubMed DOI PMC
Kopecka M, Kosek D, Kukacka Z, Rezabkova L, Man P, Novak P, Obsil T, Obsilova V. Role of the EF-hand-like motif in the 14-3-3 protein-mediated activation of yeast neutral trehalase Nth1. J Biol Chem. 2014;289:13948–13961. doi: 10.1074/jbc.M113.544551. PubMed DOI PMC
Schepers W, Van Zeebroeck G, Pinkse M, Verhaert P, Thevelein JM. In Vivo Phosphorylation of SER21 and SER83 during Nutrient-induced Activation of the Yeast PKA Target Trehalase. J Biol Chem. 2012;287:44130–44142. doi: 10.1074/jbc.M112.421503. PubMed DOI PMC
Alblova M, Smidova A, Docekal V, Vesely J, Herman P, Obsilova V, Obsil T. Molecular basis of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1. Proc Natl Acad Sci U S A. 2017;114:E9811–E9820. doi: 10.1073/pnas.1714491114. PubMed DOI PMC
Amaral FC, Van Dijck P, Nicoli JR, Thevelein JM. Molecular cloning of the neutral trehalase gene from Kluyveromyces lactis and the distinction between neutral and acid trehalases. Arch Microbiol. 1997;167:202–208. doi: 10.1007/s002030050436. PubMed DOI
Eck R, Bergmann C, Ziegelbauer K, Schonfeld W, Kunkel W. A neutral trehalase gene from Candida albicans: molecular cloning, characterization and disruption. Microbiology. 1997;143(Pt 12):3747–3756. doi: 10.1099/00221287-143-12-3747. PubMed DOI
Ewald JC, Kuehne A, Zamboni N, Skotheim JM. The Yeast Cyclin-Dependent Kinase Routes Carbon Fluxes to Fuel Cell Cycle Progression. Molecular Cell. 2016;62:532–545. doi: 10.1016/j.molcel.2016.02.017. PubMed DOI PMC
Dengler L, Ord M, Schwab LM, Loog M, Ewald JC. Regulation of trehalase activity by multi-site phosphorylation and 14-3-3 interaction. Sci Rep. 2021;11:962. doi: 10.1038/s41598-020-80357-3. PubMed DOI PMC
Zhang L, Winkler S, Schlottmann FP, Kohlbacher O, Elias JE, Skotheim JM, Ewald JC. Multiple Layers of Phospho-Regulation Coordinate Metabolism and the Cell Cycle in Budding Yeast. Front Cell Dev Biol. 2019;7:338. doi: 10.3389/fcell.2019.00338. PubMed DOI PMC
Zhao G, Chen Y, Carey L, Futcher B. Cyclin-Dependent Kinase Co-Ordinates Carbohydrate Metabolism and Cell Cycle in S. cerevisiae. Molecular Cell. 2016;62:546–557. doi: 10.1016/j.molcel.2016.04.026. PubMed DOI PMC
Macakova E, Kopecka M, Kukacka Z, Veisova D, Novak P, Man P, Obsil T, Obsilova V. Structural basis of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1. Biochim Biophys Acta. 2013;1830:4491–4499. doi: 10.1016/j.bbagen.2013.05.025. PubMed DOI
Kumar S, Tomooka Y, Noda M. Identification of a set of genes with developmentally down-regulated expression in the mouse brain. Biochem Biophys Res Commun. 1992;185:1155–1161. doi: 10.1016/0006-291X(92)91747-E. PubMed DOI
Kumar S, Harvey KF, Kinoshita M, Copeland NG, Noda M, Jenkins NA. cDNA cloning, expression analysis, and mapping of the mouse Nedd4 gene. Genomics. 1997;40:435–443. doi: 10.1006/geno.1996.4582. PubMed DOI
Andre B, Springael JY. WWP, a new amino acid motif present in single or multiple copies in various proteins including dystrophin and the SH3-binding Yes-associated protein YAP65. Biochem Biophys Res Commun. 1994;205:1201–1205. doi: 10.1006/bbrc.1994.2793. PubMed DOI
Goel P, Manning JA, Kumar S. NEDD4-2 (NEDD4L): the ubiquitin ligase for multiple membrane proteins. Gene. 2015;557:1–10. doi: 10.1016/j.gene.2014.11.051. PubMed DOI PMC
Harvey KF, Kumar S. Nedd4-like proteins: an emerging family of ubiquitin-protein ligases implicated in diverse cellular functions. Trends Cell Biol. 1999;9:166–169. doi: 10.1016/S0962-8924(99)01541-X. PubMed DOI
Bhalla V, Daidie D, Li H, Pao AC, LaGrange LP, Wang J, Vandewalle A, et al. Serum- and glucocorticoid-regulated kinase 1 regulates ubiquitin ligase neural precursor cell-expressed, developmentally down-regulated protein 4-2 by inducing interaction with 14-3-3. Mol Endocrinol. 2005;19:3073–3084. doi: 10.1210/me.2005-0193. PubMed DOI
Nagaki K, Yamamura H, Shimada S, Saito T, Hisanaga S, Taoka M, Isobe T, Ichimura T. 14-3-3 Mediates phosphorylation-dependent inhibition of the interaction between the ubiquitin E3 ligase Nedd4-2 and epithelial Na+ channels. Biochemistry. 2006;45:6733–6740. doi: 10.1021/bi052640q. PubMed DOI
Chandran S, Li H, Dong W, Krasinska K, Adams C, Alexandrova L, Chien A, Hallows KR, Bhalla V. Neural precursor cell-expressed developmentally down-regulated protein 4-2 (Nedd4-2) regulation by 14-3-3 protein binding at canonical serum and glucocorticoid kinase 1 (SGK1) phosphorylation sites. J Biol Chem. 2011;286:37830–37840. doi: 10.1074/jbc.M111.293233. PubMed DOI PMC
Pohl P, Joshi R, Petrvalska O, Obsil T, Obsilova V. 14-3-3-protein regulates Nedd4-2 by modulating interactions between HECT and WW domains. Commun Biol. 2021;4:899. doi: 10.1038/s42003-021-02419-0. PubMed DOI PMC
Joshi R, Pohl P, Strachotova D, Herman P, Obsil T, Obsilova V. Nedd4-2 binding to 14-3-3 modulates the accessibility of its catalytic site and WW domains. Biophys J. 2022;121:1299–1311. doi: 10.1016/j.bpj.2022.02.025. PubMed DOI PMC
Huang X, Dixit VM. Drugging the undruggables: exploring the ubiquitin system for drug development. Cell Res. 2016;26:484–498. doi: 10.1038/cr.2016.31. PubMed DOI PMC
Stevers LM, Sijbesma E, Botta M, MacKintosh C, Obsil T, Landrieu I, Cau Y, et al. Modulators of 14-3-3 Protein-Protein Interactions. J Med Chem. 2018;61:3755–3778. doi: 10.1021/acs.jmedchem.7b00574. PubMed DOI PMC
Pop C, Salvesen GS. Human caspases: activation, specificity, and regulation. J Biol Chem. 2009;284:21777–21781. doi: 10.1074/jbc.R800084200. PubMed DOI PMC
Krumschnabel G, Manzl C, Villunger A. Caspase-2: killer, savior and safeguard--emerging versatile roles for an ill-defined caspase. Oncogene. 2009;28:3093–3096. doi: 10.1038/onc.2009.173. PubMed DOI PMC
Dorstyn L, Puccini J, Nikolic A, Shalini S, Wilson CH, Norris MD, Haber M, Kumar S. An unexpected role for caspase-2 in neuroblastoma. Cell Death Dis. 2014;5:e1383. doi: 10.1038/cddis.2014.342. PubMed DOI PMC
Duan H, Dixit VM. RAIDD is a new ‘death’ adaptor molecule. Nature. 1997;385:86–89. doi: 10.1038/385086a0. PubMed DOI
Tinel A, Tschopp J. The PIDDosome, a protein complex implicated in activation of caspase-2 in response to genotoxic stress. Science. 2004;304:843–846. doi: 10.1126/science.1095432. PubMed DOI
Nutt LK, Margolis SS, Jensen M, Herman CE, Dunphy WG, Rathmell JC, Kornbluth S. Metabolic regulation of oocyte cell death through the CaMKII-mediated phosphorylation of caspase-2. Cell. 2005;123:89–103. doi: 10.1016/j.cell.2005.07.032. PubMed DOI PMC
Nutt LK, Buchakjian MR, Gan E, Darbandi R, Yoon SY, Wu JQ, Miyamoto YJ, et al. Metabolic control of oocyte apoptosis mediated by 14-3-3zeta-regulated dephosphorylation of caspase-2. Dev Cell. 2009;16:856–866. doi: 10.1016/j.devcel.2009.04.005. PubMed DOI PMC
Miles MA, Kitevska-Ilioski T, Hawkins CJ. Old and Novel Functions of Caspase-2. Int Rev Cell Mol Biol. 2017;332:155–212. doi: 10.1016/bs.ircmb.2016.12.002. PubMed DOI
Kalabova D, Smidova A, Petrvalska O, Alblova M, Kosek D, Man P, Obsil T, Obsilova V. Human procaspase-2 phosphorylation at both S139 and S164 is required for 14-3-3 binding. Biochem Biophys Res Commun. 2017;493:940–945. doi: 10.1016/j.bbrc.2017.09.116. PubMed DOI
Mancini M, Machamer CE, Roy S, Nicholson DW, Thornberry NA, Casciola-Rosen LA, Rosen A. Caspase-2 is localized at the Golgi complex and cleaves golgin-160 during apoptosis. J Cell Biol. 2000;149:603–612. doi: 10.1083/jcb.149.3.603. PubMed DOI PMC
Colussi PA, Harvey NL, Kumar S. Prodomain-dependent nuclear localization of the caspase-2 (Nedd2) precursor. A novel function for a caspase prodomain. J Biol Chem. 1998;273:24535–24542. doi: 10.1074/jbc.273.38.24535. PubMed DOI
Baliga BC, Colussi PA, Read SH, Dias MM, Jans DA, Kumar S. Role of prodomain in importin-mediated nuclear localization and activation of caspase-2. J Biol Chem. 2003;278:4899–4905. doi: 10.1074/jbc.M211512200. PubMed DOI
Ando K, Parsons MJ, Shah RB, Charendoff CI, Paris SL, Liu PH, Fassio SR, et al. NPM1 directs PIDDosome-dependent caspase-2 activation in the nucleolus. J Cell Biol. 2017;216:1795–1810. doi: 10.1083/jcb.201608095. PubMed DOI PMC
Smidova A, Alblova M, Kalabova D, Psenakova K, Rosulek M, Herman P, Obsil T, Obsilova V. 14-3-3 protein masks the nuclear localization sequence of caspase-2. FEBS J. 2018;285:4196–4213. doi: 10.1111/febs.14670. PubMed DOI
Kalabova D, Filandr F, Alblova M, Petrvalska O, Horvath M, Man P, Obsil T, Obsilova V. 14-3-3 protein binding blocks the dimerization interface of caspase-2. FEBS J. 2020;287:3494–3510. doi: 10.1111/febs.15215. PubMed DOI
Bialik S, Kimchi A. The death-associated protein kinases: structure, function, and beyond. Annu Rev Biochem. 2006;75:189–210. doi: 10.1146/annurev.biochem.75.103004.142615. PubMed DOI
Farag AK, Roh EJ. Death-associated protein kinase (DAPK) family modulators: Current and future therapeutic outcomes. Med Res Rev. 2019;39:349–385. doi: 10.1002/med.21518. PubMed DOI
Shiloh R, Bialik S, Kimchi A. The DAPK family: a structure-function analysis. Apoptosis. 2014;19:286–297. doi: 10.1007/s10495-013-0924-5. PubMed DOI
Kawai T, Nomura F, Hoshino K, Copeland NG, Gilbert DJ, Jenkins NA, Akira S. Death-associated protein kinase 2 is a new calcium/calmodulin-dependent protein kinase that signals apoptosis through its catalytic activity. Oncogene. 1999;18:3471–3480. doi: 10.1038/sj.onc.1202701. PubMed DOI
Ber Y, Shiloh R, Gilad Y, Degani N, Bialik S, Kimchi A. DAPK2 is a novel regulator of mTORC1 activity and autophagy. Cell Death Differ. 2015;22:465–475. doi: 10.1038/cdd.2014.177. PubMed DOI PMC
Patel AK, Yadav RP, Majava V, Kursula I, Kursula P. Structure of the dimeric autoinhibited conformation of DAPK2, a pro-apoptotic protein kinase. J Mol Biol. 2011;409:369–383. doi: 10.1016/j.jmb.2011.03.065. PubMed DOI
Simon B, Huart AS, Temmerman K, Vahokoski J, Mertens HD, Komadina D, Hoffmann JE, Yumerefendi H, Svergun DI, Kursula P, Schultz C, McCarthy AA, Hart DJ, Wilmanns M. Death-Associated Protein Kinase Activity Is Regulated by Coupled Calcium/Calmodulin Binding to Two Distinct Sites. Structure. 2016;24:851–861. doi: 10.1016/j.str.2016.03.020. PubMed DOI PMC
Shiloh R, Gilad Y, Ber Y, Eisenstein M, Aweida D, Bialik S, Cohen S, Kimchi A. Non-canonical activation of DAPK2 by AMPK constitutes a new pathway linking metabolic stress to autophagy. Nat Commun. 2018;9:1759. doi: 10.1038/s41467-018-03907-4. PubMed DOI PMC
Horvath M, Petrvalska O, Herman P, Obsilova V, Obsil T. 14-3-3 proteins inactivate DAPK2 by promoting its dimerization and protecting key regulatory phosphosites. Commun Biol. 2021;4:986. doi: 10.1038/s42003-021-02518-y. PubMed DOI PMC
Wurtele M, Jelich-Ottmann C, Wittinghofer A, Oecking C. Structural view of a fungal toxin acting on a 14-3-3 regulatory complex. EMBO J. 2003;22:987–994. doi: 10.1093/emboj/cdg104. PubMed DOI PMC
Gocher AM, Azabdaftari G, Euscher LM, Dai S, Karacosta LG, Franke TF, Edelman AM. Akt activation by Ca(2+)/calmodulin-dependent protein kinase kinase 2 (CaMKK2) in ovarian cancer cells. J Biol Chem. 2017;292:14188–14204. doi: 10.1074/jbc.M117.778464. PubMed DOI PMC
Mizuno K, Ris L, Sanchez-Capelo A, Godaux E, Giese KP. Ca2+/calmodulin kinase kinase alpha is dispensable for brain development but is required for distinct memories in male, though not in female, mice. Mol Cell Biol. 2006;26:9094–9104. doi: 10.1128/MCB.01221-06. PubMed DOI PMC
Yano S, Tokumitsu H, Soderling TR. Calcium promotes cell survival through CaM-K kinase activation of the protein-kinase-B pathway. Nature. 1998;396:584–587. doi: 10.1038/25147. PubMed DOI
Tokumitsu H, Wayman GA, Muramatsu M, Soderling TR. Calcium/calmodulin-dependent protein kinase kinase: identification of regulatory domains. Biochemistry. 1997;36:12823–12827. doi: 10.1021/bi971348i. PubMed DOI
Tokumitsu H, Sakagami H. Molecular Mechanisms Underlying Ca(2+)/Calmodulin-Dependent Protein Kinase Kinase Signal Transduction. Int J Mol Sci. 2022;23:11025. doi: 10.3390/ijms231911025. PubMed DOI PMC
Davare MA, Saneyoshi T, Guire ES, Nygaard SC, Soderling TR. Inhibition of calcium/calmodulin-dependent protein kinase kinase by protein 14-3-3. J Biol Chem. 2004;279:52191–52199. doi: 10.1074/jbc.M409873200. PubMed DOI
Ichimura T, Taoka M, Hozumi Y, Goto K, Tokumitsu H. 14-3-3 Proteins directly regulate Ca(2+)/calmodulin-dependent protein kinase kinase alpha through phosphorylation-dependent multisite binding. FEBS Lett. 2008;582:661–665. doi: 10.1016/j.febslet.2008.01.037. PubMed DOI
Langendorf CG, O’Brien MT, Ngoei KRW, McAloon LM, Dhagat U, Hoque A, Ling NXY, Dite TA, Galic S, Loh K, Parker MW, Oakhill JS, Kemp BE, Scott JW. CaMKK2 is inactivated by cAMP-PKA signaling and 14-3-3 adaptor proteins. J Biol Chem. 2020;295:16239–16250. doi: 10.1074/jbc.RA120.013756. PubMed DOI PMC
Lentini Santo D, Petrvalska O, Obsilova V, Ottmann C, Obsil T. Stabilization of Protein-Protein Interactions between CaMKK2 and 14-3-3 by Fusicoccins. ACS Chem Biol. 2020;15:3060–3071. doi: 10.1021/acschembio.0c00821. PubMed DOI
Psenakova K, Petrvalska O, Kylarova S, Lentini Santo D, Kalabova D, Herman P, Obsilova V, Obsil T. 14-3-3 protein directly interacts with the kinase domain of calcium/calmodulin-dependent protein kinase kinase (CaMKK2) Biochim Biophys Acta. 2018;1862:1612–1625. doi: 10.1016/j.bbagen.2018.04.006. PubMed DOI
Petrvalska O, Honzejkova K, Koupilova N, Herman P, Obsilova V, Obsil T. 14-3-3 protein inhibits CaMKK1 by blocking the kinase active site with its last two C-terminal helices. Protein Sci. 2023;32:e4805. doi: 10.1002/pro.4805. PubMed DOI PMC
Zhang W, Wu KP, Sartori MA, Kamadurai HB, Ordureau A, Jiang C, Mercredi PY, Murchie R, Hu J, Persaud A, Mukherjee M, Li N, Doye A, Walker JR, Sheng Y, Hao Z, Li Y, Brown KR, Lemichez E, Chen J, Tong Y, Harper JW, Moffat J, Rotin D, Schulman BA, Sidhu SS. System-Wide Modulation of HECT E3 Ligases with Selective Ubiquitin Variant Probes. Mol Cell. 2016;62:121–136. doi: 10.1016/j.molcel.2016.02.005. PubMed DOI PMC
Tang Y, Wells JA, Arkin MR. Structural and enzymatic insights into caspase-2 protein substrate recognition and catalysis. J Biol Chem. 2011;286:34147–34154. doi: 10.1074/jbc.M111.247627. PubMed DOI PMC