Modulators of 14-3-3 Protein-Protein Interactions
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
28968506
PubMed Central
PMC5949722
DOI
10.1021/acs.jmedchem.7b00574
Knihovny.cz E-zdroje
- MeSH
- lidé MeSH
- objevování léků metody MeSH
- proteiny 14-3-3 antagonisté a inhibitory metabolismus MeSH
- stabilita proteinů účinky léků MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- proteiny 14-3-3 MeSH
Direct interactions between proteins are essential for the regulation of their functions in biological pathways. Targeting the complex network of protein-protein interactions (PPIs) has now been widely recognized as an attractive means to therapeutically intervene in disease states. Even though this is a challenging endeavor and PPIs have long been regarded as "undruggable" targets, the last two decades have seen an increasing number of successful examples of PPI modulators, resulting in growing interest in this field. PPI modulation requires novel approaches and the integrated efforts of multiple disciplines to be a fruitful strategy. This perspective focuses on the hub-protein 14-3-3, which has several hundred identified protein interaction partners, and is therefore involved in a wide range of cellular processes and diseases. Here, we aim to provide an integrated overview of the approaches explored for the modulation of 14-3-3 PPIs and review the examples resulting from these efforts in both inhibiting and stabilizing specific 14-3-3 protein complexes by small molecules, peptide mimetics, and natural products.
Department of Chemistry University of Duisburg Essen Universitätstraße 7 45141 Essen Germany
GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY United Kingdom
Lead Discovery Center GmbH Dortmund 44227 Germany
School of Chemistry University of Leeds Woodhouse Lane Leeds LS2 9JT United Kingdom
Taros Chemicals GmbH and Co KG Dortmund 44227 Germany
Zobrazit více v PubMed
Hatzivassiliou G.; Song K.; Yen I.; Brandhuber B. J.; Anderson D. J.; Alvarado R.; Ludlam M. J.; Stokoe D.; Gloor S. L.; Vigers G.; Morales T.; Aliagas I.; Liu B.; Sideris S.; Hoeflich K. P.; Jaiswal B. S.; Seshagiri S.; Koeppen H.; Belvin M.; Friedman L. S.; Malek S. RAF Inhibitors Prime Wild-Type RAF to Activate the MAPK Pathway and Enhance Growth. Nature 2010, 464 (7287), 431–435. 10.1038/nature08833. PubMed DOI
Poulikakos P. I.; Persaud Y.; Janakiraman M.; Kong X.; Ng C.; Moriceau G.; Shi H.; Atefi M.; Titz B.; Gabay M. T.; Salton M.; Dahlman K. B.; Tadi M.; Wargo J. A.; Flaherty K. T.; Kelley M. C.; Misteli T.; Chapman P. B.; Sosman J. A.; Graeber T. G.; Ribas A.; Lo R. S.; Rosen N.; Solit D. B. RAF Inhibitor Resistance Is Mediated by Dimerization of Aberrantly Spliced BRAF(V600E). Nature 2011, 480 (7377), 387–390. 10.1038/nature10662. PubMed DOI PMC
Heidorn S. J.; Milagre C.; Whittaker S.; Nourry A.; Niculescu-Duvas I.; Dhomen N.; Hussain J.; Reis-Filho J. S.; Springer C. J.; Pritchard C.; Marais R. Kinase-Dead BRAF and Oncogenic RAS Cooperate to Drive Tumor Progression through CRAF. Cell 2010, 140 (2), 209–221. 10.1016/j.cell.2009.12.040. PubMed DOI PMC
Hopkins A. L.; Groom C. R. The Druggable Genome. Nat. Rev. Drug Discovery 2002, 1 (9), 727–730. 10.1038/nrd892. PubMed DOI
Overington J. P.; Al-Lazikani B.; Hopkins A. L. How Many Drug Targets Are There?. Nat. Rev. Drug Discovery 2006, 5 (12), 993–996. 10.1038/nrd2199. PubMed DOI
Venkatesan K.; Rual J.-F.; Vazquez A.; Stelzl U.; Lemmens I.; Hirozane-Kishikawa T.; Hao T.; Zenkner M.; Xin X.; Goh K.-I.; Yildirim M. A.; Simonis N.; Heinzmann K.; Gebreab F.; Sahalie J. M.; Cevik S.; Simon C.; de Smet A.-S.; Dann E.; Smolyar A.; Vinayagam A.; Yu H.; Szeto D.; Borick H.; Dricot A.; Klitgord N.; Murray R. R.; Lin C.; Lalowski M.; Timm J.; Rau K.; Boone C.; Braun P.; Cusick M. E.; Roth F. P.; Hill D. E.; Tavernier J.; Wanker E. E.; Barabási A.-L.; Vidal M. An Empirical Framework for Binary Interactome Mapping. Nat. Methods 2009, 6 (1), 83–90. 10.1038/nmeth.1280. PubMed DOI PMC
Stumpf M. P. H.; Thorne T.; de Silva E.; Stewart R.; An H. J.; Lappe M.; Wiuf C. Estimating the Size of the Human Interactome. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 6959–6964. 10.1073/pnas.0708078105. PubMed DOI PMC
Ottmann C.; van der Hoorn R. A. L.; Kaiser M. The Impact of Plant–pathogen Studies on Medicinal Drug Discovery. Chem. Soc. Rev. 2012, 41 (8), 3168.10.1039/c2cs15301g. PubMed DOI
Waring M. J.; Arrowsmith J.; Leach A. R.; Leeson P. D.; Mandrell S.; Owen R. M.; Pairaudeau G.; Pennie W. D.; Pickett S. D.; Wang J.; Wallace O.; Weir A. An Analysis of the Attrition of Drug Candidates from Four Major Pharmaceutical Companies. Nat. Rev. Drug Discovery 2015, 14 (7), 475–486. 10.1038/nrd4609. PubMed DOI
Arrowsmith C. H.; Audia J. E.; Austin C.; Baell J.; Bennett J.; Blagg J.; Bountra C.; Brennan P. E.; Brown P. J.; Bunnage M. E.; Buser-Doepner C.; Campbell R. M.; Carter A. J.; Cohen P.; Copeland R. A.; Cravatt B.; Dahlin J. L.; Dhanak D.; Edwards A. M.; Frye S. V.; Gray N.; Grimshaw C. E.; Hepworth D.; Howe T.; Huber K. V. M; Jin J.; Knapp S.; Kotz J. D.; Kruger R. G.; Lowe D.; Mader M. M.; Marsden B.; Mueller-Fahrnow A.; Muller S.; O’Hagan R. C.; Overington J. P.; Owen D. R.; Rosenberg S. H.; Roth B.; Ross R.; Schapira M.; Schreiber S. L.; Shoichet B.; Sundstrom M.; Superti-Furga G.; Taunton J.; Toledo-Sherman L.; Walpole C.; Walters M. A.; Willson T. M.; Workman P.; Young R. N.; Zuercher W. J. The Promise and Peril of Chemical Probes. Nat. Chem. Biol. 2015, 11 (8), 536–541. 10.1038/nchembio.1867. PubMed DOI PMC
Frye S. V. The Art of the Chemical Probe. Nat. Chem. Biol. 2010, 6 (3), 159–161. 10.1038/nchembio.296. PubMed DOI
Edwards A. M.; Isserlin R.; Bader G. D.; Frye S. V.; Willson T. M.; Yu F. H. Too Many Roads Not Taken. Nature 2011, 470 (7333), 163–165. 10.1038/470163a. PubMed DOI
Filippakopoulos P.; Qi J.; Picaud S.; Shen Y.; Smith W. B.; Fedorov O.; Morse E. M.; Keates T.; Hickman T. T.; Felletar I.; Philpott M.; Munro S.; McKeown M. R.; Wang Y.; Christie A. L.; West N.; Cameron M. J.; Schwartz B.; Heightman T. D.; La Thangue N.; French C. a; Wiest O.; Kung A. L.; Knapp S.; Bradner J. E. Selective Inhibition of BET Bromodomains. Nature 2010, 468 (7327), 1067–1073. 10.1038/nature09504. PubMed DOI PMC
Vassilev L. T.; Vu B. T.; Craves B.; Carvajal D.; Podlaski F.; Filipovic Z.; Kong N.; Kammlott U.; Lukacs C.; Klein C.; Fotouhi N.; Liu E. A. In Vivo Activation of the p53 Pathway by Small-MoleculeAntagonists of MDM2. Science 2004, 303 (5659), 844–848. 10.1126/science.1092472. PubMed DOI
Edfeldt F. N. B.; Folmer R. H. A.; Breeze A. L. Fragment Screening to Predict Druggability (Ligandability) and Lead Discovery Success. Drug Discovery Today 2011, 16 (7–8), 284–287. 10.1016/j.drudis.2011.02.002. PubMed DOI
Surade S.; Blundell T. L. Structural Biology and Drug Discovery of Difficult Targets: The Limits of Ligandability. Chem. Biol. 2012, 19 (1), 42–50. 10.1016/j.chembiol.2011.12.013. PubMed DOI
Clackson T.; Wells J. A. A Hot Spot of Binding Energy in a Hormone-Receptor Interface. Science 1995, 267 (5196), 383–386. 10.1126/science.7529940. PubMed DOI
Biologic Drugs Set to Top 2012 Sales. Nat. Med. 2012, 18 (5), 636.10.1038/nm0512-636a. PubMed DOI
Azzarito V.; Long K.; Murphy N. S.; Wilson A. J. Inhibition of α-Helix-Mediated Protein-Protein Interactions Using Designed Molecules. Nat. Chem. 2013, 5 (3), 161–173. 10.1038/nchem.1568. PubMed DOI
Arkin M. R.; Tang Y.; Wells J. A. Small-Molecule Inhibitors of Protein-Protein Interactions: Progressing toward the Reality. Chem. Biol. 2014, 21 (9), 1102–1114. 10.1016/j.chembiol.2014.09.001. PubMed DOI PMC
Gopalakrishnan R.; Frolov A. I.; Knerr L.; Drury W. J.; Valeur E. Therapeutic Potential of Foldamers: From Chemical Biology Tools to Drug Candidates?. J. Med. Chem. 2016, 59 (21), 9599–9621. 10.1021/acs.jmedchem.6b00376. PubMed DOI
Wilson W. H.; O’Connor O. A.; Czuczman M. S.; LaCasce A. S.; Gerecitano J. F.; Leonard J. P.; Tulpule A.; Dunleavy K.; Xiong H.; Chiu Y. L.; Cui Y.; Busman T.; Elmore S. W.; Rosenberg S. H.; Krivoshik A. P.; Enschede S. H.; Humerickhouse R. A. Navitoclax, a Targeted High-Affinity Inhibitor of BCL-2, in Lymphoid Malignancies: A Phase 1 Dose-Escalation Study of Safety, Pharmacokinetics, Pharmacodynamics, and Antitumour Activity. Lancet Oncol. 2010, 11 (12), 1149–1159. 10.1016/S1470-2045(10)70261-8. PubMed DOI PMC
Milroy L. G.; Grossmann T. N.; Hennig S.; Brunsveld L.; Ottmann C. Modulators of Protein-Protein Interactions. Chem. Rev. 2014, 114 (9), 4695–4748. 10.1021/cr400698c. PubMed DOI
Thiel P.; Kaiser M.; Ottmann C. Small-Molecule Stabilization of Protein-Protein Interactions: An Underestimated Concept in Drug Discovery?. Angew. Chem., Int. Ed. 2012, 51 (9), 2012–2018. 10.1002/anie.201107616. PubMed DOI
Thompson A. D.; Dugan A.; Gestwicki J. E.; Mapp A. K. Fine-Tuning Multiprotein Complexes Using Small Molecules. ACS Chem. Biol. 2012, 7 (8), 1311–1320. 10.1021/cb300255p. PubMed DOI PMC
Pelay-Gimeno M.; Glas A.; Koch O.; Grossmann T. N. Structure-Based Design of Inhibitors of Protein-Protein Interactions: Mimicking Peptide Binding Epitopes. Angew. Chem., Int. Ed. 2015, 54 (31), 8896–8927. 10.1002/anie.201412070. PubMed DOI PMC
Aeluri M.; Chamakuri S.; Dasari B.; Guduru S. K. R.; Jimmidi R.; Jogula S.; Arya P. Small Molecule Modulators of Protein-Protein Interactions: Selected Case Studies. Chem. Rev. 2014, 114 (9), 4640–4694. 10.1021/cr4004049. PubMed DOI
Nussinov R.; Tsai C.-J. Allostery in Disease and in Drug Discovery. Cell 2013, 153 (2), 293–305. 10.1016/j.cell.2013.03.034. PubMed DOI
Samatar A. A.; Poulikakos P. I. Targeting RAS–ERK Signalling in Cancer: Promises and Challenges. Nat. Rev. Drug Discovery 2014, 13 (12), 928–942. 10.1038/nrd4281. PubMed DOI
Ray-Coquard I.; Blay J. Y.; Italiano A.; Le Cesne A.; Penel N.; Zhi J.; Heil F.; Rueger R.; Graves B.; Ding M.; Geho D.; Middleton S. A.; Vassilev L. T.; Nichols G. L.; Bui B. N. Effect of the MDM2 Antagonist RG7112 on the P53 Pathway in Patients with MDM2-Amplified, Well-Differentiated or Dedifferentiated Liposarcoma: An Exploratory Proof-of-Mechanism Study. Lancet Oncol. 2012, 13 (11), 1133–1140. 10.1016/S1470-2045(12)70474-6. PubMed DOI
Souers A. J.; Leverson J. D.; Boghaert E. R.; Ackler S. L.; Catron N. D.; Chen J.; Dayton B. D.; Ding H.; Enschede S. H.; Fairbrother W. J.; Huang D. C. S.; Hymowitz S. G.; Jin S.; Khaw S. L.; Kovar P. J.; Lam L. T.; Lee J.; Maecker H. L.; Marsh K. C.; Mason K. D.; Mitten M. J.; Nimmer P. M.; Oleksijew A.; Park C. H.; Park C.-M.; Phillips D. C.; Roberts A. W.; Sampath D.; Seymour J. F.; Smith M. L.; Sullivan G. M.; Tahir S. K.; Tse C.; Wendt M. D.; Xiao Y.; Xue J. C.; Zhang H.; Humerickhouse R. a; Rosenberg S. H.; Elmore S. W. ABT-199, a Potent and Selective BCL-2 Inhibitor, Achieves Antitumor Activity While Sparing Platelets. Nat. Med. 2013, 19 (2), 202–208. 10.1038/nm.3048. PubMed DOI
Mirguet O.; Gosmini R.; Toum J.; Clément C. A.; Barnathan M.; Brusq J. M.; Mordaunt J. E.; Grimes R. M.; Crowe M.; Pineau O.; Ajakane M.; Daugan A.; Jeffrey P.; Cutler L.; Haynes A. C.; Smithers N. N.; Chung C. W.; Bamborough P.; Uings I. J.; Lewis A.; Witherington J.; Parr N.; Prinjha R. K.; Nicodème E. Discovery of Epigenetic Regulator I-bet762: Lead Optimization to Afford a Clinical Candidate Inhibitor of the Bet Bromodomains. J. Med. Chem. 2013, 56 (19), 7501–7515. 10.1021/jm401088k. PubMed DOI
Lipinski C. A.; Lombardo F.; Dominy B. W.; Feeney P. J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Setting. Adv. Drug Delivery Rev. 1997, 23, 3–25. 10.1016/S0169-409X(96)00423-1. PubMed DOI
Nogales E.; Wolf S. G.; Khan I. A.; Ludueña R. F.; Downing K. H. Structure of Tubulin at 6.5 A and Location of the Taxol-Binding Site. Nature 1995, 375 (6530), 424–427. 10.1038/375424a0. PubMed DOI
Scheuermann T. H.; Li Q.; Ma H.-W.; Key J.; Zhang L.; Chen R.; Garcia J. a; Naidoo J.; Longgood J.; Frantz D. E.; Tambar U. K.; Gardner K. H.; Bruick R. K. Allosteric Inhibition of Hypoxia Inducible Factor-2 with Small Molecules. Nat. Chem. Biol. 2013, 9 (4), 271–276. 10.1038/nchembio.1185. PubMed DOI PMC
Cho H.; Du X.; Rizzi J. P.; Liberzon E.; Chakraborty A. A.; Gao W.; Carvo I.; Signoretti S.; Bruick R.; Josey J. A.; Wallace E. M.; Kaelin W. G. Jr On-Target Efficacy of a HIF2α Antagonist in Preclinical Kidney Cancer Models. Nature 2016, 539 (7627), 107–111. 10.1038/nature19795. PubMed DOI PMC
Chen W.; Hill H.; Christie A.; Kim M. S.; Holloman E.; Pavia-Jimenez A.; Homayoun F.; Ma Y.; Patel N.; Yell P.; Hao G.; Yousuf Q.; Joyce A.; Pedrosa I.; Geiger H.; Zhang H.; Chang J.; Gardner K. H.; Bruick R. K.; Reeves C.; Hwang T. H.; Courtney K.; Frenkel E.; Sun X.; Zojwalla N.; Wong T.; Rizzi J. P.; Wallace E. M.; Josey J. A.; Xie Y.; Xie X.-J.; Kapur P.; McKay R. M.; Brugarolas J. Targeting Renal Cell Carcinoma with a HIF-2 Antagonist. Nature 2016, 539 (7627), 112–117. 10.1038/nature19796. PubMed DOI PMC
Renault L.; Guibert B.; Cherfils J. Structural Snapshots of the Mechanism and Inhibition of a Guanine Nucleotide Exchange Factor. Nature 2003, 426 (6966), 525–530. 10.1038/nature02197. PubMed DOI
Tesmer J. J.; Sunahara R. K.; Johnson R. A.; Gosslin G.; Gilman A. G.; Sprang S. R.; Gosselin G.; Gilman A. G.; Sprang S. R. Two-Metal-Ion Catalysis in Adenylyl Cyclase. Science 1999, 285 (5428), 756–760. 10.1126/science.285.5428.756. PubMed DOI
Choi J.; Chen J.; Schreiber S. L. S.; Clardyt J.; Clardy J. Structure of the FKBP12-Rapamycin Complex Interacting with the Binding Domain of Human FRAP. Science 1996, 273, 239–242. 10.1126/science.273.5272.239. PubMed DOI
Johnson S. M.; Wiseman R. L.; Sekijima Y.; Green N. S.; Adamski-Werner S. L.; Kelly J. W. Native State Kinetic Stabilization as a Strategy to Ameliorate Protein Misfolding Diseases: A Focus on the Transthyretin Amyloidoses. Acc. Chem. Res. 2005, 38 (12), 911–921. 10.1021/ar020073i. PubMed DOI
Green N. S.; Palaninathan S. K.; Sacchettini J. C.; Kelly J. W. Synthesis and Characterization of Potent Bivalent Amyloidosis Inhibitors That Bind Prior to Transthyretin Tetramerization. J. Am. Chem. Soc. 2003, 125 (44), 13404–13414. 10.1021/ja030294z. PubMed DOI
Tovar C.; Graves B.; Packman K.; Filipovic Z.; Xia B. H. M.; Tardell C.; Garrido R.; Lee E.; Kolinsky K.; To K. H.; Linn M.; Podlaski F.; Wovkulich P.; Vu B.; Vassilev L. T. MDM2 Small-Molecule Antagonist RG7112 Activates p53 Signaling and Regresses Human Tumors in Preclinical Cancer Models. Cancer Res. 2013, 73 (8), 2587–2597. 10.1158/0008-5472.CAN-12-2807. PubMed DOI
Hermeking H.; Benzinger A. 14-3-3 Proteins in Cell Cycle Regulation. Semin. Cancer Biol. 2006, 16 (3), 183–192. 10.1016/j.semcancer.2006.03.002. PubMed DOI
Aitken A. 14-3-3 Proteins: A Historic Overview. Semin. Cancer Biol. 2006, 16 (3), 162–172. 10.1016/j.semcancer.2006.03.005. PubMed DOI
Yaffe M. B.; Rittinger K.; Volinia S.; Caron P. R.; Aitken A.; Leffers H.; Gamblin S. J.; Smerdon S. J.; Cantley L. C. The Structural Basis for 14-3-3:phosphopeptide Binding Specificity. Cell 1997, 91 (7), 961–971. 10.1016/S0092-8674(00)80487-0. PubMed DOI
Freed E.; Symons M.; Macdonald S. G.; McCormick F.; Ruggieri R. Binding of 14-3-3 Proteins to the Protein Kinase Raf and Effects on Its Activation. Science 1994, 265 (5179), 1713–1716. 10.1126/science.8085158. PubMed DOI
Molzan M.; Schumacher B.; Ottmann C.; Baljuls A.; Polzien L.; Weyand M.; Thiel P.; Rose R.; Rose M.; Kuhenne P.; Kaiser M.; Rapp U. R.; Kuhlmann J.; Ottmann C. Impaired Binding of 14-3-3 to C-RAF in Noonan Syndrome Suggests New Approaches in Diseases with Increased Ras Signaling. Mol. Cell. Biol. 2010, 30 (19), 4698–4711. 10.1128/MCB.01636-09. PubMed DOI PMC
Andrews R. K.; Du X.; Berndt M. C. The 14-3-3zeta-GPIb-IX-V Complex as an Antiplatelet Target. Drug News Perspect. 2007, 20 (5), 285–292. 10.1358/dnp.2007.20.5.1120215. PubMed DOI
Conklin D. S. 14-3-3 Proteins Associate with cdc25 Phosphatases. Proc. Natl. Acad. Sci. U. S. A. 1995, 92 (17), 7892–7896. 10.1073/pnas.92.17.7892. PubMed DOI PMC
Vassilev A.; Kaneko K. J.; Shu H.; Zhao Y.; DePamphilis M. L. TEAD/TEF Transcription Factors Utilize the Activation Domain of YAP65, a Src/Yes-Associated Protein Localized in the Cytoplasm. Genes Dev. 2001, 15 (10), 1229–1241. 10.1101/gad.888601. PubMed DOI PMC
Schumacher B.; Skwarczynska M.; Rose R.; Ottmann C. Structure of a 14-3-3σ-YAP Phosphopeptide Complex at 1.15 Å Resolution. Acta Crystallogr., Sect. F: Struct. Biol. Cryst. Commun. 2010, 66 (9), 978–984. 10.1107/S1744309110025479. PubMed DOI PMC
Rajagopalan S.; Sade R. S.; Townsley F. M.; Fersht A. R. Mechanistic Differences in the Transcriptional Activation of p53 by 14-3-3 Isoforms. Nucleic Acids Res. 2010, 38 (3), 893–906. 10.1093/nar/gkp1041. PubMed DOI PMC
Schumacher B.; Mondry J.; Thiel P.; Weyand M.; Ottmann C. Structure of the p53 C-Terminus Bound to 14-3-3: Implications for Stabilization of the p53 Tetramer. FEBS Lett. 2010, 584 (8), 1443–1448. 10.1016/j.febslet.2010.02.065. PubMed DOI
Stevers L. M.; Lam C. V.; Leysen S. F. R.; Meijer F. A.; van Scheppingen D. S.; de Vries R. M. J. M.; Carlile G. W.; Milroy L. G.; Thomas D. Y.; Brunsveld L.; Ottmann C. Characterization and Small-Molecule Stabilization of the Multisite Tandem Binding between 14-3-3 and the R Domain of CFTR. Proc. Natl. Acad. Sci. U. S. A. 2016, 113 (9), E1152–E1161. 10.1073/pnas.1516631113. PubMed DOI PMC
Sluchanko N. N.; Beelen S.; Kulikova A. A.; Weeks S. D.; Antson A. A.; Gusev N. B.; Strelkov S. V. Structural Basis for the Interaction of a Human Small Heat Shock Protein with the 14-3-3 Universal Signaling Regulator. Structure 2017, 25 (2), 305–316. 10.1016/j.str.2016.12.005. PubMed DOI PMC
Kacirova M.; Kosek D.; Kadek A.; Man P.; Vecer J.; Herman P.; Obsilova V.; Obsil T. Structural Characterization of Phosducin and Its Complex with the 14-3-3 Protein. J. Biol. Chem. 2015, 290 (26), 16246–16260. 10.1074/jbc.M115.636563. PubMed DOI PMC
Stevers L. M.; de Vries R. M. J. M.; Doveston R. G.; Milroy L. G.; Brunsveld L.; Ottmann C. Structural Interface between LRRK2 and 14-3-3 Protein. Biochem. J. 2017, 474 (7), 1273–1287. 10.1042/BCJ20161078. PubMed DOI
Johnson C.; Tinti M.; Wood N. T.; Campbell D. G.; Toth R.; Dubois F.; Geraghty K. M.; Wong B. H. C.; Brown L. J.; Tyler J.; Gernez A.; Chen S.; Synowsky S.; MacKintosh C. Visualization and Biochemical Analyses of the Emerging Mammalian 14-3-3-Phosphoproteome. Mol. Cell. Proteomics 2011, 10 (10), M110.005751.10.1074/mcp.M110.005751. PubMed DOI PMC
Johnson C.; Crowther S.; Stafford M. J.; Campbell D. G.; Toth R.; MacKintosh C. Bioinformatic and Experimental Survey of 14-3-3-Binding Sites. Biochem. J. 2010, 427 (1), 69–78. 10.1042/BJ20091834. PubMed DOI PMC
Molzan M.; Ottmann C. Synergistic Binding of the Phosphorylated S233- and S259-Binding Sites of C-RAF to One 14-3-3ζ Dimer. J. Mol. Biol. 2012, 423 (4), 486–495. 10.1016/j.jmb.2012.08.009. PubMed DOI
Larance M.; Rowland A. F.; Hoehn K. L.; Humphreys D. T.; Preiss T.; Guilhaus M.; James D. E. Global Phosphoproteomics Identifies a Major Role for AKT and 14-3-3 in Regulating EDC3. Mol. Cell. Proteomics 2010, 9 (4), 682–694. 10.1074/mcp.M900435-MCP200. PubMed DOI PMC
Chen S.; Synowsky S.; Tinti M.; MacKintosh C. The Capture of Phosphoproteins by 14-3-3 Proteins Mediates Actions of Insulin. Trends Endocrinol. Metab. 2011, 22 (11), 429–436. 10.1016/j.tem.2011.07.005. PubMed DOI
Chen S.; Murphy J.; Toth R.; Campbell D. G.; Morrice N. a; Mackintosh C. Complementary Regulation of TBC1D1 and AS160 by Growth Factors, Insulin and AMPK Activators. Biochem. J. 2008, 409 (2), 449–459. 10.1042/BJ20071114. PubMed DOI
Berg D.; Holzmann C.; Riess O. 14-3-3 Proteins in the Nervous System. Nat. Rev. Neurosci. 2003, 4 (9), 752–762. 10.1038/nrn1197. PubMed DOI
Fu H.; Coburn J.; Collier R. J. The Eukaryotic Host Factor That Activates Exoenzyme S of Pseudomonas Aeruginosa Is a Member of the 14-3-3 Protein Family. Proc. Natl. Acad. Sci. U. S. A. 1993, 90 (6), 2320–2324. 10.1073/pnas.90.6.2320. PubMed DOI PMC
Ottmann C.; Yasmin L.; Weyand M.; Veesenmeyer J. L.; Diaz M. H.; Palmer R. H.; Francis M. S.; Hauser A. R.; Wittinghofer A.; Hallberg B. Phosphorylation-Independent Interaction between 14-3-3 and Exoenzyme S: From Structure to Pathogenesis. EMBO J. 2007, 26 (3), 902–913. 10.1038/sj.emboj.7601530. PubMed DOI PMC
Siles-Lucas M. D. M.; Gottstein B. The 14-3-3 Protein: A Key Molecule in Parasites as in Other Organisms. Trends Parasitol. 2003, 19 (12), 575–581. 10.1016/j.pt.2003.10.003. PubMed DOI
Auburn S.; Barry A. E. Dissecting Malaria Biology and Epidemiology Using Population Genetics and Genomics. Int. J. Parasitol. 2016, 47 (2–3), 77–85. 10.1016/j.ijpara.2016.08.006. PubMed DOI
Lalle M.; Currà C.; Ciccarone F.; Pace T.; Cecchetti S.; Fantozzi L.; Ay B.; Breton C. B.; Ponzi M. Dematin, a Component of the Erythrocyte Membrane Skeleton, Is Internalized by the Malaria Parasite and Associates with Plasmodium 14-3-3. J. Biol. Chem. 2011, 286 (2), 1227–1236. 10.1074/jbc.M110.194613. PubMed DOI PMC
Lal K.; Bromley E.; Oakes R.; Prieto J. H.; Sanderson S. J.; Kurian D.; Hunt L.; Yates J. R.; Wastling J. M.; Sinden R. E.; Tomley F. M. Proteomic Comparison of Four Eimeria Tenella Life-Cycle Stages: Unsporulated Oocyst, Sporulated Oocyst, Sporozoite and Second-Generation Merozoite. Proteomics 2009, 9 (19), 4566–4576. 10.1002/pmic.200900305. PubMed DOI PMC
Hill D.; Dubey J. P. Toxoplasma Gondii: Transmission, Diagnosis, and Prevention. Clin. Microbiol. Infect. 2002, 8 (10), 634–640. 10.1046/j.1469-0691.2002.00485.x. PubMed DOI
Assossou O.; Besson F.; Rouault J. P.; Persat F.; Brisson C.; Duret L.; Ferrandiz J.; Mayençon M.; Peyron F.; Picot S. Subcellular Localization of 14-3-3 Proteins in Toxoplasma Gondii Tachyzoites and Evidence for a Lipid Raft-Associated Form. FEMS Microbiol. Lett. 2003, 224 (2), 161–168. 10.1016/S0378-1097(03)00479-8. PubMed DOI
Weidner J. M.; Kanatani S.; Uchtenhagen H.; Varas-Godoy M.; Schulte T.; Engelberg K.; Gubbels M. J.; Sun H. S.; Harrison R. E.; Achour A.; Barragan A. Migratory Activation of Parasitized Dendritic Cells by the Protozoan Toxoplasma Gondii 14-3-3 Protein. Cell. Microbiol. 2016, 18 (11), 1537–1550. 10.1111/cmi.12595. PubMed DOI PMC
Bulakci M.; Kartal M. G.; Yilmaz S.; Yilmaz E.; Yilmaz R.; Sahin D.; Asik M.; Erol O. B. Multimodality Imaging in Diagnosis and Management of Alveolar Echinococcosis: An Update. Diagn. Interv. Radiol. 2016, 22 (3), 247–256. 10.5152/dir.2015.15456. PubMed DOI PMC
Siles-Lucas M.; Felleisen R. S. J.; Hemphill A.; Wilson W.; Gottstein B. Stage-Specific Expression of the 14-3-3 Gene in Echinococcus Multilocularis. Mol. Biochem. Parasitol. 1998, 91 (2), 281–293. 10.1016/S0166-6851(97)00208-9. PubMed DOI
Siles-Lucas M.; Nunes C. P.; Zaha A. Comparative Analysis of the 14-3-3 Gene and Its Expression in Echinococcus Granulosus and Echinococcus Multilocularis Metacestodes. Parasitology 2001, 122 (Pt 3), 281–287. 10.1017/S0031182001007405. PubMed DOI
McGonigle S.; Pearce E. J. 14-3-3 Proteins in Schistosoma Mansoni; Identification of a Second Epsilon Isoform. Int. J. Parasitol. 2002, 32 (6), 685–693. 10.1016/S0020-7519(01)00323-X. PubMed DOI
Yang J.; Pan W.; Sun X.; Zhao X.; Yuan G.; Sun Q.; Huang J.; Zhu X. Immunoproteomic Profile of Trichinella Spiralis Adult Worm Proteins Recognized by Early Infection Sera. Parasites Vectors 2015, 8 (1), 20.10.1186/s13071-015-0641-8. PubMed DOI PMC
Brokx S. J.; Wernimont A. K.; Dong A.; Wasney G. A.; Lin Y. H.; Lew J.; Vedadi M.; Lee W. H.; Hui R. Characterization of 14-3-3 Proteins from Cryptosporidium Parvum. PLoS One 2011, 6 (8), e14827.10.1371/journal.pone.0014827. PubMed DOI PMC
Scallan E.; Hoekstra R. M.; Angulo F. J.; Tauxe R. V.; Widdowson M. A.; Roy S. L.; Jones J. L.; Griffin P. M. Foodborne Illness Acquired in the United States-Major Pathogens. Emerging Infect. Dis. 2011, 17 (1), 7–15. 10.3201/eid1701.P11101. PubMed DOI PMC
Halliez M. C. M.; Buret A. G. Extra-Intestinal and Long Term Consequences of Giardia Duodenalis Infections. World J. Gastroenterol. 2013, 19 (47), 8974–8985. 10.3748/wjg.v19.i47.8974. PubMed DOI PMC
Escobedo A. A.; Almirall P.; Robertson L. J.; Franco R. M. B.; Hanevik K.; Mørch K.; Cimerman S. Giardiasis: The Ever-Present Threat of a Neglected Disease. Infect. Disord.: Drug Targets 2010, 10 (5), 329–348. 10.2174/187152610793180821. PubMed DOI
Cau Y.; Fiorillo A.; Mori M.; Ilari A.; Botta M.; Lalle M. Molecular Dynamics Simulations and Structural Analysis of Giardia Duodenalis 14-3-3 Protein-Protein Interactions. J. Chem. Inf. Model. 2015, 55 (12), 2611–2622. 10.1021/acs.jcim.5b00452. PubMed DOI
Fiorillo A.; Di Marino D.; Bertuccini L.; Via A.; Pozio E.; Camerini S.; Ilari A.; Lalle M. The Crystal Structure of Giardia Duodenalis 14-3-3 in the Apo Form: When Protein Post-Translational Modifications Make the Difference. PLoS One 2014, 9 (3), e92902.10.1371/journal.pone.0092902. PubMed DOI PMC
Morrison D. K. The 14-3-3 Proteins: Integrators of Diverse Signaling Cues That Impact Cell Fate and Cancer Development. Trends Cell Biol. 2009, 19 (1), 16–23. 10.1016/j.tcb.2008.10.003. PubMed DOI PMC
Coblitz B.; Wu M.; Shikano S.; Li M. C-Terminal Binding: An Expanded Repertoire and Function of 14-3-3 Proteins. FEBS Lett. 2006, 580 (6), 1531–1535. 10.1016/j.febslet.2006.02.014. PubMed DOI
Tinti M.; Madeira F.; Murugesan G.; Hoxhaj G.; Toth R.; MacKintosh C. ANIA: ANnotation and Integrated Analysis of the 14-3-3 Interactome. Database 2014, bat085, bat085.10.1093/database/bat085. PubMed DOI PMC
Obsil T.; Ghirlando R.; Klein D. C.; Ganguly S.; Dyda F. Crystal Structure of the 14-3-3zeta:serotonin N-Acetyltransferase Complex. a Role for Scaffolding in Enzyme Regulation. Cell 2001, 105 (2), 257–267. 10.1016/S0092-8674(01)00316-6. PubMed DOI
Wilker E. W.; Grant R. A.; Artim S. C.; Yaffe M. B. A Structural Basis for 14-3-3sigma Functional Specificity. J. Biol. Chem. 2005, 280 (19), 18891–18898. 10.1074/jbc.M500982200. PubMed DOI
Arendt J. Melatonin in Humans: It’s about Time. J. Neuroendocrinol. 2005, 17 (8), 537–538. 10.1111/j.1365-2826.2005.01333.x. PubMed DOI
Ooms S.; Ju Y.-E. Treatment of Sleep Disorders in Dementia. Curr. Treat. Options Neurol. 2016, 18 (9), 40.10.1007/s11940-016-0424-3. PubMed DOI PMC
Falhof J.; Pedersen J. T.; Fuglsang A. T.; Palmgren M. Plasma Membrane H+-ATPase Regulation in the Center of Plant Physiology. Mol. Plant 2016, 9 (3), 323–337. 10.1016/j.molp.2015.11.002. PubMed DOI
Palmgren M. G. PLANT PLASMA MEMBRANE H+-ATPases: Powerhouses for Nutrient Uptake. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2001, 52, 817–845. 10.1146/annurev.arplant.52.1.817. PubMed DOI
Arango M.; Gévaudant F.; Oufattole M.; Boutry M. The Plasma Membrane Proton Pump ATPase: The Significance of Gene Subfamilies. Planta 2003, 216 (3), 355–365. PubMed
Sondergaard T. E.; Schulz A.; Palmgren M. G. Energization of Transport Processes in Plants. Roles of the Plasma Membrane H+-ATPase. Plant Physiol. 2004, 136 (1), 2475–2482. 10.1104/pp.104.048231. PubMed DOI PMC
Duby G.; Boutry M. The Plant Plasma Membrane Proton Pump ATPase: A Highly Regulated P-Type ATPase with Multiple Physiological Roles. Pfluegers Arch. 2009, 457 (3), 645–655. 10.1007/s00424-008-0457-x. PubMed DOI
Jahn T.; Fuglsang A. T.; Olsson A.; Brüntrup I. M.; Collinge D. B.; Volkmann D.; Sommarin M.; Palmgren M. G.; Larsson C. The 14-3-3 Protein Interacts Directly with the C-Terminal Region of the Plant Plasma Membrane H(+)-ATPase. Plant Cell 1997, 9 (10), 1805–1814. 10.2307/3870526. PubMed DOI PMC
Piotrowski M.; Morsomme P.; Boutry M.; Oecking C. Complementation of the Saccharomyces Cerevisiae Plasma Membrane H+-ATPase by a Plant H+-ATPase Generates a Highly Abundant Fusicoccin Binding Site. J. Biol. Chem. 1998, 273 (45), 30018–30023. 10.1074/jbc.273.45.30018. PubMed DOI
Olsson A.; Svennelid F.; Ek B.; Sommarin M.; Larsson C. A. Phosphothreonine Residue at the C-Terminal End of the Plasma Membrane H+-ATPase Is Protected by Fusicoccin-Induced 14-3-3 Binding. Plant Physiol. 1998, 118 (2), 551–555. 10.1104/pp.118.2.551. PubMed DOI PMC
Svennelid F.; Olsson A.; Piotrowski M.; Rosenquist M.; Ottman C.; Larsson C.; Oecking C.; Sommarin M. Phosphorylation of Thr-948 at the C Terminus of the Plasma Membrane H(+)-ATPase Creates a Binding Site for the Regulatory 14-3-3 Protein. Plant Cell 1999, 11 (12), 2379–2391. 10.2307/3870962. PubMed DOI PMC
Würtele M.; Jelich-Ottmann C.; Wittinghofer A.; Oecking C. Structural View of a Fungal Toxin Acting on a 14-3-3 Regulatory Complex. EMBO J. 2003, 22 (5), 987–994. 10.1093/emboj/cdg104. PubMed DOI PMC
Ottmann C.; Marco S.; Jaspert N.; Marcon C.; Schauer N.; Weyand M.; Vandermeeren C.; Duby G.; Boutry M.; Wittinghofer A.; Rigaud J.-L.; Oecking C. Structure of a 14-3-3 Coordinated Hexamer of the Plant Plasma Membrane H+-ATPase by Combining X-Ray Crystallography and Electron Cryomicroscopy. Mol. Cell 2007, 25 (3), 427–440. 10.1016/j.molcel.2006.12.017. PubMed DOI
Chailakhyan M. K. About the Mechanism of the Photoperiodic Response (in Russian). Dokl Akad Nauk SSSR 1936, 1, 85–89.
Kobayashi Y.; Weigel D. Move on Up, It’s Time for Change--Mobile Signals Controlling Photoperiod-Dependent Flowering. Genes Dev. 2007, 21 (19), 2371–2384. 10.1101/gad.1589007. PubMed DOI
Tamaki S.; Matsuo S.; Wong H. L.; Yokoi S.; Shimamoto K. Hd3a Protein Is a Mobile Flowering Signal in Rice. Science 2007, 316 (5827), 1033–1036. 10.1126/science.1141753. PubMed DOI
Taoka K.; Ohki I.; Tsuji H.; Furuita K.; Hayashi K.; Yanase T.; Yamaguchi M.; Nakashima C.; Purwestri Y. A.; Tamaki S.; Ogaki Y.; Shimada C.; Nakagawa A.; Kojima C.; Shimamoto K. 14-3-3 Proteins Act as Intracellular Receptors for Rice Hd3a Florigen. Nature 2011, 476 (7360), 332–335. 10.1038/nature10272. PubMed DOI
Ottmann C.; Marco S.; Jaspert N.; Marcon C.; Schauer N.; Weyand M.; Vandermeeren C.; Duby G.; Boutry M.; Wittinghofer A.; Rigaud J. L.; Oecking C. Structure of a 14-3-3 Coordinated Hexamer of the Plant Plasma Membrane H+-ATPase by Combining X-Ray Crystallography and Electron Cryomicroscopy. Mol. Cell 2007, 25 (3), 427–440. 10.1016/j.molcel.2006.12.017. PubMed DOI
Bakthisaran R.; Tangirala R.; Rao C. M. Small Heat Shock Proteins: Role in Cellular Functions and Pathology. Biochim. Biophys. Acta, Proteins Proteomics 2015, 1854 (4), 291–319. 10.1016/j.bbapap.2014.12.019. PubMed DOI
Chernik I. S.; Seit-Nebi A. S.; Marston S. B.; Gusev N. B. Small Heat Shock Protein Hsp20 (HspB6) as a Partner of 14-3-3gamma. Mol. Cell. Biochem. 2007, 295 (1–2), 9–17. 10.1007/s11010-006-9266-8. PubMed DOI
Wang B.; Yang H.; Liu Y. C.; Jelinek T.; Zhang L.; Ruoslahti E.; Fu H. Isolation of High-Affinity Peptide Antagonists of 14-3-3 Proteins by Phage Display. Biochemistry 1999, 38 (38), 12499–12504. 10.1021/bi991353h. PubMed DOI
Petosa C.; Masters S. C.; Bankston L. A.; Pohl J.; Wang B.; Fu H.; Liddington R. C. 14-3-3ζ Binds a Phosphorylated Raf Peptide and an Unphosphorylated Peptide via Its Conserved Amphiphatic Groove. J. Biol. Chem. 1998, 273 (26), 16305–16310. 10.1074/jbc.273.26.16305. PubMed DOI
Masters S. C.; Fu H. 14-3-3 Proteins Mediate an Essential Anti-Apoptotic Signal. J. Biol. Chem. 2001, 276 (48), 45193–45200. 10.1074/jbc.M105971200. PubMed DOI
Cao W.; Yang X.; Zhou J.; Teng Z.; Cao L.; Zhang X.; Fei Z. Targeting 14-3-3 Protein, Difopein Induces Apoptosis of Human Glioma Cells and Suppresses Tumor Growth in Mice. Apoptosis 2010, 15 (2), 230–241. 10.1007/s10495-009-0437-4. PubMed DOI
Glas A.; Bier D.; Hahne G.; Rademacher C.; Ottmann C.; Grossmann T. N. Constrained Peptides with Target-Adapted Cross-Links as Inhibitors of a Pathogenic Protein-Protein Interaction. Angew. Chem., Int. Ed. 2014, 53 (9), 2489–2493. 10.1002/anie.201310082. PubMed DOI
Cromm P. M.; Wallraven K.; Glas A.; Bier D.; Fürstner A.; Ottmann C.; Grossmann T. N. Constraining an Irregular Peptide Secondary Structure through Ring-Closing Alkyne Metathesis. ChemBioChem 2016, 17 (20), 1915–1919. 10.1002/cbic.201600362. PubMed DOI PMC
Layfield R.; Fergusson J.; Aitken A.; Lowe J.; Landon M.; Mayer R. J. Neurofibrillary Tangles of Alzheimer’s Disease Brains Contain 14-3-3 Proteins. Neurosci. Lett. 1996, 209 (1), 57–60. 10.1016/0304-3940(96)12598-2. PubMed DOI
Sadik G.; Tanaka T.; Kato K.; Yamamori H.; Nessa B. N.; Morihara T.; Takeda M. Phosphorylation of Tau at Ser214 Mediates Its Interaction with 14-3-3 Protein: Implications for the Mechanism of Tau Aggregation. J. Neurochem. 2009, 108 (1), 33–43. 10.1111/j.1471-4159.2008.05716.x. PubMed DOI
Sluchanko N. N.; Seit-Nebi A. S.; Gusev N. B. Phosphorylation of More than One Site Is Required for Tight Interaction of Human Tau Protein with 14-3-3ζ. FEBS Lett. 2009, 583 (17), 2739–2742. 10.1016/j.febslet.2009.07.043. PubMed DOI
Joo Y.; Schumacher B.; Landrieu I.; Bartel M.; Smet-Nocca C.; Jang A.; Choi H. S.; Jeon N. L.; Chang K. A.; Kim H. S.; Ottmann C.; Suh Y. H. Involvement of 14-3-3 in Tubulin Instability and Impaired Axon Development Is Mediated by Tau. FASEB J. 2015, 29 (10), 4133–4144. 10.1096/fj.14-265009. PubMed DOI
Milroy L. G.; Bartel M.; Henen M. A.; Leysen S.; Adriaans J. M. C.; Brunsveld L.; Landrieu I.; Ottmann C. Stabilizer-Guided Inhibition of Protein-Protein Interactions. Angew. Chem., Int. Ed. 2015, 54 (52), 15720–15724. 10.1002/anie.201507976. PubMed DOI
Wu H.; Ge J.; Yao S. Q. Microarray-Assisted High-Throughput Identification of a Cell-Permeable Small-Molecule Binder of 14-3-3 Proteins. Angew. Chem., Int. Ed. 2010, 49 (37), 6528–6532. 10.1002/anie.201003257. PubMed DOI
Arrendale A.; Kim K.; Choi J. Y.; Li W.; Geahlen R. L.; Borch R. F. Synthesis of a Phosphoserine Mimetic Prodrug with Potent 14-3-3 Protein Inhibitory Activity. Chem. Biol. 2012, 19 (6), 764–771. 10.1016/j.chembiol.2012.05.011. PubMed DOI PMC
Corradi V.; Mancini M.; Manetti F.; Petta S.; Santucci M. A.; Botta M. Identification of the First Non-Peptidic Small Molecule Inhibitor of the c-Abl/14-3-3 Protein-Protein Interactions Able to Drive Sensitive and Imatinib-Resistant Leukemia Cells to Apoptosis. Bioorg. Med. Chem. Lett. 2010, 20 (20), 6133–6137. 10.1016/j.bmcl.2010.08.019. PubMed DOI
Mancini M.; Corradi V.; Petta S.; Barbieri E.; Manetti F.; Botta M.; Santucci M. A. A New Nonpeptidic Inhibitor of 14-3-3 Induces Apoptotic Cell Death in Chronic Myeloid Leukemia Sensitive or Resistant to Imatinib. J. Pharmacol. Exp. Ther. 2011, 336 (3), 596–604. 10.1124/jpet.110.172536. PubMed DOI
Corradi V.; Mancini M.; Santucci M. A.; Carlomagno T.; Sanfelice D.; Mori M.; Vignaroli G.; Falchi F.; Manetti F.; Radi M.; Botta M. Computational Techniques Are Valuable Tools for the Discovery of Protein-Protein Interaction Inhibitors: The 14-3-3σ Case. Bioorg. Med. Chem. Lett. 2011, 21 (22), 6867–6871. 10.1016/j.bmcl.2011.09.011. PubMed DOI
Mori M.; Vignaroli G.; Cau Y.; Dinic̈ J.; Hill R.; Rossi M.; Colecchia D.; Pešic̈ M.; Link W.; Chiariello M.; Ottmann C.; Botta M. Discovery of 14-3-3 Protein-Protein Interaction Inhibitors That Sensitize Multidrug-Resistant Cancer Cells to Doxorubicin and the Akt Inhibitor GSK690693. ChemMedChem 2014, 9 (5), 973–983. 10.1002/cmdc.201400044. PubMed DOI
Valensin D.; Cau Y.; Calandro P.; Vignaroli G.; Dello Iacono L.; Chiariello M.; Mori M.; Botta M. Molecular Insights to the Bioactive Form of BV02, a Reference Inhibitor of 14-3-3σ Protein-Protein Interactions. Bioorg. Med. Chem. Lett. 2016, 26 (3), 894–898. 10.1016/j.bmcl.2015.12.066. PubMed DOI
An S. S.; Askovich P. S.; Zarembinski T. I.; Ahn K.; Peltier J. M.; von Rechenberg M.; Sahasrabudhe S.; Fredberg J. J. A Novel Small Molecule Target in Human Airway Smooth Muscle for Potential Treatment of Obstructive Lung Diseases: A Staged High-Throughput Biophysical Screening. Respir. Res. 2011, 12 (1), 8.10.1186/1465-9921-12-8. PubMed DOI PMC
Zhao J.; Du Y.; Horton J. R. R.; Upadhyay A. K. K.; Lou B.; Bai Y.; Zhang X.; Du L.; Li M.; Wang B.; et al. Discovery and Structural Characterization of a Small Molecule 14-3-3 Protein-Protein Interaction Inhibitor. Proc. Natl. Acad. Sci. U. S. A. 2011, 108 (39), 16212–16216. 10.1073/pnas.1100012108. PubMed DOI PMC
Kim Y.-C.; Camaioni E.; Ziganshin A. U.; Ji X.-D.; King B. F.; Wildman S. S.; Rychkov A.; Yoburn J.; Kim H.; Mohanram A.; Harden T. K.; Boyer J. L.; Burnstock G.; Jacobson K. A. Synthesis and Structure-Activity Relationships of Pyridoxal-6-Arylazo-5′-phosphate and Phosphonate Derivatives as P2 Receptor Antagonists. Drug Dev. Res. 1998, 45 (2), 52–66. 10.1002/(SICI)1098-2299(199810)45:2<52::AID-DDR2>3.0.CO;2-V. PubMed DOI PMC
Röglin L.; Thiel P.; Kohlbacher O.; Ottmann C. Covalent Attachment of Pyridoxal-Phosphate Derivatives to 14-3-3 Proteins. Proc. Natl. Acad. Sci. U. S. A. 2012, 109 (18), E1051–3. author reply E1054.10.1073/pnas.1116592109. PubMed DOI PMC
Upadhyay A. K.; Horton J. R.; Du Y.; Bai Y.; Cheng X.; Fu H. Reply to Roglin et Al.: Synchrotron Radiation-Induced Covalent Modification of 14-3-3 by Diazene Compounds Containing Pyridoxal Phosphate. Proc. Natl. Acad. Sci. U. S. A. 2012, 109 (18), E1054–E1054. 10.1073/pnas.1203341109. PubMed DOI PMC
Takemoto Y.; Watanabe H.; Uchida K.; Matsumura K.; Nakae K.; Tashiro E.; Shindo K.; Kitahara T.; Imoto M. Chemistry and Biology of Moverastins, Inhibitors of Cancer Cell Migration, Produced by Aspergillus. Chem. Biol. 2005, 12 (12), 1337–1347. 10.1016/j.chembiol.2005.09.017. PubMed DOI
Singh S. B.; Ball R. G.; Bills G. F.; Cascales C.; Gibbs J. B.; Goetz M. A.; Hoogsteen K.; Jenkins R. G.; Liesch J. M.; Lingham R. B.; Silverman K. C.; Zink D. L. Chemistry and Biology of Cylindrols: Novel Inhibitors of Ras Farnesyl-Protein Transferase from Cylindrocarpon Lucidum. J. Org. Chem. 1996, 61 (22), 7727–7737. 10.1021/jo961074p. PubMed DOI
Sawada M.; Kubo S. I.; Matsumura K.; Takemoto Y.; Kobayashi H.; Tashiro E.; Kitahara T.; Watanabe H.; Imoto M. Synthesis and Anti-Migrative Evaluation of Moverastin Derivatives. Bioorg. Med. Chem. Lett. 2011, 21 (5), 1385–1389. 10.1016/j.bmcl.2011.01.028. PubMed DOI
Tashiro E.; Imoto M. Screening and Target Identification of Bioactive Compounds That Modulate Cell Migration and Autophagy. Bioorg. Med. Chem. 2016, 24 (15), 3283–3290. 10.1016/j.bmc.2016.04.014. PubMed DOI
Thiel P.; Röglin L.; Meissner N.; Hennig S.; Kohlbacher O.; Ottmann C. Virtual Screening and Experimental Validation Reveal Novel Small-Molecule Inhibitors of 14-3-3 Protein–protein Interactions. Chem. Commun. 2013, 49 (76), 8468–8470. 10.1039/c3cc44612c. PubMed DOI
Hu G.; Cao Z.; Xu S.; Wang W.; Wang J. Revealing the Binding Modes and the Unbinding of 14-3-3σ Proteins and Inhibitors by Computational Methods. Sci. Rep. 2015, 5, 16481.10.1038/srep16481. PubMed DOI PMC
Bier D.; Rose R.; Bravo-Rodriguez K.; Bartel M.; Ramirez-Anguita J. M.; Dutt S.; Wilch C.; Klärner F.-G.; Sanchez-Garcia E.; Schrader T.; Ottmann C. Molecular Tweezers Modulate 14-3-3 Protein-Protein Interactions. Nat. Chem. 2013, 5 (3), 234–239. 10.1038/nchem.1570. PubMed DOI
Ballio A.; Chain E. B.; de Leo P.; Erlanger B. F.; Mauri M.; Tonolo A. Fusicoccin: A New Wilting Toxin Produced by Fusicoccum Amygdali Del. Nature 1964, 203, 297–297. 10.1038/203297a0. DOI
Oecking C.; Eckerskorn C.; Weiler E. W. The Fusicoccin Receptor of Plants Is a Member of the 14-3-3 Superfamily of Eukaryotic Regulatory Proteins. FEBS Lett. 1994, 352 (2), 163–166. 10.1016/0014-5793(94)00949-X. PubMed DOI
Camoni L.; Di Lucente C.; Visconti S.; Aducci P. The Phytotoxin Fusicoccin Promotes Platelet Aggregation via 14-3-3-Glycoprotein Ib-IX-V Interaction. Biochem. J. 2011, 436 (2), 429–436. 10.1042/BJ20102037. PubMed DOI
De Vries-van Leeuwen I. J.; da Costa Pereira D.; Flach K. D.; Piersma S. R.; Haase C.; Bier D.; Yalcin Z.; Michalides R.; Feenstra K. A.; Jiménez C. R.; de Greef T. F. A.; Brunsveld L.; Ottmann C.; Zwart W.; de Boer A. H. Interaction of 14-3-3 Proteins with the Estrogen Receptor Alpha F Domain Provides a Drug Target Interface. Proc. Natl. Acad. Sci. U. S. A. 2013, 110 (22), 8894–8899. 10.1073/pnas.1220809110. PubMed DOI PMC
Sassa T.; Tojyo T.; Munakata K. Isolation of a New Plant Growth Substance with Cytokinin-like Activity. Nature 1970, 227, 379.10.1038/227379a0. PubMed DOI
Honma Y.; Ishii Y.; Yamamoto-Yamaguchi Y.; Sassa T.; Asahi K. I. Cotylenin A, a Differentiation-Inducing Agent, and IFN-Alpha Cooperatively Induce Apoptosis and Have an Antitumor Effect on Human Non-Small Cell Lung Carcinoma Cells in Nude Mice. Cancer Res. 2003, 63 (13), 3659–3666. PubMed
Yamada K.; Honma Y.; Asahi K.-I.; Sassa T.; Hino K.-I.; Tomoyasu S. Differentiation of Human Acute Myeloid Leukaemia Cells in Primary Culture in Response to Cotylenin A, a Plant Growth Regulator. Br. J. Haematol. 2001, 114 (4), 814–821. 10.1046/j.1365-2141.2001.03029.x. PubMed DOI
Takahashi T.; Honma Y.; Miyake T.; Adachi K.; Takami S.; Okada M.; Kumanomidou S.; Ikejiri F.; Jo Y.; Onishi C.; Kawakami K.; Moriyama I.; Inoue M.; Tanaka J.; Suzumiya J. Synergistic Combination Therapy with Cotylenin A and Vincristine in Multiple Myeloma Models. Int. J. Oncol. 2015, 46 (4), 1801–1809. 10.3892/ijo.2015.2882. PubMed DOI
Molzan M.; Kasper S.; Röglin L.; Skwarczynska M.; Sassa T.; Inoue T.; Breitenbuecher F.; Ohkanda J.; Kato N.; Schuler M.; Ottmann C. Stabilization of Physical RAF/14-3-3 Interaction by Cotylenin A as Treatment Strategy for RAS Mutant Cancers. ACS Chem. Biol. 2013, 8 (9), 1869–1875. 10.1021/cb4003464. PubMed DOI
Anders C.; Higuchi Y.; Koschinsky K.; Bartel M.; Schumacher B.; Thiel P.; Nitta H.; Preisig-Müller R.; Schlichthörl G.; Renigunta V.; Ohkanda J.; Daut J.; Kato N.; Ottmann C. A Semisynthetic Fusicoccane Stabilizes a Protein-Protein Interaction and Enhances the Expression of K+ Channels at the Cell Surface. Chem. Biol. 2013, 20 (4), 583–593. 10.1016/j.chembiol.2013.03.015. PubMed DOI
Bier D.; Bartel M.; Sies K.; Halbach S.; Higuchi Y.; Haranosono Y.; Brummer T.; Kato N.; Ottmann C. Small-Molecule Stabilization of the 14-3-3/Gab2 Protein-Protein Interaction (PPI) Interface. ChemMedChem 2016, 11 (8), 911–918. 10.1002/cmdc.201500484. PubMed DOI
Parvatkar P.; Kato N.; Uesugi M.; Sato S. I.; Ohkanda J. Intracellular Generation of a Diterpene-Peptide Conjugate That Inhibits 14-3-3-Mediated Interactions. J. Am. Chem. Soc. 2015, 137 (50), 15624–15627. 10.1021/jacs.5b09817. PubMed DOI
Brill Z. G.; Grover H. K.; Maimone T. J. Enantioselective Synthesis of an Ophiobolin Sesterterpene via a Programmed Radical Cascade. Science 2016, 352 (6289), 1078–1082. 10.1126/science.aaf6742. PubMed DOI PMC
Richter A.; Hedberg C.; Waldmann H. Enantioselective Synthesis of the C10-C20 Fragment of Fusicoccin A. J. Org. Chem. 2011, 76 (16), 6694–6702. 10.1021/jo201020v. PubMed DOI
Chen M.; Chou W. K. W.; Toyomasu T.; Cane D. E.; Christianson D. W. Structure and Function of Fusicoccadiene Synthase, a Hexameric Bifunctional Diterpene Synthase. ACS Chem. Biol. 2016, 11 (4), 889–899. 10.1021/acschembio.5b00960. PubMed DOI PMC
Rose R.; Erdmann S.; Bovens S.; Wolf A.; Rose M.; Hennig S.; Waldmann H.; Ottmann C. Identification and Structure of Small-Molecule Stabilizers of 14-3-3 Protein-Protein Interactions. Angew. Chem., Int. Ed. 2010, 49 (24), 4129–4132. 10.1002/anie.200907203. PubMed DOI
Richter A.; Rose R.; Hedberg C.; Waldmann H.; Ottmann C. An Optimised Small-Molecule Stabiliser of the 14-3-3-PMA2 Protein-Protein Interaction. Chem. - Eur. J. 2012, 18 (21), 6520–6527. 10.1002/chem.201103761. PubMed DOI
Sato S.; Jung H.; Nakagawa T.; Pawlosky R.; Takeshima T.; Lee W. R.; Sakiyama H.; Laxman S.; Wynn R. M.; Tu B. P.; MacMillan J. B.; De Brabander J. K.; Veech R. L.; Uyeda K. Metabolite Regulation of Nuclear Localization of Carbohydrate-Response Element-Binding Protein (ChREBP): Role of Amp as an Allosteric Inhibitor. J. Biol. Chem. 2016, 291 (20), 10515–10527. 10.1074/jbc.M115.708982. PubMed DOI PMC
Ishii S.; Iizuka K.; Miller B. C.; Uyeda K. Carbohydrate Response Element Binding Protein Directly Promotes Lipogenic Enzyme Gene Transcription. Proc. Natl. Acad. Sci. U. S. A. 2004, 101 (44), 15597–15602. 10.1073/pnas.0405238101. PubMed DOI PMC
Iizuka K.; Bruick R. K.; Liang G.; Horton J. D.; Uyeda K. Deficiency of Carbohydrate Response Element-Binding Protein (ChREBP) Reduces Lipogenesis as Well as Glycolysis. Proc. Natl. Acad. Sci. U. S. A. 2004, 101 (19), 7281–7286. 10.1073/pnas.0401516101. PubMed DOI PMC
Sakiyama H.; Wynn R. M.; Lee W. R.; Fukasawa M.; Mizuguchi H.; Gardner K. H.; Repa J. J.; Uyeda K. Regulation of Nuclear Import/export of Carbohydrate Response Element-Binding Protein (ChREBP): Interaction of An α-Helix of ChREBP with the 14-3-3 Proteins and Regulation by Phosphorylation. J. Biol. Chem. 2008, 283 (36), 24899–24908. 10.1074/jbc.M804308200. PubMed DOI PMC
Nakagawa T.; Ge Q.; Pawlosky R.; Wynn R. M.; Veech R. L.; Uyeda K. Metabolite Regulation of Nucleo-Cytosolic Trafficking of Carbohydrate Response Element-Binding Protein (ChREBP): Role of Ketone Bodies. J. Biol. Chem. 2013, 288 (39), 28358–28367. 10.1074/jbc.M113.498550. PubMed DOI PMC
Ge Q.; Huang N.; Wynn R. M.; Li Y.; Du X.; Miller B.; Zhang H.; Uyeda K. Structural Characterization of a Unique Interface between Carbohydrate Response Element-Binding Protein (ChREBP) and 14-3-3β Protein. J. Biol. Chem. 2012, 287 (50), 41914–41921. 10.1074/jbc.M112.418855. PubMed DOI PMC
Sijbesma E.; Skora L.; Leysen S.; Brunsveld L.; Koch U.; Nussbaumer P.; Jahnke W.; Ottmann C. Identification of Two Secondary Ligand binding sites in 14-3-3 Proteins Using Fragment Screening. Biochemistry 2017, 56 (30), 3972–3982. 10.1021/acs.biochem.7b00153. PubMed DOI PMC
Look for the Scaffold: Multifaceted Regulation of Enzyme Activity by 14-3-3 Proteins
Molecular basis and dual ligand regulation of tetrameric estrogen receptor α/14-3-3ζ protein complex
Structural insights into the functional roles of 14-3-3 proteins
A Structural Study of the Cytoplasmic Chaperone Effect of 14-3-3 Proteins on Ataxin-1
14-3-3-protein regulates Nedd4-2 by modulating interactions between HECT and WW domains
The 14-3-3 Proteins as Important Allosteric Regulators of Protein Kinases