Molecular basis and dual ligand regulation of tetrameric estrogen receptor α/14-3-3ζ protein complex

. 2023 Jul ; 299 (7) : 104855. [epub] 20230522

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37224961
Odkazy

PubMed 37224961
PubMed Central PMC10302166
DOI 10.1016/j.jbc.2023.104855
PII: S0021-9258(23)01883-5
Knihovny.cz E-zdroje

Therapeutic strategies targeting nuclear receptors (NRs) beyond their endogenous ligand binding pocket have gained significant scientific interest driven by a need to circumvent problems associated with drug resistance and pharmacological profile. The hub protein 14-3-3 is an endogenous regulator of various NRs, providing a novel entry point for small molecule modulation of NR activity. Exemplified, 14-3-3 binding to the C-terminal F-domain of the estrogen receptor alpha (ERα), and small molecule stabilization of the ERα/14-3-3ζ protein complex by the natural product Fusicoccin A (FC-A), was demonstrated to downregulate ERα-mediated breast cancer proliferation. This presents a novel drug discovery approach to target ERα; however, structural and mechanistic insights into ERα/14-3-3 complex formation are lacking. Here, we provide an in-depth molecular understanding of the ERα/14-3-3ζ complex by isolating 14-3-3ζ in complex with an ERα protein construct comprising its ligand-binding domain (LBD) and phosphorylated F-domain. Bacterial co-expression and co-purification of the ERα/14-3-3ζ complex, followed by extensive biophysical and structural characterization, revealed a tetrameric complex between the ERα homodimer and the 14-3-3ζ homodimer. 14-3-3ζ binding to ERα, and ERα/14-3-3ζ complex stabilization by FC-A, appeared to be orthogonal to ERα endogenous agonist (E2) binding, E2-induced conformational changes, and cofactor recruitment. Similarly, the ERα antagonist 4-hydroxytamoxifen inhibited cofactor recruitment to the ERα LBD while ERα was bound to 14-3-3ζ. Furthermore, stabilization of the ERα/14-3-3ζ protein complex by FC-A was not influenced by the disease-associated and 4-hydroxytamoxifen resistant ERα-Y537S mutant. Together, these molecular and mechanistic insights provide direction for targeting ERα via the ERα/14-3-3 complex as an alternative drug discovery approach.

Zobrazit více v PubMed

Robinson-Rechavi M., Garcia H.E., Laudet V. The nuclear receptor superfamily. J. Cell Sci. 2003;116:585–586. PubMed

Weikum E.R., Liu X., Ortlund E.A. The nuclear receptor superfamily: a structural perspective. Protein Sci. 2018;27:1876–1892. PubMed PMC

Mangelsdorf D.J., Thummel C., Beato M., Herrlich P., Schütz G., Umesono K., et al. The nuclear receptor superfamily: the second decade. Cell. 1995;83:835–839. PubMed PMC

Huang P., Chandra V., Rastinejad F. Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Annu. Rev. Physiol. 2010;72:247–272. PubMed PMC

Zhao L., Zhou S., Gustafsson J.Å. Nuclear receptors: recent drug discovery for cancer therapies. Endocr. Rev. 2019;40:1207–1249. PubMed

Gronemeyer H., Gustafsson J.Å., Laudet V. Principles for modulation of the nuclear receptor superfamily. Nat. Rev. Drug Discov. 2004;3:950–964. PubMed

Moore J.T., Collins J.L., Pearce K.H. The nuclear receptor superfamily and drug discovery. ChemMedChem. 2006;1:504–523. PubMed

Meijer F.A., Leijten-van de Gevel I.A., de Vries R.M.J.M., Brunsveld L. Allosteric small molecule modulators of nuclear receptors. Mol. Cell. Endocrinol. 2019;485:20–34. PubMed

Caboni L., Lloyd D.G. Beyond the ligand-binding pocket: targeting alternate sites in nuclear receptors. Med. Res. Rev. 2013;33:1081–1118. PubMed

Moore T.W., Mayne C.G., Katzenellenbogen J.A. Minireview: not picking pockets: nuclear receptor alternate-site modulators (NRAMs) Mol. Endocrinol. 2010;24:683–695. PubMed PMC

De Bosscher K., Desmet S.J., Clarisse D., Estébanez-Perpiña E., Brunsveld L. Nuclear receptor crosstalk — defining the mechanisms for therapeutic innovation. Nat. Rev. Endocrinol. 2020;16:363–377. PubMed

Scheepstra M., Leysen S., van Almen G.C., Miller J.R., Piesvaux J., Kutilek V., et al. Identification of an allosteric binding site for RORγt inhibition. Nat. Commun. 2015;6:8833. PubMed PMC

Hughes T.S., Giri P.K., de Vera I.M.S., Marciano D.P., Kuruvilla D.S., Shin Y., et al. An alternate binding site for PPARγ ligands. Nat. Commun. 2014;5:3571. PubMed PMC

De Vera I.M.S., Giri P.K., Munoz-Tello P., Brust R., Fuhrmann J., Matta-Camacho E., et al. Identification of a binding site for unsaturated fatty acids in the orphan nuclear receptor Nurr1. ACS Chem. Biol. 2016;11:1795–1799. PubMed PMC

Li H., Ban F., Dalal K., Leblanc E., Frewin K., Ma D., et al. Discovery of small-molecule inhibitors selectively targeting the DNA-binding domain of the human androgen receptor. J. Med. Chem. 2014;57:6458–6467. PubMed

Wang L.H., Yang X.Y., Zhang X., An P., Kim H.J., Huang J., et al. Disruption of estrogen receptor DNA-binding domain and related intramolecular communication restores tamoxifen sensitivity in resistant breast cancer. Cancer Cell. 2006;10:487–499. PubMed

Veras Ribeiro Filho H., Tambones I.L., Mariano Gonçalves Dias M., Bernardi Videira N., Bruder M., Amorim Amato A., et al. Modulation of nuclear receptor function: targeting the protein-DNA interface. Mol. Cell. Endocrinol. 2019;484:1–14. PubMed

Arnold S.F., Notides A.C. An antiestrogen: a phosphotyrosyl peptide that blocks dimerization of the human estrogen receptor. Proc. Natl. Acad. Sci. U. S. A. 1995;92:7475–7479. PubMed PMC

Spathis A.D., Asvos X., Ziavra D., Karampelas T., Topouzis S., Cournia Z., et al. Nurr1:RXRα heterodimer activation as monotherapy for Parkinson’s disease. Proc. Natl. Acad. Sci. U. S. A. 2017;114:3999–4004. PubMed PMC

Leibowitz M.D., Ardecky R.J., Boehm M.F., Broderick C.L., Carfagna M.A., Crombie D.L., et al. Biological characterization of a heterodimer-selective retinoid X receptor modulator: potential benefits for the treatment of type 2 diabetes. Endocrinology. 2006;147:1044–1053. PubMed

Scheepstra M., Andrei S.A., De Vries R.M.J.M., Meijer F.A., Ma J.N., Burstein E.S., et al. Ligand dependent switch from RXR homo- to RXR-NURR1 heterodimerization. ACS Chem. Neurosci. 2017;8:2065–2077. PubMed PMC

Tice C.M., Zheng Y.-J. Non-canonical modulators of nuclear receptors. Bioorg. Med. Chem. Lett. 2016;26:4157–4164. PubMed

Ravindranathan P., Lee T.K., Yang L., Centenera M.M., Butler L., Tilley W.D., et al. Peptidomimetic targeting of critical androgen receptor-coregulator interactions in prostate cancer. Nat. Commun. 2013;4:1923. PubMed

Chen F., Liu J., Huang M., Hu M., Su Y., Zhang X.K. Identification of a new RXRα antagonist targeting the coregulator-binding site. ACS Med. Chem. Lett. 2014;5:736–741. PubMed PMC

Biron E., Bédard F. Recent progress in the development of protein-protein interaction inhibitors targeting androgen receptor-coactivator binding in prostate cancer. J. Steroid Biochem. Mol. Biol. 2016;161:36–44. PubMed

Flanagan J.J., Neklesa T.K. Targeting nuclear receptors with PROTAC degraders. Mol. Cell. Endocrinol. 2019;493 PubMed

Mullard A. First targeted protein degrader hits the clinic. Nat. Rev. Drug Discov. 2019;18:237–239. PubMed

Jia X., Han X. Targeting androgen receptor degradation with PROTACs from bench to bedside. Biomed. Pharmacother. 2023;158 PubMed

Stevers L.M., Sijbesma E., Botta M., MacKintosh C., Obsil T., Landrieu I., et al. Modulators of 14-3-3 protein–protein interactions. J. Med. Chem. 2018;61:3755–3778. PubMed PMC

Haendler B., Schüttke I., Schleuning W.D. Androgen receptor signalling: comparative analysis of androgen response elements and implication of heat-shock protein 90 and 14-3-3η. Mol. Cell. Endocrinol. 2001;173:63–73. PubMed

Quayle S.N., Sadar M.D. 14-3-3 sigma increases the transcriptional activity of the androgen receptor in the absence of androgens. Cancer Lett. 2007;254:137–145. PubMed PMC

Titus M.A., Tan J.A., Gregory C.W., Ford O.H., Subramanian R.R., Fu H., et al. 14-3-3η amplifies androgen receptor actions in prostate cancer. Clin. Cancer Res. 2009;15:7571–7581. PubMed PMC

Murata T., Takayama K.I., Urano T., Fujimura T., Ashikari D., Obinata D., et al. 14-3-3ζ, a novel androgen-responsive gene, is upregulated in prostate cancer and promotes prostate cancer cell proliferation and survival. Clin. Cancer Res. 2012;18:5617–5627. PubMed

Ruff S.E., Vasilyev N., Nudler E., Logan S.K., Garabedian M.J. PIM1 phosphorylation of the androgen receptor and 14-3-3 ζ regulates gene transcription in prostate cancer. Commun. Biol. 2021;4:1–15. PubMed PMC

Habib T., Sadoun A., Nader N., Suzuki S., Liu W., Jithesh P.V., et al. AKT1 has dual actions on the glucocorticoid receptor by cooperating with 14-3-3. Mol. Cell. Endocrinol. 2017;439:431–443. PubMed

Galliher-Beckley A.J., Williams J.G., Cidlowski J.A. Ligand-independent phosphorylation of the glucocorticoid receptor integrates cellular stress pathways with nuclear receptor signaling. Mol. Cell. Biol. 2011;31:4663–4675. PubMed PMC

Wakui H., Wright A.P.H., Gustafsson J.Å., Zilliacus J. Interaction of the ligand-activated glucocorticoid receptor with the 14-3-3η protein. J. Biol. Chem. 1997;272:8153–8156. PubMed

De Vries-van Leeuwen I.J., da Costa Pereira D., Flach K.D., Piersma S.R., Haase C., Bier D., et al. Interaction of 14-3-3 proteins with the estrogen receptor alpha F domain provides a drug target interface. Proc. Natl. Acad. Sci. U. S. A. 2013;110:8894–8899. PubMed PMC

Kim D.K., Kim Y.H., Hynx D., Wang Y., Yang K.J., Ryu D., et al. PKB/Akt phosphorylation of ERRγ contributes to insulin-mediated inhibition of hepatic gluconeogenesis. Diabetologia. 2014;57:2576–2585. PubMed

Liu L., Lin Y., Liu L., Bian Y., Zhang L., Gao X., et al. 14-3-3γ regulates lipopolysaccharide-induced inflammatory responses and lactation in dairy cow mammary epithelial cells by inhibiting NF-κB and MAPKs and up-regulating mTOR signaling. Int. J. Mol. Sci. 2015;16:16622–16641. PubMed PMC

Park S., Yoo S., Kim J., An H.T., Kang M., Ko J. 14-3-3β and γ differentially regulate peroxisome proliferator activated receptor γ2 transactivation and hepatic lipid metabolism. Biochim. Biophys. Acta. 2015;1849:1237–1247. PubMed

Zilliacus J., Holter E., Wakui H., Tazawa H., Treuter E., Gustafsson J.-A., et al. Regulation of glucocorticoid receptor activity by 14–3-3-dependent intracellular relocalization of the corepressor RIP140. Mol. Endocrinol. 2001;15:501–511. PubMed

Kim S.W., Hasanuzzaman Md., Cho M., Kim N.H., Choi H.Y., Han J.W., et al. Role of 14-3-3 sigma in over-expression of P-gp by rifampin and paclitaxel stimulation through interaction with PXR. Cell. Signal. 2017;31:124–134. PubMed

Somsen B.A., Schellekens R.J.C., Verhoef C.J.A., Arkin M.R., Ottmann C., Cossar P.J., et al. Reversible dual-covalent molecular locking of the 14-3-3/ERRγ protein–protein interaction as a molecular glue drug discovery approach. J. Am. Chem. Soc. 2023;145:6741–6752. PubMed PMC

Sijbesma E., Somsen B.A., Miley G.P., Leijten-Van De Gevel I.A., Brunsveld L., Arkin M.R., et al. Fluorescence anisotropy-based tethering for discovery of protein-protein interaction stabilizers. ACS Chem. Biol. 2020;15:3143–3148. PubMed PMC

Sijbesma E., Hallenbeck K.K., Leysen S., de Vink P.J., Skóra L., Jahnke W., et al. Site-directed fragment-based screening for the discovery of protein–protein interaction stabilizers. J. Am. Chem. Soc. 2019;141:3524–3531. PubMed

Munier C.C., De Maria L., Edman K., Gunnarsson A., Longo M., MacKintosh C., et al. Glucocorticoid receptor Thr524 phosphorylation by MINK1 induces interactions with 14-3-3 protein regulators. J. Biol. Chem. 2021;296 PubMed PMC

Alblova M., Smidova A., Docekal V., Vesely J., Herman P., Obsilova V., et al. Molecular basis of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1. Proc. Natl. Acad. Sci. U. S. A. 2017;114:E9811–E9820. PubMed PMC

Obsil T., Ghirlando R., Klein D.C., Ganguly S., Dyda F. Crystal structure of the 14-3-3ζ:serotonin N-acetyltransferase complex: a role for scaffolding in enzyme regulation. Cell. 2001;105:257–267. PubMed

Park E., Rawson S., Li K., Kim B.W., Ficarro S.B., Pino G.G., et al. Architecture of autoinhibited and active BRAF–MEK1–14-3-3 complexes. Nature. 2019;575:545–550. PubMed PMC

Kondo Y., Ognjenović J., Banerjee S., Karandur D., Merk A., Kulhanek K., et al. (2019) Cryo-EM structure of a dimeric B-Raf:14-3-3 complex reveals asymmetry in the active sites of B-Raf kinases. Science. 1979;366:109–115. PubMed PMC

Choi J.H., Banks A.S., Estall J.L., Kajimura S., Boström P., Laznik D., et al. Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARγ by Cdk5. Nature. 2010;466:451–456. PubMed PMC

Tharun I.M., Nieto L., Haase C., Scheepstra M., Balk M., Möcklinghoff S., et al. Subtype-specific modulation of estrogen receptor-coactivator interaction by phosphorylation. ACS Chem. Biol. 2015;10:475–484. PubMed

Fanning S.W., Mayne C.G., Dharmarajan V., Carlson K.E., Martin T.A., Novick S.J., et al. Estrogen receptor alpha somatic mutations Y537S and D538G confer breast cancer endocrine resistance by stabilizing the activating function-2 binding conformation. Elife. 2016;5 PubMed PMC

Zwart W., Griekspoor A., Berno V., Lakeman K., Jalink K., Mancini M., et al. PKA-induced resistance to tamoxifen is associated with an altered orientation of ERα towards co-activator SRC-1. EMBO J. 2007;26:3534–3544. PubMed PMC

Sijbesma E., Skora L., Leysen S., Brunsveld L., Koch U., Nussbaumer P., et al. Identification of two secondary ligand binding sites in 14-3-3 proteins using fragment screening. Biochemistry. 2017;56:3972–3982. PubMed PMC

Min J., Nwachukwu J.C., Min C.K., Njeri J.W., Srinivasan S., Rangarajan E.S., et al. Dual-mechanism estrogen receptor inhibitors. Proc. Natl. Acad. Sci. U. S. A. 2021;118 PubMed PMC

Shiau A.K., Barstad D., Radek J.T., Meyers M.J., Nettles K.W., Katzenellenbogen B.S., et al. Structural characterization of a subtype-selective ligand reveals a novel mode of estrogen receptor antagonism. Nat. Struct. Biol. 2002;9:359–364. PubMed

Arnal J.F., Lenfant F., Metivier R., Flouriot G., Henrion D., Adlanmerini M., et al. Membrane and nuclear estrogen receptor alpha actions: from tissue specificity to medical implications. Physiol. Rev. 2017;97:1045–1087. PubMed

Patel S.R., Skafar D.F. Modulation of nuclear receptor activity by the F domain. Mol. Cell. Endocrinol. 2015;418:298–305. PubMed

Peters G.A., Khan S.A. Estrogen receptor domains E and F: role in dimerization and interaction with coactivator RIP-140. Mol. Endocrinol. 1999;13:286–296. PubMed

Blom N., Kreegipuu A., Brunak S. PhosphoBase: a database of phosphorylation sites. Nucleic Acids Res. 1998;26:382–386. PubMed PMC

De Vink P.J., Andrei S.A., Higuchi Y., Ottmann C., Milroy L.G., Brunsveld L. Cooperativity basis for small-molecule stabilization of protein–protein interactions. Chem. Sci. 2019;10:2869–2874. PubMed PMC

Tugaeva K.V., Tsvetkov P.O., Sluchanko N.N., Bach A.N. Bacterial co-expression of human Tau protein with protein kinase A and 14-3-3 for studies of 14-3-3/phospho-Tau interaction. PLoS One. 2017;12 PubMed PMC

Leysen S., Burnley R.J., Rodriguez E., Milroy L.G., Soini L., Adamski C.J., et al. A structural study of the cytoplasmic chaperone effect of 14-3-3 proteins on Ataxin-1. J. Mol. Biol. 2021;433 PubMed PMC

Gardino A.K., Smerdon S.J., Yaffe M.B. Structural determinants of 14-3-3 binding specificities and regulation of subcellular localization of 14-3-3-ligand complexes: a comparison of the X-ray crystal structures of all human 14-3-3 isoforms. Semin. Cancer Biol. 2006;16:173–182. PubMed

Obsilova V., Obsil T. Structural insights into the functional roles of 14-3-3 proteins. Front. Mol. Biosci. 2022;9:1044. PubMed PMC

Gogl G., Tugaeva K.V., Eberling P., Kostmann C., Trave G., Sluchanko N.N. Hierarchized phosphotarget binding by the seven human 14-3-3 isoforms. Nat. Commun. 2021;12:1–12. PubMed PMC

Liau N.P.D., Wendorff T.J., Quinn J.G., Steffek M., Phung W., Liu P., et al. Negative regulation of RAF kinase activity by ATP is overcome by 14-3-3-induced dimerization. Nat. Struct. Mol. Biol. 2020;27:134–141. PubMed

Quartararo A.J., Gates Z.P., Somsen B.A., Hartrampf N., Ye X., Shimada A., et al. Ultra-large chemical libraries for the discovery of high-affinity peptide binders. Nat. Commun. 2020;11:3183. PubMed PMC

Tamrazi A., Carlson K.E., Daniels J.R., Hurth K.M., Katzenellenbogen J.A. Estrogen receptor dimerization: ligand binding regulates dimer affinity and dimer dissociation rate. Mol. Endocrinol. 2002;16:2706–2719. PubMed

Pohl P., Joshi R., Petrvalska O., Obsil T., Obsilova V. 14-3-3-protein regulates Nedd4-2 by modulating interactions between HECT and WW domains. Commun. Biol. 2021;4:899. PubMed PMC

Horvath M., Petrvalska O., Herman P., Obsilova V., Obsil T. 14-3-3 proteins inactivate DAPK2 by promoting its dimerization and protecting key regulatory phosphosites. Commun. Biol. 2021;4:986. PubMed PMC

Stevers L.M., de Vink P.J., Ottmann C., Huskens J., Brunsveld L. A thermodynamic model for multivalency in 14-3-3 protein-protein interactions. J. Am. Chem. Soc. 2018;140:14498–14510. PubMed PMC

Stevers L.M., Lam C.V., Leysen S.F.R., Meijer F.A., Van Scheppingen D.S., De Vries R.M.J.M., et al. Characterization and small-molecule stabilization of the multisite tandem binding between 14-3-3 and the R domain of CFTR. Proc. Natl. Acad. Sci. U. S. A. 2016;113:E1152–E1161. PubMed PMC

Varadi M., Anyango S., Deshpande M., Nair S., Natassia C., Yordanova G., et al. AlphaFold protein structure database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022;50:D439–D444. PubMed PMC

Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–589. PubMed PMC

Kopecka M., Kosek D., Kukacka Z., Rezabkova L., Man P., Novak P., et al. Role of the EF-hand-like motif in the 14-3-3 protein-mediated activation of yeast neutral trehalase Nth1. J. Biol. Chem. 2014;289:13948–13961. PubMed PMC

Macakova E., Kopecka M., Kukacka Z., Veisova D., Novak P., Man P., et al. Structural basis of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1. Biochim. Biophys. Acta. 2013;1830:4491–4499. PubMed

Sluchanko N.N., Beelen S., Kulikova A.A., Weeks S.D., Antson A.A., Gusev N.B., et al. Structural basis for the interaction of a human small heat shock protein with the 14-3-3 universal signaling regulator. Structure. 2017;25:305–316. PubMed PMC

Kalabova D., Filandr F., Alblova M., Petrvalska O., Horvath M., Man P., et al. 14-3-3 protein binding blocks the dimerization interface of caspase-2. FEBS J. 2020;287:3494–3510. PubMed

Nettles K.W., Bruning J.B., Gil G., Nowak J., Sharma S.K., Hahm J.B., et al. NFκB selectivity of estrogen receptor ligands revealed by comparative crystallographic analyses. Nat. Chem. Biol. 2008;4:241–247. PubMed PMC

Shiau A.K., Barstad D., Loria P.M., Cheng L., Kushner P.J., Agard D.A., et al. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell. 1998;95:927–937. PubMed

Brzozowski A.M., Pike A.C.W., Dauter Z., Hubbard R.E., Bonn T., Engström O., et al. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature. 1997;389:753–758. PubMed

Wang Y., Chirgadze N.Y., Briggs S.L., Khan S., Jensen E.V., Burris T.P. A second binding site for hydroxytamoxifen within the coactivator-binding groove of estrogen receptor β. Proc. Natl. Acad. Sci. U. S. A. 2006;103:9908–9911. PubMed PMC

Coward P., Lee D., Hull M.V., Lehmann J.M. 4-Hydroxytamoxifen binds to and deactivates the estrogen-related receptor γ. Proc. Natl. Acad. Sci. U. S. A. 2001;98:8880–8884. PubMed PMC

Antonarakis E.S., Armstrong A.J., Dehm S.M., Luo J. Androgen receptor variant-driven prostate cancer: clinical implications and therapeutic targeting. Prostate Cancer Prostatic Dis. 2016;19:231–241. PubMed PMC

Xiang W., Wang S. Therapeutic strategies to target the androgen receptor. J. Med. Chem. 2022;65:8772–8797. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...