Molecular basis and dual ligand regulation of tetrameric estrogen receptor α/14-3-3ζ protein complex
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37224961
PubMed Central
PMC10302166
DOI
10.1016/j.jbc.2023.104855
PII: S0021-9258(23)01883-5
Knihovny.cz E-zdroje
- Klíčová slova
- 14-3-3 protein, Estrogen Receptor, Nuclear receptors, PPI stabilization, protein–protein interactions,
- MeSH
- alfa receptor estrogenů * genetika metabolismus MeSH
- antagonisté estrogenu farmakologie MeSH
- lidé MeSH
- ligandy MeSH
- objevování léků MeSH
- proteiny 14-3-3 * genetika metabolismus MeSH
- tamoxifen farmakologie MeSH
- vazba proteinů účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- afimoxifene MeSH Prohlížeč
- alfa receptor estrogenů * MeSH
- antagonisté estrogenu MeSH
- ligandy MeSH
- proteiny 14-3-3 * MeSH
- tamoxifen MeSH
Therapeutic strategies targeting nuclear receptors (NRs) beyond their endogenous ligand binding pocket have gained significant scientific interest driven by a need to circumvent problems associated with drug resistance and pharmacological profile. The hub protein 14-3-3 is an endogenous regulator of various NRs, providing a novel entry point for small molecule modulation of NR activity. Exemplified, 14-3-3 binding to the C-terminal F-domain of the estrogen receptor alpha (ERα), and small molecule stabilization of the ERα/14-3-3ζ protein complex by the natural product Fusicoccin A (FC-A), was demonstrated to downregulate ERα-mediated breast cancer proliferation. This presents a novel drug discovery approach to target ERα; however, structural and mechanistic insights into ERα/14-3-3 complex formation are lacking. Here, we provide an in-depth molecular understanding of the ERα/14-3-3ζ complex by isolating 14-3-3ζ in complex with an ERα protein construct comprising its ligand-binding domain (LBD) and phosphorylated F-domain. Bacterial co-expression and co-purification of the ERα/14-3-3ζ complex, followed by extensive biophysical and structural characterization, revealed a tetrameric complex between the ERα homodimer and the 14-3-3ζ homodimer. 14-3-3ζ binding to ERα, and ERα/14-3-3ζ complex stabilization by FC-A, appeared to be orthogonal to ERα endogenous agonist (E2) binding, E2-induced conformational changes, and cofactor recruitment. Similarly, the ERα antagonist 4-hydroxytamoxifen inhibited cofactor recruitment to the ERα LBD while ERα was bound to 14-3-3ζ. Furthermore, stabilization of the ERα/14-3-3ζ protein complex by FC-A was not influenced by the disease-associated and 4-hydroxytamoxifen resistant ERα-Y537S mutant. Together, these molecular and mechanistic insights provide direction for targeting ERα via the ERα/14-3-3 complex as an alternative drug discovery approach.
Zobrazit více v PubMed
Robinson-Rechavi M., Garcia H.E., Laudet V. The nuclear receptor superfamily. J. Cell Sci. 2003;116:585–586. PubMed
Weikum E.R., Liu X., Ortlund E.A. The nuclear receptor superfamily: a structural perspective. Protein Sci. 2018;27:1876–1892. PubMed PMC
Mangelsdorf D.J., Thummel C., Beato M., Herrlich P., Schütz G., Umesono K., et al. The nuclear receptor superfamily: the second decade. Cell. 1995;83:835–839. PubMed PMC
Huang P., Chandra V., Rastinejad F. Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Annu. Rev. Physiol. 2010;72:247–272. PubMed PMC
Zhao L., Zhou S., Gustafsson J.Å. Nuclear receptors: recent drug discovery for cancer therapies. Endocr. Rev. 2019;40:1207–1249. PubMed
Gronemeyer H., Gustafsson J.Å., Laudet V. Principles for modulation of the nuclear receptor superfamily. Nat. Rev. Drug Discov. 2004;3:950–964. PubMed
Moore J.T., Collins J.L., Pearce K.H. The nuclear receptor superfamily and drug discovery. ChemMedChem. 2006;1:504–523. PubMed
Meijer F.A., Leijten-van de Gevel I.A., de Vries R.M.J.M., Brunsveld L. Allosteric small molecule modulators of nuclear receptors. Mol. Cell. Endocrinol. 2019;485:20–34. PubMed
Caboni L., Lloyd D.G. Beyond the ligand-binding pocket: targeting alternate sites in nuclear receptors. Med. Res. Rev. 2013;33:1081–1118. PubMed
Moore T.W., Mayne C.G., Katzenellenbogen J.A. Minireview: not picking pockets: nuclear receptor alternate-site modulators (NRAMs) Mol. Endocrinol. 2010;24:683–695. PubMed PMC
De Bosscher K., Desmet S.J., Clarisse D., Estébanez-Perpiña E., Brunsveld L. Nuclear receptor crosstalk — defining the mechanisms for therapeutic innovation. Nat. Rev. Endocrinol. 2020;16:363–377. PubMed
Scheepstra M., Leysen S., van Almen G.C., Miller J.R., Piesvaux J., Kutilek V., et al. Identification of an allosteric binding site for RORγt inhibition. Nat. Commun. 2015;6:8833. PubMed PMC
Hughes T.S., Giri P.K., de Vera I.M.S., Marciano D.P., Kuruvilla D.S., Shin Y., et al. An alternate binding site for PPARγ ligands. Nat. Commun. 2014;5:3571. PubMed PMC
De Vera I.M.S., Giri P.K., Munoz-Tello P., Brust R., Fuhrmann J., Matta-Camacho E., et al. Identification of a binding site for unsaturated fatty acids in the orphan nuclear receptor Nurr1. ACS Chem. Biol. 2016;11:1795–1799. PubMed PMC
Li H., Ban F., Dalal K., Leblanc E., Frewin K., Ma D., et al. Discovery of small-molecule inhibitors selectively targeting the DNA-binding domain of the human androgen receptor. J. Med. Chem. 2014;57:6458–6467. PubMed
Wang L.H., Yang X.Y., Zhang X., An P., Kim H.J., Huang J., et al. Disruption of estrogen receptor DNA-binding domain and related intramolecular communication restores tamoxifen sensitivity in resistant breast cancer. Cancer Cell. 2006;10:487–499. PubMed
Veras Ribeiro Filho H., Tambones I.L., Mariano Gonçalves Dias M., Bernardi Videira N., Bruder M., Amorim Amato A., et al. Modulation of nuclear receptor function: targeting the protein-DNA interface. Mol. Cell. Endocrinol. 2019;484:1–14. PubMed
Arnold S.F., Notides A.C. An antiestrogen: a phosphotyrosyl peptide that blocks dimerization of the human estrogen receptor. Proc. Natl. Acad. Sci. U. S. A. 1995;92:7475–7479. PubMed PMC
Spathis A.D., Asvos X., Ziavra D., Karampelas T., Topouzis S., Cournia Z., et al. Nurr1:RXRα heterodimer activation as monotherapy for Parkinson’s disease. Proc. Natl. Acad. Sci. U. S. A. 2017;114:3999–4004. PubMed PMC
Leibowitz M.D., Ardecky R.J., Boehm M.F., Broderick C.L., Carfagna M.A., Crombie D.L., et al. Biological characterization of a heterodimer-selective retinoid X receptor modulator: potential benefits for the treatment of type 2 diabetes. Endocrinology. 2006;147:1044–1053. PubMed
Scheepstra M., Andrei S.A., De Vries R.M.J.M., Meijer F.A., Ma J.N., Burstein E.S., et al. Ligand dependent switch from RXR homo- to RXR-NURR1 heterodimerization. ACS Chem. Neurosci. 2017;8:2065–2077. PubMed PMC
Tice C.M., Zheng Y.-J. Non-canonical modulators of nuclear receptors. Bioorg. Med. Chem. Lett. 2016;26:4157–4164. PubMed
Ravindranathan P., Lee T.K., Yang L., Centenera M.M., Butler L., Tilley W.D., et al. Peptidomimetic targeting of critical androgen receptor-coregulator interactions in prostate cancer. Nat. Commun. 2013;4:1923. PubMed
Chen F., Liu J., Huang M., Hu M., Su Y., Zhang X.K. Identification of a new RXRα antagonist targeting the coregulator-binding site. ACS Med. Chem. Lett. 2014;5:736–741. PubMed PMC
Biron E., Bédard F. Recent progress in the development of protein-protein interaction inhibitors targeting androgen receptor-coactivator binding in prostate cancer. J. Steroid Biochem. Mol. Biol. 2016;161:36–44. PubMed
Flanagan J.J., Neklesa T.K. Targeting nuclear receptors with PROTAC degraders. Mol. Cell. Endocrinol. 2019;493 PubMed
Mullard A. First targeted protein degrader hits the clinic. Nat. Rev. Drug Discov. 2019;18:237–239. PubMed
Jia X., Han X. Targeting androgen receptor degradation with PROTACs from bench to bedside. Biomed. Pharmacother. 2023;158 PubMed
Stevers L.M., Sijbesma E., Botta M., MacKintosh C., Obsil T., Landrieu I., et al. Modulators of 14-3-3 protein–protein interactions. J. Med. Chem. 2018;61:3755–3778. PubMed PMC
Haendler B., Schüttke I., Schleuning W.D. Androgen receptor signalling: comparative analysis of androgen response elements and implication of heat-shock protein 90 and 14-3-3η. Mol. Cell. Endocrinol. 2001;173:63–73. PubMed
Quayle S.N., Sadar M.D. 14-3-3 sigma increases the transcriptional activity of the androgen receptor in the absence of androgens. Cancer Lett. 2007;254:137–145. PubMed PMC
Titus M.A., Tan J.A., Gregory C.W., Ford O.H., Subramanian R.R., Fu H., et al. 14-3-3η amplifies androgen receptor actions in prostate cancer. Clin. Cancer Res. 2009;15:7571–7581. PubMed PMC
Murata T., Takayama K.I., Urano T., Fujimura T., Ashikari D., Obinata D., et al. 14-3-3ζ, a novel androgen-responsive gene, is upregulated in prostate cancer and promotes prostate cancer cell proliferation and survival. Clin. Cancer Res. 2012;18:5617–5627. PubMed
Ruff S.E., Vasilyev N., Nudler E., Logan S.K., Garabedian M.J. PIM1 phosphorylation of the androgen receptor and 14-3-3 ζ regulates gene transcription in prostate cancer. Commun. Biol. 2021;4:1–15. PubMed PMC
Habib T., Sadoun A., Nader N., Suzuki S., Liu W., Jithesh P.V., et al. AKT1 has dual actions on the glucocorticoid receptor by cooperating with 14-3-3. Mol. Cell. Endocrinol. 2017;439:431–443. PubMed
Galliher-Beckley A.J., Williams J.G., Cidlowski J.A. Ligand-independent phosphorylation of the glucocorticoid receptor integrates cellular stress pathways with nuclear receptor signaling. Mol. Cell. Biol. 2011;31:4663–4675. PubMed PMC
Wakui H., Wright A.P.H., Gustafsson J.Å., Zilliacus J. Interaction of the ligand-activated glucocorticoid receptor with the 14-3-3η protein. J. Biol. Chem. 1997;272:8153–8156. PubMed
De Vries-van Leeuwen I.J., da Costa Pereira D., Flach K.D., Piersma S.R., Haase C., Bier D., et al. Interaction of 14-3-3 proteins with the estrogen receptor alpha F domain provides a drug target interface. Proc. Natl. Acad. Sci. U. S. A. 2013;110:8894–8899. PubMed PMC
Kim D.K., Kim Y.H., Hynx D., Wang Y., Yang K.J., Ryu D., et al. PKB/Akt phosphorylation of ERRγ contributes to insulin-mediated inhibition of hepatic gluconeogenesis. Diabetologia. 2014;57:2576–2585. PubMed
Liu L., Lin Y., Liu L., Bian Y., Zhang L., Gao X., et al. 14-3-3γ regulates lipopolysaccharide-induced inflammatory responses and lactation in dairy cow mammary epithelial cells by inhibiting NF-κB and MAPKs and up-regulating mTOR signaling. Int. J. Mol. Sci. 2015;16:16622–16641. PubMed PMC
Park S., Yoo S., Kim J., An H.T., Kang M., Ko J. 14-3-3β and γ differentially regulate peroxisome proliferator activated receptor γ2 transactivation and hepatic lipid metabolism. Biochim. Biophys. Acta. 2015;1849:1237–1247. PubMed
Zilliacus J., Holter E., Wakui H., Tazawa H., Treuter E., Gustafsson J.-A., et al. Regulation of glucocorticoid receptor activity by 14–3-3-dependent intracellular relocalization of the corepressor RIP140. Mol. Endocrinol. 2001;15:501–511. PubMed
Kim S.W., Hasanuzzaman Md., Cho M., Kim N.H., Choi H.Y., Han J.W., et al. Role of 14-3-3 sigma in over-expression of P-gp by rifampin and paclitaxel stimulation through interaction with PXR. Cell. Signal. 2017;31:124–134. PubMed
Somsen B.A., Schellekens R.J.C., Verhoef C.J.A., Arkin M.R., Ottmann C., Cossar P.J., et al. Reversible dual-covalent molecular locking of the 14-3-3/ERRγ protein–protein interaction as a molecular glue drug discovery approach. J. Am. Chem. Soc. 2023;145:6741–6752. PubMed PMC
Sijbesma E., Somsen B.A., Miley G.P., Leijten-Van De Gevel I.A., Brunsveld L., Arkin M.R., et al. Fluorescence anisotropy-based tethering for discovery of protein-protein interaction stabilizers. ACS Chem. Biol. 2020;15:3143–3148. PubMed PMC
Sijbesma E., Hallenbeck K.K., Leysen S., de Vink P.J., Skóra L., Jahnke W., et al. Site-directed fragment-based screening for the discovery of protein–protein interaction stabilizers. J. Am. Chem. Soc. 2019;141:3524–3531. PubMed
Munier C.C., De Maria L., Edman K., Gunnarsson A., Longo M., MacKintosh C., et al. Glucocorticoid receptor Thr524 phosphorylation by MINK1 induces interactions with 14-3-3 protein regulators. J. Biol. Chem. 2021;296 PubMed PMC
Alblova M., Smidova A., Docekal V., Vesely J., Herman P., Obsilova V., et al. Molecular basis of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1. Proc. Natl. Acad. Sci. U. S. A. 2017;114:E9811–E9820. PubMed PMC
Obsil T., Ghirlando R., Klein D.C., Ganguly S., Dyda F. Crystal structure of the 14-3-3ζ:serotonin N-acetyltransferase complex: a role for scaffolding in enzyme regulation. Cell. 2001;105:257–267. PubMed
Park E., Rawson S., Li K., Kim B.W., Ficarro S.B., Pino G.G., et al. Architecture of autoinhibited and active BRAF–MEK1–14-3-3 complexes. Nature. 2019;575:545–550. PubMed PMC
Kondo Y., Ognjenović J., Banerjee S., Karandur D., Merk A., Kulhanek K., et al. (2019) Cryo-EM structure of a dimeric B-Raf:14-3-3 complex reveals asymmetry in the active sites of B-Raf kinases. Science. 1979;366:109–115. PubMed PMC
Choi J.H., Banks A.S., Estall J.L., Kajimura S., Boström P., Laznik D., et al. Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARγ by Cdk5. Nature. 2010;466:451–456. PubMed PMC
Tharun I.M., Nieto L., Haase C., Scheepstra M., Balk M., Möcklinghoff S., et al. Subtype-specific modulation of estrogen receptor-coactivator interaction by phosphorylation. ACS Chem. Biol. 2015;10:475–484. PubMed
Fanning S.W., Mayne C.G., Dharmarajan V., Carlson K.E., Martin T.A., Novick S.J., et al. Estrogen receptor alpha somatic mutations Y537S and D538G confer breast cancer endocrine resistance by stabilizing the activating function-2 binding conformation. Elife. 2016;5 PubMed PMC
Zwart W., Griekspoor A., Berno V., Lakeman K., Jalink K., Mancini M., et al. PKA-induced resistance to tamoxifen is associated with an altered orientation of ERα towards co-activator SRC-1. EMBO J. 2007;26:3534–3544. PubMed PMC
Sijbesma E., Skora L., Leysen S., Brunsveld L., Koch U., Nussbaumer P., et al. Identification of two secondary ligand binding sites in 14-3-3 proteins using fragment screening. Biochemistry. 2017;56:3972–3982. PubMed PMC
Min J., Nwachukwu J.C., Min C.K., Njeri J.W., Srinivasan S., Rangarajan E.S., et al. Dual-mechanism estrogen receptor inhibitors. Proc. Natl. Acad. Sci. U. S. A. 2021;118 PubMed PMC
Shiau A.K., Barstad D., Radek J.T., Meyers M.J., Nettles K.W., Katzenellenbogen B.S., et al. Structural characterization of a subtype-selective ligand reveals a novel mode of estrogen receptor antagonism. Nat. Struct. Biol. 2002;9:359–364. PubMed
Arnal J.F., Lenfant F., Metivier R., Flouriot G., Henrion D., Adlanmerini M., et al. Membrane and nuclear estrogen receptor alpha actions: from tissue specificity to medical implications. Physiol. Rev. 2017;97:1045–1087. PubMed
Patel S.R., Skafar D.F. Modulation of nuclear receptor activity by the F domain. Mol. Cell. Endocrinol. 2015;418:298–305. PubMed
Peters G.A., Khan S.A. Estrogen receptor domains E and F: role in dimerization and interaction with coactivator RIP-140. Mol. Endocrinol. 1999;13:286–296. PubMed
Blom N., Kreegipuu A., Brunak S. PhosphoBase: a database of phosphorylation sites. Nucleic Acids Res. 1998;26:382–386. PubMed PMC
De Vink P.J., Andrei S.A., Higuchi Y., Ottmann C., Milroy L.G., Brunsveld L. Cooperativity basis for small-molecule stabilization of protein–protein interactions. Chem. Sci. 2019;10:2869–2874. PubMed PMC
Tugaeva K.V., Tsvetkov P.O., Sluchanko N.N., Bach A.N. Bacterial co-expression of human Tau protein with protein kinase A and 14-3-3 for studies of 14-3-3/phospho-Tau interaction. PLoS One. 2017;12 PubMed PMC
Leysen S., Burnley R.J., Rodriguez E., Milroy L.G., Soini L., Adamski C.J., et al. A structural study of the cytoplasmic chaperone effect of 14-3-3 proteins on Ataxin-1. J. Mol. Biol. 2021;433 PubMed PMC
Gardino A.K., Smerdon S.J., Yaffe M.B. Structural determinants of 14-3-3 binding specificities and regulation of subcellular localization of 14-3-3-ligand complexes: a comparison of the X-ray crystal structures of all human 14-3-3 isoforms. Semin. Cancer Biol. 2006;16:173–182. PubMed
Obsilova V., Obsil T. Structural insights into the functional roles of 14-3-3 proteins. Front. Mol. Biosci. 2022;9:1044. PubMed PMC
Gogl G., Tugaeva K.V., Eberling P., Kostmann C., Trave G., Sluchanko N.N. Hierarchized phosphotarget binding by the seven human 14-3-3 isoforms. Nat. Commun. 2021;12:1–12. PubMed PMC
Liau N.P.D., Wendorff T.J., Quinn J.G., Steffek M., Phung W., Liu P., et al. Negative regulation of RAF kinase activity by ATP is overcome by 14-3-3-induced dimerization. Nat. Struct. Mol. Biol. 2020;27:134–141. PubMed
Quartararo A.J., Gates Z.P., Somsen B.A., Hartrampf N., Ye X., Shimada A., et al. Ultra-large chemical libraries for the discovery of high-affinity peptide binders. Nat. Commun. 2020;11:3183. PubMed PMC
Tamrazi A., Carlson K.E., Daniels J.R., Hurth K.M., Katzenellenbogen J.A. Estrogen receptor dimerization: ligand binding regulates dimer affinity and dimer dissociation rate. Mol. Endocrinol. 2002;16:2706–2719. PubMed
Pohl P., Joshi R., Petrvalska O., Obsil T., Obsilova V. 14-3-3-protein regulates Nedd4-2 by modulating interactions between HECT and WW domains. Commun. Biol. 2021;4:899. PubMed PMC
Horvath M., Petrvalska O., Herman P., Obsilova V., Obsil T. 14-3-3 proteins inactivate DAPK2 by promoting its dimerization and protecting key regulatory phosphosites. Commun. Biol. 2021;4:986. PubMed PMC
Stevers L.M., de Vink P.J., Ottmann C., Huskens J., Brunsveld L. A thermodynamic model for multivalency in 14-3-3 protein-protein interactions. J. Am. Chem. Soc. 2018;140:14498–14510. PubMed PMC
Stevers L.M., Lam C.V., Leysen S.F.R., Meijer F.A., Van Scheppingen D.S., De Vries R.M.J.M., et al. Characterization and small-molecule stabilization of the multisite tandem binding between 14-3-3 and the R domain of CFTR. Proc. Natl. Acad. Sci. U. S. A. 2016;113:E1152–E1161. PubMed PMC
Varadi M., Anyango S., Deshpande M., Nair S., Natassia C., Yordanova G., et al. AlphaFold protein structure database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022;50:D439–D444. PubMed PMC
Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–589. PubMed PMC
Kopecka M., Kosek D., Kukacka Z., Rezabkova L., Man P., Novak P., et al. Role of the EF-hand-like motif in the 14-3-3 protein-mediated activation of yeast neutral trehalase Nth1. J. Biol. Chem. 2014;289:13948–13961. PubMed PMC
Macakova E., Kopecka M., Kukacka Z., Veisova D., Novak P., Man P., et al. Structural basis of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1. Biochim. Biophys. Acta. 2013;1830:4491–4499. PubMed
Sluchanko N.N., Beelen S., Kulikova A.A., Weeks S.D., Antson A.A., Gusev N.B., et al. Structural basis for the interaction of a human small heat shock protein with the 14-3-3 universal signaling regulator. Structure. 2017;25:305–316. PubMed PMC
Kalabova D., Filandr F., Alblova M., Petrvalska O., Horvath M., Man P., et al. 14-3-3 protein binding blocks the dimerization interface of caspase-2. FEBS J. 2020;287:3494–3510. PubMed
Nettles K.W., Bruning J.B., Gil G., Nowak J., Sharma S.K., Hahm J.B., et al. NFκB selectivity of estrogen receptor ligands revealed by comparative crystallographic analyses. Nat. Chem. Biol. 2008;4:241–247. PubMed PMC
Shiau A.K., Barstad D., Loria P.M., Cheng L., Kushner P.J., Agard D.A., et al. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell. 1998;95:927–937. PubMed
Brzozowski A.M., Pike A.C.W., Dauter Z., Hubbard R.E., Bonn T., Engström O., et al. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature. 1997;389:753–758. PubMed
Wang Y., Chirgadze N.Y., Briggs S.L., Khan S., Jensen E.V., Burris T.P. A second binding site for hydroxytamoxifen within the coactivator-binding groove of estrogen receptor β. Proc. Natl. Acad. Sci. U. S. A. 2006;103:9908–9911. PubMed PMC
Coward P., Lee D., Hull M.V., Lehmann J.M. 4-Hydroxytamoxifen binds to and deactivates the estrogen-related receptor γ. Proc. Natl. Acad. Sci. U. S. A. 2001;98:8880–8884. PubMed PMC
Antonarakis E.S., Armstrong A.J., Dehm S.M., Luo J. Androgen receptor variant-driven prostate cancer: clinical implications and therapeutic targeting. Prostate Cancer Prostatic Dis. 2016;19:231–241. PubMed PMC
Xiang W., Wang S. Therapeutic strategies to target the androgen receptor. J. Med. Chem. 2022;65:8772–8797. PubMed