14-3-3 proteins inactivate DAPK2 by promoting its dimerization and protecting key regulatory phosphosites
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34413451
PubMed Central
PMC8376927
DOI
10.1038/s42003-021-02518-y
PII: 10.1038/s42003-021-02518-y
Knihovny.cz E-zdroje
- MeSH
- dimerizace MeSH
- fosforylace MeSH
- lidé MeSH
- proteinkinasy asociované se smrtí genetika metabolismus MeSH
- proteiny 14-3-3 genetika metabolismus MeSH
- regulace genové exprese MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DAPK2 protein, human MeSH Prohlížeč
- proteinkinasy asociované se smrtí MeSH
- proteiny 14-3-3 MeSH
- YWHAG protein, human MeSH Prohlížeč
Death-associated protein kinase 2 (DAPK2) is a CaM-regulated Ser/Thr protein kinase, involved in apoptosis, autophagy, granulocyte differentiation and motility regulation, whose activity is controlled by autoinhibition, autophosphorylation, dimerization and interaction with scaffolding proteins 14-3-3. However, the structural basis of 14-3-3-mediated DAPK2 regulation remains unclear. Here, we structurally and biochemically characterize the full-length human DAPK2:14-3-3 complex by combining several biophysical techniques. The results from our X-ray crystallographic analysis revealed that Thr369 phosphorylation at the DAPK2 C terminus creates a high-affinity canonical mode III 14-3-3-binding motif, further enhanced by the diterpene glycoside Fusicoccin A. Moreover, concentration-dependent DAPK2 dimerization is disrupted by Ca2+/CaM binding and stabilized by 14-3-3 binding in solution, thereby protecting the DAPK2 inhibitory autophosphorylation site Ser318 against dephosphorylation and preventing Ca2+/CaM binding. Overall, our findings provide mechanistic insights into 14-3-3-mediated DAPK2 inhibition and highlight the potential of the DAPK2:14-3-3 complex as a target for anti-inflammatory therapies.
Zobrazit více v PubMed
Bialik S, Kimchi A. The death-associated protein kinases: structure, function, and beyond. Annu Rev. Biochem. 2006;75:189–210. doi: 10.1146/annurev.biochem.75.103004.142615. PubMed DOI
Farag AK, Roh EJ. Death-associated protein kinase (DAPK) family modulators: Current and future therapeutic outcomes. Med. Res. Rev. 2019;39:349–385. doi: 10.1002/med.21518. PubMed DOI
Shiloh R, Bialik S, Kimchi A. The DAPK family: a structure-function analysis. Apoptosis. 2014;19:286–297. doi: 10.1007/s10495-013-0924-5. PubMed DOI
Kawai T, et al. Death-associated protein kinase 2 is a new calcium/calmodulin-dependent protein kinase that signals apoptosis through its catalytic activity. Oncogene. 1999;18:3471–3480. doi: 10.1038/sj.onc.1202701. PubMed DOI
Inbal B, Shani G, Cohen O, Kissil JL, Kimchi A. Death-associated protein kinase-related protein 1, a novel serine/threonine kinase involved in apoptosis. Mol. Cell Biol. 2000;20:1044–1054. doi: 10.1128/MCB.20.3.1044-1054.2000. PubMed DOI PMC
Kawai T, Matsumoto M, Takeda K, Sanjo H, Akira S. ZIP kinase, a novel serine/threonine kinase which mediates apoptosis. Mol. Cell Biol. 1998;18:1642–1651. doi: 10.1128/MCB.18.3.1642. PubMed DOI PMC
Sanjo H, Kawai T, Akira S. DRAKs, novel serine/threonine kinases related to death-associated protein kinase that trigger apoptosis. J. Biol. Chem. 1998;273:29066–29071. doi: 10.1074/jbc.273.44.29066. PubMed DOI
Inbal B, Bialik S, Sabanay I, Shani G, Kimchi A. DAP kinase and DRP-1 mediate membrane blebbing and the formation of autophagic vesicles during programmed cell death. J. Cell Biol. 2002;157:455–468. doi: 10.1083/jcb.200109094. PubMed DOI PMC
Geering B, et al. DAPK2 positively regulates motility of neutrophils and eosinophils in response to intermediary chemoattractants. J. Leukoc. Biol. 2014;95:293–303. doi: 10.1189/jlb.0813462. PubMed DOI
Ber Y, et al. DAPK2 is a novel regulator of mTORC1 activity and autophagy. Cell Death Differ. 2015;22:465–475. doi: 10.1038/cdd.2014.177. PubMed DOI PMC
Isshiki K, Matsuda S, Tsuji A, Yuasa K. cGMP-dependent protein kinase I promotes cell apoptosis through hyperactivation of death-associated protein kinase 2. Biochem. Biophys. Res. Commun. 2012;422:280–284. doi: 10.1016/j.bbrc.2012.04.148. PubMed DOI
Kogel D, Prehn JH, Scheidtmann KH. The DAP kinase family of pro-apoptotic proteins: novel players in the apoptotic game. Bioessays. 2001;23:352–358. doi: 10.1002/bies.1050. PubMed DOI
Patel AK, Yadav RP, Majava V, Kursula I, Kursula P. Structure of the dimeric autoinhibited conformation of DAPK2, a pro-apoptotic protein kinase. J. Mol. Biol. 2011;409:369–383. doi: 10.1016/j.jmb.2011.03.065. PubMed DOI
Simon B, et al. Death-associated protein kinase activity is regulated by coupled calcium/calmodulin binding to two distinct sites. Structure. 2016;24:851–861. doi: 10.1016/j.str.2016.03.020. PubMed DOI PMC
Kylarova S, Psenakova K, Herman P, Obsilova V, Obsil T. CaMKK2 kinase domain interacts with the autoinhibitory region through the N-terminal lobe including the RP insert. Biochim. Biophys. Acta Gen. Subj. 2018;1862:2304–2313. doi: 10.1016/j.bbagen.2018.07.025. PubMed DOI
Matsushita M, Nairn AC. Inhibition of the Ca2+/calmodulin-dependent protein kinase I cascade by cAMP-dependent protein kinase. J. Biol. Chem. 1999;274:10086–10093. doi: 10.1074/jbc.274.15.10086. PubMed DOI
Stratton MM, Chao LH, Schulman H, Kuriyan J. Structural studies on the regulation of Ca2+/calmodulin dependent protein kinase II. Curr. Opin. Struct. Biol. 2013;23:292–301. doi: 10.1016/j.sbi.2013.04.002. PubMed DOI PMC
Britschgi A, et al. DAPK2 is a novel E2F1/KLF6 target gene involved in their proapoptotic function. Oncogene. 2008;27:5706–5716. doi: 10.1038/onc.2008.179. PubMed DOI
Humbert M, et al. The tumor suppressor gene DAPK2 is induced by the myeloid transcription factors PU.1 and C/EBPalpha during granulocytic differentiation but repressed by PML-RARalpha in APL. J. Leukoc. Biol. 2014;95:83–93. doi: 10.1189/jlb.1112608. PubMed DOI PMC
Li H, Ray G, Yoo BH, Erdogan M, Rosen KV. Down-regulation of death-associated protein kinase-2 is required for beta-catenin-induced anoikis resistance of malignant epithelial cells. J. Biol. Chem. 2009;284:2012–2022. doi: 10.1074/jbc.M805612200. PubMed DOI
Rizzi M, et al. The death-associated protein kinase 2 is up-regulated during normal myeloid differentiation and enhances neutrophil maturation in myeloid leukemic cells. J. Leukoc. Biol. 2007;81:1599–1608. doi: 10.1189/jlb.0606400. PubMed DOI
Tur MK, et al. Targeted restoration of down-regulated DAPK2 tumor suppressor activity induces apoptosis in Hodgkin lymphoma cells. J. Immunother. 2009;32:431–441. doi: 10.1097/CJI.0b013e31819f1cb6. PubMed DOI
Shani G, et al. Autophosphorylation restrains the apoptotic activity of DRP-1 kinase by controlling dimerization and calmodulin binding. EMBO J. 2001;20:1099–1113. doi: 10.1093/emboj/20.5.1099. PubMed DOI PMC
Shiloh R, et al. Non-canonical activation of DAPK2 by AMPK constitutes a new pathway linking metabolic stress to autophagy. Nat. Commun. 2018;9:1759. doi: 10.1038/s41467-018-03907-4. PubMed DOI PMC
Gilad Y, Shiloh R, Ber Y, Bialik S, Kimchi A. Discovering protein-protein interactions within the programmed cell death network using a protein-fragment complementation screen. Cell Rep. 2014;8:909–921. doi: 10.1016/j.celrep.2014.06.049. PubMed DOI
Yuasa K, et al. Suppression of death-associated protein kinase 2 by interaction with 14-3-3 proteins. Biochem. Biophys. Res. Commun. 2015;464:70–75. doi: 10.1016/j.bbrc.2015.05.105. PubMed DOI
Yaffe MB, et al. The structural basis for 14-3-3:phosphopeptide binding specificity. Cell. 1997;91:961–971. doi: 10.1016/S0092-8674(00)80487-0. PubMed DOI
Wurtele M, Jelich-Ottmann C, Wittinghofer A, Oecking C. Structural view of a fungal toxin acting on a 14-3-3 regulatory complex. EMBO J. 2003;22:987–994. doi: 10.1093/emboj/cdg104. PubMed DOI PMC
Ganguly S, et al. Melatonin synthesis: 14-3-3-dependent activation and inhibition of arylalkylamine N-acetyltransferase mediated by phosphoserine-205. Proc. Natl Acad. Sci. USA. 2005;102:1222–1227. doi: 10.1073/pnas.0406871102. PubMed DOI PMC
Coblitz B, et al. C-terminal recognition by 14-3-3 proteins for surface expression of membrane receptors. J. Biol. Chem. 2005;280:36263–36272. doi: 10.1074/jbc.M507559200. PubMed DOI
Gogl G, et al. Hierarchized phosphotarget binding by the seven human 14-3-3 isoforms. Nat. Commun. 2021;12:1677. doi: 10.1038/s41467-021-21908-8. PubMed DOI PMC
Rose R, Rose M, Ottmann C. Identification and structural characterization of two 14-3-3 binding sites in the human peptidylarginine deiminase type VI. J. Struct. Biol. 2012;180:65–72. doi: 10.1016/j.jsb.2012.05.010. PubMed DOI
Stevers LM, et al. Characterization and small-molecule stabilization of the multisite tandem binding between 14-3-3 and the R domain of CFTR. Proc. Natl Acad. Sci. USA. 2016;113:E1152–E1161. doi: 10.1073/pnas.1516631113. PubMed DOI PMC
Anders C, et al. A semisynthetic fusicoccane stabilizes a protein-protein interaction and enhances the expression of K+ channels at the cell surface. Chem. Biol. 2013;20:583–593. doi: 10.1016/j.chembiol.2013.03.015. PubMed DOI
Simmons TJ, et al. Structural and electronic determinants of lytic polysaccharide monooxygenase reactivity on polysaccharide substrates. Nat. Commun. 2017;8:1064. doi: 10.1038/s41467-017-01247-3. PubMed DOI PMC
de Boer AH, de Vries-van Leeuwen IJ. Fusicoccanes: diterpenes with surprising biological functions. Trends Plant Sci. 2012;17:360–368. doi: 10.1016/j.tplants.2012.02.007. PubMed DOI
Molzan M, et al. Impaired binding of 14-3-3 to C-RAF in Noonan syndrome suggests new approaches in diseases with increased Ras signaling. Mol. Cell. Biol. 2010;30:4698–4711. doi: 10.1128/MCB.01636-09. PubMed DOI PMC
Stevers LM, et al. Modulators of 14-3-3 protein-protein interactions. J. Med. Chem. 2018;61:3755–3778. doi: 10.1021/acs.jmedchem.7b00574. PubMed DOI PMC
Saponaro A, et al. Fusicoccin activates KAT1 channels by stabilizing their interaction with 14-3-3 proteins. Plant Cell. 2017;29:2570–2580. PubMed PMC
Saline M, et al. AMPK and AKT protein kinases hierarchically phosphorylate the N-terminus of the FOXO1 transcription factor, modulating interactions with 14-3-3 proteins. J. Biol. Chem. 2019;294:13106–13116. doi: 10.1074/jbc.RA119.008649. PubMed DOI PMC
Sinz A. Cross-linking/mass spectrometry for studying protein structures and protein-protein interactions: where are we now and where should we go from here? Angew. Chem. 2018;57:6390–6396. doi: 10.1002/anie.201709559. PubMed DOI
Bernado P, Svergun DI. Structural analysis of intrinsically disordered proteins by small-angle X-ray scattering. Mol. Biosyst. 2012;8:151–167. doi: 10.1039/C1MB05275F. PubMed DOI
Tugaeva KV, Kalacheva DI, Cooley RB, Strelkov SV, Sluchanko NN. Concatenation of 14-3-3 with partner phosphoproteins as a tool to study their interaction. Sci. Rep. 2019;9:15007. doi: 10.1038/s41598-019-50941-3. PubMed DOI PMC
Psenakova K, et al. 14-3-3 protein directly interacts with the kinase domain of calcium/calmodulin-dependent protein kinase kinase (CaMKK2) Biochim. Biophys. Acta Gen. Subj. 2018;1862:1612–1625. doi: 10.1016/j.bbagen.2018.04.006. PubMed DOI
Smidova A, et al. 14-3-3 protein masks the nuclear localization sequence of caspase-2. FEBS J. 2018;285:4196–4213. doi: 10.1111/febs.14670. PubMed DOI
Receveur-Brechot V, Durand D. How random are intrinsically disordered proteins? A small angle scattering perspective. Curr. Protein Pept. Sci. 2012;13:55–75. doi: 10.2174/138920312799277901. PubMed DOI PMC
Petoukhov MV, et al. New developments in the program package for small-angle scattering data analysis. J. Appl Crystallogr. 2012;45:342–350. doi: 10.1107/S0021889812007662. PubMed DOI PMC
Shohat G, et al. The pro-apoptotic function of death-associated protein kinase is controlled by a unique inhibitory autophosphorylation-based mechanism. J. Biol. Chem. 2001;276:47460–47467. doi: 10.1074/jbc.M105133200. PubMed DOI
Davare MA, Saneyoshi T, Guire ES, Nygaard SC, Soderling TR. Inhibition of calcium/calmodulin-dependent protein kinase kinase by protein 14-3-3. J. Biol. Chem. 2004;279:52191–52199. doi: 10.1074/jbc.M409873200. PubMed DOI
Langendorf CG, et al. CaMKK2 is inactivated by cAMP-PKA signaling and 14-3-3 adaptor proteins. J. Biol. Chem. 2020;295:16239–16250. doi: 10.1074/jbc.RA120.013756. PubMed DOI PMC
Hornbeck PV, et al. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res. 2015;43:D512–D520. doi: 10.1093/nar/gku1267. PubMed DOI PMC
Park E, et al. Architecture of autoinhibited and active BRAF-MEK1-14-3-3 complexes. Nature. 2019;575:545–550. doi: 10.1038/s41586-019-1660-y. PubMed DOI PMC
Sluchanko NN, et al. Structural basis for the interaction of a human small heat shock protein with the 14-3-3 universal signaling regulator. Structure. 2017;25:305–316. doi: 10.1016/j.str.2016.12.005. PubMed DOI PMC
Boston PF, Jackson P, Kynoch PA, Thompson RJ. Purification, properties, and immunohistochemical localisation of human brain 14-3-3 protein. J. Neurochem. 1982;38:1466–1474. doi: 10.1111/j.1471-4159.1982.tb07927.x. PubMed DOI
Boston PF, Jackson P, Thompson RJ. Human 14-3-3 protein: radioimmunoassay, tissue distribution, and cerebrospinal fluid levels in patients with neurological disorders. J. Neurochem. 1982;38:1475–1482. doi: 10.1111/j.1471-4159.1982.tb07928.x. PubMed DOI
Tinti M, et al. ANIA: ANnotation and Integrated Analysis of the 14-3-3 interactome. Database. 2014;2014:bat085. doi: 10.1093/database/bat085. PubMed DOI PMC
Sluchanko NN, Bustos DM. Intrinsic disorder associated with 14-3-3 proteins and their partners. Prog. Mol. Biol. Transl. Sci. 2019;166:19–61. doi: 10.1016/bs.pmbts.2019.03.007. PubMed DOI
Kostelecky B, Saurin AT, Purkiss A, Parker PJ, McDonald NQ. Recognition of an intra-chain tandem 14-3-3 binding site within PKCepsilon. EMBO Rep. 2009;10:983–989. doi: 10.1038/embor.2009.150. PubMed DOI PMC
Alblova M, et al. Molecular basis of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1. Proc. Natl Acad. Sci. USA. 2017;114:E9811–E9820. doi: 10.1073/pnas.1714491114. PubMed DOI PMC
Kondo Y, et al. Cryo-EM structure of a dimeric B-Raf:14-3-3 complex reveals asymmetry in the active sites of B-Raf kinases. Science. 2019;366:109–115. doi: 10.1126/science.aay0543. PubMed DOI PMC
Liau NPD, et al. Negative regulation of RAF kinase activity by ATP is overcome by 14-3-3-induced dimerization. Nat. Struct. Mol. Biol. 2020;27:134–141. doi: 10.1038/s41594-019-0365-0. PubMed DOI
Obsil T, Ghirlando R, Klein DC, Ganguly S, Dyda F. Crystal structure of the 14-3-3zeta:serotonin N-acetyltransferase complex. a role for scaffolding in enzyme regulation. Cell. 2001;105:257–267. doi: 10.1016/S0092-8674(01)00316-6. PubMed DOI
Johannessen CM, et al. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature. 2010;468:968–972. doi: 10.1038/nature09627. PubMed DOI PMC
Holakovska B, Grycova L, Bily J, Teisinger J. Characterization of calmodulin binding domains in TRPV2 and TRPV5 C-tails. Amino Acids. 2011;40:741–748. doi: 10.1007/s00726-010-0712-2. PubMed DOI
Petrvalska O, et al. Structural insight into the 14-3-3 protein-dependent inhibition of protein kinase ASK1 (apoptosis signal-regulating kinase 1) J. Biol. Chem. 2016;291:20753–20765. doi: 10.1074/jbc.M116.724310. PubMed DOI PMC
Panjkovich A, Svergun DI. CHROMIXS: automatic and interactive analysis of chromatography-coupled small-angle X-ray scattering data. Bioinformatics. 2018;34:1944–1946. doi: 10.1093/bioinformatics/btx846. PubMed DOI PMC
Svergun DI. Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J. Appl. Crystallogr. 1992;25:495–503. doi: 10.1107/S0021889892001663. DOI
Konarev PV, Volkov VV, Sokolova AV, Koch MHJ, Svergun DI. PRIMUS: a Windows PC-based system for small-angle scattering data analysis. J. Appl. Crystallogr. 2003;36:1277–1282. doi: 10.1107/S0021889803012779. DOI
Franke D, Svergun DI. DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering. J. Appl. Crystallogr. 2009;42:342–346. doi: 10.1107/S0021889809000338. PubMed DOI PMC
Volkov VV, Svergun DI. Uniqueness of ab initio shape determination in small-angle scattering. J. Appl. Crystallogr. 2003;36:860–864. doi: 10.1107/S0021889803000268. PubMed DOI PMC
Kozin MB, Svergun DI. Automated matching of high- and low-resolution structural models. J. Appl. Crystallogr. 2001;34:33–41. doi: 10.1107/S0021889800014126. DOI
Niesen FH, Berglund H, Vedadi M. The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat. Protoc. 2007;2:2212–2221. doi: 10.1038/nprot.2007.321. PubMed DOI
Kabsch W. Xds. Acta Crystallogr. D Biol. Crystallogr. 2010;66:125–132. doi: 10.1107/S0907444909047337. PubMed DOI PMC
Vagin A, Teplyakov A. MOLREP: an automated program for molecular replacement. J. Appl. Crystallogr. 1997;30:1022–1025. doi: 10.1107/S0021889897006766. DOI
Adams PD, et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. Sect. D Biol. Crystallogr. 2010;66:213–221. doi: 10.1107/S0907444909052925. PubMed DOI PMC
Kincaid RL, Vaughan M, Osborne JC, Jr., Tkachuk VA. Ca2+-dependent interaction of 5-dimethylaminonaphthalene-1-sulfonyl-calmodulin with cyclic nucleotide phosphodiesterase, calcineurin, and troponin I. J. Biol. Chem. 1982;257:10638–10643. doi: 10.1016/S0021-9258(18)33870-5. PubMed DOI
Vecer J, Herman P. Maximum entropy analysis of analytically simulated complex fluorescence decays. J. Fluorescence. 2011;21:873–881. doi: 10.1007/s10895-009-0589-1. PubMed DOI
Bryan RK. Maximum-entropy analysis of oversampled data problems. Eur. Biophys. J. 1990;18:165–174. doi: 10.1007/BF02427376. DOI
Look for the Scaffold: Multifaceted Regulation of Enzyme Activity by 14-3-3 Proteins
The yeast 14-3-3 proteins Bmh1 and Bmh2 regulate key signaling pathways
Molecular basis and dual ligand regulation of tetrameric estrogen receptor α/14-3-3ζ protein complex
Structural insights into the functional roles of 14-3-3 proteins
Structural basis for SARS-CoV-2 nucleocapsid (N) protein recognition by 14-3-3 proteins
Nedd4-2 binding to 14-3-3 modulates the accessibility of its catalytic site and WW domains