Structural basis for SARS-CoV-2 nucleocapsid (N) protein recognition by 14-3-3 proteins

. 2022 Sep ; 214 (3) : 107879. [epub] 20220630

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35781025
Odkazy

PubMed 35781025
PubMed Central PMC9245327
DOI 10.1016/j.jsb.2022.107879
PII: S1047-8477(22)00049-1
Knihovny.cz E-zdroje

14-3-3 proteins are important dimeric scaffolds that regulate the function of hundreds of proteins in a phosphorylation-dependent manner. The SARS-CoV-2 nucleocapsid (N) protein forms a complex with human 14-3-3 proteins upon phosphorylation, which has also been described for other coronaviruses. Here, we report a high-resolution crystal structure of 14-3-3 bound to an N phosphopeptide bearing the phosphoserine 197 in the middle. The structure revealed two copies of the N phosphopeptide bound, each in the central binding groove of each 14-3-3 monomer. A complex network of hydrogen bonds and water bridges between the peptide and 14-3-3 was observed explaining the high affinity of the N protein for 14-3-3 proteins.

Zobrazit více v PubMed

Afonine P.V., Poon B.K., Read R.J., Sobolev O.V., Terwilliger T.C., Urzhumtsev A., Adams P.D. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D. 2018;74(6):531–544. PubMed PMC

Alblova, M., Smidova, A., Docekal, V., Vesely, J., Herman, P., Obsilova, V., Obsil, T., 2017. Molecular basis of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1. In: Proceedings of the National Academy of Sciences of the United States of America 114, E9811–E9820. PubMed PMC

Bai Z., Cao Y., Liu W., Li J. The SARS-CoV-2 nucleocapsid protein and its role in viral structure, biological functions, and a potential target for drug or vaccine mitigation. Viruses. 2021;13(6):1115. doi: 10.3390/v13061115. PubMed DOI PMC

Boon S.S., Banks L. High-risk human papillomavirus E6 oncoproteins interact with 14-3-3 zeta in a PDZ binding motif-dependent manner. J. Virol. 2013;87:1586–1595. PubMed PMC

Carlson C.R., Asfaha J.B., Ghent C.M., Howard C.J., Hartooni N., Safari M., Frankel A.D., Morgan D.O. Phosphoregulation of phase separation by the SARS-CoV-2 N protein suggests a biophysical basis for its dual functions. Mol. Cell. 2020;80:1092. PubMed PMC

Chalupska D., Eisenreichova A., Rozycki B., Rezabkova L., Humpolickova J., Klima M., Boura E. Structural analysis of phosphatidylinositol 4-kinase IIIbeta (PI4KB) – 14-3-3 protein complex reveals internal flexibility and explains 14-3-3 mediated protection from degradation in vitro. J. Struct. Biol. 2017;200:36–44. PubMed

Edwards M.R., Hoad M., Tsimbalyuk S., Menicucci A.R., Messaoudi I., Forwood J.K., Basler C.F. Henipavirus W proteins interact with 14-3-3 to modulate host gene expression. J. Virol. 2020;94 PubMed PMC

Eisenreichova A., Klima M., Boura E. Crystal structures of a yeast 14-3-3 protein from Lachancea thermotolerans in the unliganded form and bound to a human lipid kinase PI4KB-derived peptide reveal high evolutionary conservation. Acta Crystallogr. F. Struct. Biol. Commun. 2016;72:799–803. PubMed PMC

Enchery F., Dumont C., Iampietro M., Pelissier R., Aurine N., Bloyet L.M., Carbonnelle C., Mathieu C., Journo C., Gerlier D., Horvat B. Nipah virus W protein harnesses nuclear 14-3-3 to inhibit NF-kappa B-induced proinflammatory response. Commun. Biol. 2021;4 PubMed PMC

Gao T.Y., Gao Y.D., Liu X.X., Nie Z.L., Sun H.L., Lin K., Peng H.X., Wang S.K. Identification and functional analysis of the SARS-COV-2 nucleocapsid protein. BMC Microbiol. 2021;21 PubMed PMC

Gogl G., Tugaeva K.V., Eberling P., Kostmann C., Trave G., Sluchanko N.N. Hierarchized phosphotarget binding by the seven human 14-3-3 isoforms. Nat. Commun. 2021;12:1677. PubMed PMC

Horvath M., Petrvalska O., Herman P., Obsilova V., Obsil T. 14-3-3 proteins inactivate DAPK2 by promoting its dimerization and protecting key regulatory phosphosites. Commun. Biol. 2021;4 PubMed PMC

Liebschner D., Afonine P.V., Baker M.L., Bunkoczi G., Chen V.B., Croll T.I., Hintze B., Hung L.W., Jain S., McCoy A.J., Moriarty N.W., Oeffner R.D., Poon B.K., Prisant M.G., Read R.J., Richardson J.S., Richardson D.C., Sammito M.D., Sobolev O.V., Stockwell D.H., Terwilliger T.C., Urzhumtsev A.G., Videau L.L., Williams C.J., Adams P.D. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D. 2019;75:861–877. PubMed PMC

Mejdrova I., Chalupska D., Plackova P., Muller C., Sala M., Klima M., Baumlova A., Hrebabecky H., Prochazkova E., Dejmek M., Strunin D., Weber J., Lee G., Matousova M., Mertlikova-Kaiserova H., Ziebuhr J., Birkus G., Boura E., Nencka R. Rational design of novel highly potent and selective phosphatidylinositol 4-kinase iiibeta (PI4KB) inhibitors as broad-spectrum antiviral agents and tools for chemical biology. J. Med. Chem. 2017;60:100–118. PubMed

Nathan, K.G., Lal, S.K., 2020. The multifarious role of 14-3-3 family of proteins in viral replication. Viruses-Basel 12. PubMed PMC

Obsilova V., Obsil T. The 14-3-3 proteins as important allosteric regulators of protein kinases. Int. J. Mol. Sci. 2020;21 PubMed PMC

Obsilova V., Silhan J., Boura E., Teisinger J., Obsil T. 14-3-3 proteins: a family of versatile molecular regulators. Physiol. Res./Acad. Sci. Bohemoslov. 2008;57(Suppl 3):S11–21. PubMed

Obsilova V., Vecer J., Herman P., Pabianova A., Sulc M., Teisinger J., Boura E., Obsil T. 14-3-3 Protein interacts with nuclear localization sequence of forkhead transcription factor FoxO4. Biochemistry. 2005;44:11608–11617. PubMed

Otava T., Sala M., Li F., Fanfrlik J., Devkota K., Perveen S., Chau I., Pakarian P., Hobza P., Vedadi M., Boura E., Nencka R. The structure-based design of SARS-CoV-2 nsp14 methyltransferase ligands yields nanomolar inhibitors. ACS Infect. Dis. 2021;7:2214–2220. PubMed

Rezabkova L., Boura E., Herman P., Vecer J., Bourova L., Sulc M., Svoboda P., Obsilova V., Obsil T. 14-3-3 protein interacts with and affects the structure of RGS domain of regulator of G protein signaling 3 (RGS3) J. Struct. Biol. 2010;170:451–461. PubMed

Riedl W., Acharya D., Lee J.H., Liu G.Q., Serman T., Chiang C., Chan Y.K., Diamond M.S., Gack M.U. Zika virus NS3 mimics a Cellular 14-3-3-binding motif to antagonize RIG-I- and MDA5-mediated innate immunity. Cell Host Microbe. 2019;26:493. PubMed PMC

Rosas-Lemus, M., Minasov, G., Shuvalova, L., Inniss, N.L., Kiryukhina, O., Brunzelle, J., Satchell, K.J.F., 2020. High-resolution structures of the SARS-CoV-2 2'-O-methyltransferase reveal strategies for structure-based inhibitor design. Sci. Signal. 13. PubMed PMC

Rozycki B., Boura E. Conformational ensemble of the full-length SARS-CoV-2 nucleocapsid (N) protein based on molecular simulations and SAXS data. Biophys. Chem. 2022;288:106843. PubMed PMC

Sluchanko N.N. Reading the phosphorylation code: binding of the 14-3-3 protein to multivalent client phosphoproteins. Biochem. J. 2020;477:1219–1225. PubMed

Surjit M., Kumar R., Mishra R.N., Reddy M.K., Chow V.T.K., Lal S.K. The severe acute respiratory syndrome coronavirus nucleocapsid protein is phosphorylated and localizes in the cytoplasm by 14-3-3-mediated translocation. J. Virol. 2005;79:11476–11486. PubMed PMC

Tugaeva K.V., Hawkins D., Smith J.L.R., Bayfield O.W., Ker D.S., Sysoev A.A., Klychnikov O.I., Antson A.A., Sluchanko N.N. The mechanism of SARS-CoV-2 nucleocapsid protein recognition by the human 14-3-3 proteins. J. Mol. Biol. 2021;433:166875. PubMed PMC

Tung H.Y.L., Limtung P. Mutations in the phosphorylation sites of SARS-CoV-2 encoded nucleocapsid protein and structure model of sequestration by protein 14-3-3. Biochem. Biophys. Res. Commun. 2020;532:134–138. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Look for the Scaffold: Multifaceted Regulation of Enzyme Activity by 14-3-3 Proteins

. 2024 Aug 30 ; 73 (S1) : S401-S412. [epub] 20240422

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...