The 14-3-3 Proteins as Important Allosteric Regulators of Protein Kinases

. 2020 Nov 21 ; 21 (22) : . [epub] 20201121

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33233473

Grantová podpora
20-00058S and 19-00121S Grantová Agentura České Republiky
RVO:67985823 of the Institute of Physiology Czech Academy of Sciences

Phosphorylation by kinases governs many key cellular and extracellular processes, such as transcription, cell cycle progression, differentiation, secretion and apoptosis. Unsurprisingly, tight and precise kinase regulation is a prerequisite for normal cell functioning, whereas kinase dysregulation often leads to disease. Moreover, the functions of many kinases are regulated through protein-protein interactions, which in turn are mediated by phosphorylated motifs and often involve associations with the scaffolding and chaperon protein 14-3-3. Therefore, the aim of this review article is to provide an overview of the state of the art on 14-3-3-mediated kinase regulation, focusing on the most recent mechanistic insights into these important protein-protein interactions and discussing in detail both their structural aspects and functional consequences.

Zobrazit více v PubMed

Tinti M., Madeira F., Murugesan G., Hoxhaj G., Toth R., Mackintosh C. ANIA: ANnotation and Integrated Analysis of the 14-3-3 interactome. Database. 2014;2014:bat085. doi: 10.1093/database/bat085. PubMed DOI PMC

Petrvalska O., Kosek D., Kukacka Z., Tosner Z., Man P., Vecer J., Herman P., Obsilova V., Obsil T. Structural Insight into the 14-3-3 Protein-dependent Inhibition of Protein Kinase ASK1 (Apoptosis Signal-regulating kinase 1) J. Biol. Chem. 2016;291:20753–20765. doi: 10.1074/jbc.M116.724310. PubMed DOI PMC

Psenakova K., Petrvalska O., Kylarova S., Lentini Santo D., Kalabova D., Herman P., Obsilova V., Obsil T. 14-3-3 protein directly interacts with the kinase domain of calcium/calmodulin-dependent protein kinase kinase (CaMKK2) Biochim. Biophys. Acta. 2018;1862:1612–1625. doi: 10.1016/j.bbagen.2018.04.006. PubMed DOI

Chalupska D., Eisenreichova A., Rozycki B., Rezabkova L., Humpolickova J., Klima M., Boura E. Structural analysis of phosphatidylinositol 4-kinase IIIbeta (PI4KB)—14-3-3 protein complex reveals internal flexibility and explains 14-3-3 mediated protection from degradation in vitro. J. Struct. Biol. 2017;200:36–44. doi: 10.1016/j.jsb.2017.08.006. PubMed DOI

Kondo Y., Ognjenovic J., Banerjee S., Karandur D., Merk A., Kulhanek K., Wong K., Roose J.P., Subramaniam S., Kuriyan J. Cryo-EM structure of a dimeric B-Raf:14-3-3 complex reveals asymmetry in the active sites of B-Raf kinases. Science. 2019;366:109–115. doi: 10.1126/science.aay0543. PubMed DOI PMC

Park E., Rawson S., Li K., Kim B.W., Ficarro S.B., Pino G.G., Sharif H., Marto J.A., Jeon H., Eck M.J. Architecture of autoinhibited and active BRAF-MEK1-14-3-3 complexes. Nature. 2019;575:545–550. doi: 10.1038/s41586-019-1660-y. PubMed DOI PMC

Liau N.P.D., Wendorff T.J., Quinn J.G., Steffek M., Phung W., Liu P., Tang J., Irudayanathan F.J., Izadi S., Shaw A.S., et al. Negative regulation of RAF kinase activity by ATP is overcome by 14-3-3-induced dimerization. Nat. Struct. Mol. Biol. 2020;27:134–141. doi: 10.1038/s41594-019-0365-0. PubMed DOI

Liau N.P.D., Venkatanarayan A., Quinn J.G., Phung W., Malek S., Hymowitz S.G., Sudhamsu J. Dimerization Induced by C-Terminal 14-3-3 Binding Is Sufficient for BRAF Kinase Activation. Biochemistry. 2020;59:3982–3992. doi: 10.1021/acs.biochem.0c00517. PubMed DOI

Aitken A., Amess B., Howell S., Jones D., Martin H., Patel Y., Robinson K., Toker A. The role of specific isoforms of 14-3-3 protein in regulating protein kinase activity in the brain. Biochem. Soc. Trans. 1992;20:607–611. doi: 10.1042/bst0200607. PubMed DOI

Bridges D., Moorhead G.B. 14-3-3 proteins: A number of functions for a numbered protein. Sci. STKE. 2005;2005:re10. doi: 10.1126/stke.2962005re10. PubMed DOI

Aitken A. Post-translational modification of 14-3-3 isoforms and regulation of cellular function. Semin. Cell Dev. Biol. 2011;22:673–680. doi: 10.1016/j.semcdb.2011.08.003. PubMed DOI

Sluchanko N.N. Association of Multiple Phosphorylated Proteins with the 14-3-3 Regulatory Hubs: Problems and Perspectives. J. Mol. Biol. 2018;430:20–26. doi: 10.1016/j.jmb.2017.11.010. PubMed DOI

Aitken A., Howell S., Jones D., Madrazo J., Patel Y. 14-3-3 alpha and delta are the phosphorylated forms of raf-activating 14-3-3 beta and zeta. In vivo stoichiometric phosphorylation in brain at a Ser-Pro-Glu-Lys MOTIF. J. Biol. Chem. 1995;270:5706–5709. doi: 10.1074/jbc.270.11.5706. PubMed DOI

van Hemert M.J., van Heusden G.P., Steensma H.Y. Yeast 14-3-3 proteins. Yeast. 2001;18:889–895. doi: 10.1002/yea.739. PubMed DOI

Sehnke P.C., Rosenquist M., Alsterfjord M., DeLille J., Sommarin M., Larsson C., Ferl R.J. Evolution and isoform specificity of plant 14-3-3 proteins. Plant. Mol. Biol. 2002;50:1011–1018. doi: 10.1023/A:1021289127519. PubMed DOI

Xiao B., Smerdon S.J., Jones D.H., Dodson G.G., Soneji Y., Aitken A., Gamblin S.J. Structure of a 14-3-3 protein and implications for coordination of multiple signalling pathways. Nature. 1995;376:188–191. doi: 10.1038/376188a0. PubMed DOI

Liu D., Bienkowska J., Petosa C., Collier R.J., Fu H., Liddington R. Crystal structure of the zeta isoform of the 14-3-3 protein. Nature. 1995;376:191–194. doi: 10.1038/376191a0. PubMed DOI

Ma Y., Pitson S., Hercus T., Murphy J., Lopez A., Woodcock J. Sphingosine activates protein kinase A type II by a novel cAMP-independent mechanism. J. Biol. Chem. 2005;280:26011–26017. doi: 10.1074/jbc.M409081200. PubMed DOI

Woodcock J.M., Murphy J., Stomski F.C., Berndt M.C., Lopez A.F. The dimeric versus monomeric status of 14-3-3zeta is controlled by phosphorylation of Ser58 at the dimer interface. J. Biol. Chem. 2003;278:36323–36327. doi: 10.1074/jbc.M304689200. PubMed DOI

Woodcock J.M., Coolen C., Goodwin K.L., Baek D.J., Bittman R., Samuel M.S., Pitson S.M., Lopez A.F. Destabilisation of dimeric 14-3-3 proteins as a novel approach to anti-cancer therapeutics. Oncotarget. 2015;6:14522–14536. doi: 10.18632/oncotarget.3995. PubMed DOI PMC

Molzan M., Kasper S., Roglin L., Skwarczynska M., Sassa T., Inoue T., Breitenbuecher F., Ohkanda J., Kato N., Schuler M., et al. Stabilization of physical RAF/14-3-3 interaction by cotylenin A as treatment strategy for RAS mutant cancers. ACS Chem. Biol. 2013;8:1869–1875. doi: 10.1021/cb4003464. PubMed DOI

Lavoie H., Therrien M. Regulation of RAF protein kinases in ERK signalling. Nat. Rev. Mol. Cell Biol. 2015;16:281–298. doi: 10.1038/nrm3979. PubMed DOI

Tate J.G., Bamford S., Jubb H.C., Sondka Z., Beare D.M., Bindal N., Boutselakis H., Cole C.G., Creatore C., Dawson E., et al. COSMIC: The Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res. 2019;47:D941–D947. doi: 10.1093/nar/gky1015. PubMed DOI PMC

Dumaz N., Marais R. Protein kinase A blocks Raf-1 activity by stimulating 14-3-3 binding and blocking Raf-1 interaction with Ras. J. Biol. Chem. 2003;278:29819–29823. doi: 10.1074/jbc.C300182200. PubMed DOI

Stanton V.P., Jr., Nichols D.W., Laudano A.P., Cooper G.M. Definition of the human raf amino-terminal regulatory region by deletion mutagenesis. Mol. Cell Biol. 1989;9:639–647. doi: 10.1128/MCB.9.2.639. PubMed DOI PMC

Tzivion G., Luo Z., Avruch J. A dimeric 14-3-3 protein is an essential cofactor for Raf kinase activity. Nature. 1998;394:88–92. doi: 10.1038/27938. PubMed DOI

Luo Z., Tzivion G., Belshaw P.J., Vavvas D., Marshall M., Avruch J. Oligomerization activates c-Raf-1 through a Ras-dependent mechanism. Nature. 1996;383:181–185. doi: 10.1038/383181a0. PubMed DOI

Fantl W.J., Muslin A.J., Kikuchi A., Martin J.A., MacNicol A.M., Gross R.W., Williams L.T. Activation of Raf-1 by 14-3-3 proteins. Nature. 1994;371:612–614. doi: 10.1038/371612a0. PubMed DOI

Freed E., Symons M., Macdonald S.G., McCormick F., Ruggieri R. Binding of 14-3-3 proteins to the protein kinase Raf and effects on its activation. Science. 1994;265:1713–1716. doi: 10.1126/science.8085158. PubMed DOI

Irie K., Gotoh Y., Yashar B.M., Errede B., Nishida E., Matsumoto K. Stimulatory effects of yeast and mammalian 14-3-3 proteins on the Raf protein kinase. Science. 1994;265:1716–1719. doi: 10.1126/science.8085159. PubMed DOI

Fu H., Xia K., Pallas D.C., Cui C., Conroy K., Narsimhan R.P., Mamon H., Collier R.J., Roberts T.M. Interaction of the protein kinase Raf-1 with 14-3-3 proteins. Science. 1994;266:126–129. doi: 10.1126/science.7939632. PubMed DOI

Petosa C., Masters S.C., Bankston L.A., Pohl J., Wang B., Fu H., Liddington R.C. 14-3-3zeta binds a phosphorylated Raf peptide and an unphosphorylated peptide via its conserved amphipathic groove. J. Biol. Chem. 1998;273:16305–16310. doi: 10.1074/jbc.273.26.16305. PubMed DOI

Molzan M., Ottmann C. Synergistic binding of the phosphorylated S233- and S259-binding sites of C-RAF to one 14-3-3zeta dimer. J. Mol. Biol. 2012;423:486–495. doi: 10.1016/j.jmb.2012.08.009. PubMed DOI

Molzan M., Schumacher B., Ottmann C., Baljuls A., Polzien L., Weyand M., Thiel P., Rose R., Rose M., Kuhenne P., et al. Impaired binding of 14-3-3 to C-RAF in Noonan syndrome suggests new approaches in diseases with increased Ras signaling. Mol. Cell Biol. 2010;30:4698–4711. doi: 10.1128/MCB.01636-09. PubMed DOI PMC

Freeman A.K., Ritt D.A., Morrison D.K. The importance of Raf dimerization in cell signaling. Small Gtpases. 2013;4:180–185. doi: 10.4161/sgtp.26117. PubMed DOI PMC

Durrant D.E., Morrison D.K. Targeting the Raf kinases in human cancer: The Raf dimer dilemma. Br. J. Cancer. 2018;118:3–8. doi: 10.1038/bjc.2017.399. PubMed DOI PMC

Ichijo H., Nishida E., Irie K., ten Dijke P., Saitoh M., Moriguchi T., Takagi M., Matsumoto K., Miyazono K., Gotoh Y. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science. 1997;275:90–94. doi: 10.1126/science.275.5296.90. PubMed DOI

Johnson G.L., Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science. 2002;298:1911–1912. doi: 10.1126/science.1072682. PubMed DOI

Takenaka S., Fujisawa T., Ichijo H. Apoptosis signal-regulating kinase 1 (ASK1) as a therapeutic target for neurological diseases. Expert Opin. Ther. Targets. 2020:1061–1064. doi: 10.1080/14728222.2020.1821648. PubMed DOI

Psenakova K., Hexnerova R., Srb P., Obsilova V., Veverka V., Obsil T. The redox-active site of thioredoxin is directly involved in apoptosis signal-regulating kinase 1 binding that is modulated by oxidative stress. FEBS J. 2020;287:1626–1644. doi: 10.1111/febs.15101. PubMed DOI

Tobiume K., Saitoh M., Ichijo H. Activation of apoptosis signal-regulating kinase 1 by the stress-induced activating phosphorylation of pre-formed oligomer. J. Cell Physiol. 2002;191:95–104. doi: 10.1002/jcp.10080. PubMed DOI

Bunkoczi G., Salah E., Filippakopoulos P., Fedorov O., Muller S., Sobott F., Parker S.A., Zhang H., Min W., Turk B.E., et al. Structural and functional characterization of the human protein kinase ASK1. Structure. 2007;15:1215–1226. doi: 10.1016/j.str.2007.08.011. PubMed DOI PMC

Trevelyan S.J., Brewster J.L., Burgess A.E., Crowther J.M., Cadell A.L., Parker B.L., Croucher D.R., Dobson R.C.J., Murphy J.M., Mace P.D. Structure-based mechanism of preferential complex formation by apoptosis signal-regulating kinases. Sci. Signal. 2020;13 doi: 10.1126/scisignal.aay6318. PubMed DOI

Zhang L., Chen J., Fu H. Suppression of apoptosis signal-regulating kinase 1-induced cell death by 14-3-3 proteins. Proc. Natl. Acad. Sci. USA. 1999;96:8511–8515. doi: 10.1073/pnas.96.15.8511. PubMed DOI PMC

Federspiel J.D., Codreanu S.G., Palubinsky A.M., Winland A.J., Betanzos C.M., McLaughlin B., Liebler D.C. Assembly Dynamics and Stoichiometry of the Apoptosis Signal-regulating Kinase (ASK) Signalosome in Response to Electrophile Stress. Mol. Cell Proteom. 2016;15:1947–1961. doi: 10.1074/mcp.M115.057364. PubMed DOI PMC

Cockrell L.M., Puckett M.C., Goldman E.H., Khuri F.R., Fu H. Dual engagement of 14-3-3 proteins controls signal relay from ASK2 to the ASK1 signalosome. Oncogene. 2010;29:822–830. doi: 10.1038/onc.2009.382. PubMed DOI

Goldman E.H., Chen L., Fu H. Activation of apoptosis signal-regulating kinase 1 by reactive oxygen species through dephosphorylation at serine 967 and 14-3-3 dissociation. J. Biol. Chem. 2004;279:10442–10449. doi: 10.1074/jbc.M311129200. PubMed DOI

Saitoh M., Nishitoh H., Fujii M., Takeda K., Tobiume K., Sawada Y., Kawabata M., Miyazono K., Ichijo H. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J. 1998;17:2596–2606. doi: 10.1093/emboj/17.9.2596. PubMed DOI PMC

Fujino G., Noguchi T., Matsuzawa A., Yamauchi S., Saitoh M., Takeda K., Ichijo H. Thioredoxin and TRAF family proteins regulate reactive oxygen species-dependent activation of ASK1 through reciprocal modulation of the N-terminal homophilic interaction of ASK1. Mol. Cell Biol. 2007;27:8152–8163. doi: 10.1128/MCB.00227-07. PubMed DOI PMC

Liu H., Nishitoh H., Ichijo H., Kyriakis J.M. Activation of apoptosis signal-regulating kinase 1 (ASK1) by tumor necrosis factor receptor-associated factor 2 requires prior dissociation of the ASK1 inhibitor thioredoxin. Mol. Cell Biol. 2000;20:2198–2208. doi: 10.1128/MCB.20.6.2198-2208.2000. PubMed DOI PMC

Weijman J.F., Kumar A., Jamieson S.A., King C.M., Caradoc-Davies T.T., Ledgerwood E.C., Murphy J.M., Mace P.D. Structural basis of autoregulatory scaffolding by apoptosis signal-regulating kinase 1. Proc. Natl. Acad. Sci. USA. 2017;114:E2096–E2105. doi: 10.1073/pnas.1620813114. PubMed DOI PMC

Obsil T., Ghirlando R., Klein D.C., Ganguly S., Dyda F. Crystal structure of the 14-3-3zeta:serotonin N-acetyltransferase complex. A role for scaffolding in enzyme regulation. Cell. 2001;105:257–267. doi: 10.1016/S0092-8674(01)00316-6. PubMed DOI

Alblova M., Smidova A., Docekal V., Vesely J., Herman P., Obsilova V., Obsil T. Molecular basis of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1. Proc. Natl. Acad. Sci. USA. 2017;114:E9811–E9820. doi: 10.1073/pnas.1714491114. PubMed DOI PMC

Obsil T., Obsilova V. Structural aspects of protein kinase ASK1 regulation. Adv. Biol. Regul. 2017;66:31–36. doi: 10.1016/j.jbior.2017.10.002. PubMed DOI

Kaplan A., Ottmann C., Fournier A.E. 14-3-3 adaptor protein-protein interactions as therapeutic targets for CNS diseases. Pharm. Res. 2017;125:114–121. doi: 10.1016/j.phrs.2017.09.007. PubMed DOI

Lentini Santo D., Petrvalska O., Obsilova V., Ottmann C., Obsil T. Stabilization of Protein-Protein Interactions between CaMKK2 and 14-3-3 by Fusicoccins. ACS Chem. Biol. 2020;15:3060–3071. doi: 10.1021/acschembio.0c00821. PubMed DOI

Stevers L.M., Sijbesma E., Botta M., MacKintosh C., Obsil T., Landrieu I., Cau Y., Wilson A.J., Karawajczyk A., Eickhoff J., et al. Modulators of 14-3-3 Protein-Protein Interactions. J. Med. Chem. 2018;61:3755–3778. doi: 10.1021/acs.jmedchem.7b00574. PubMed DOI PMC

Wurtele M., Jelich-Ottmann C., Wittinghofer A., Oecking C. Structural view of a fungal toxin acting on a 14-3-3 regulatory complex. EMBO J. 2003;22:987–994. doi: 10.1093/emboj/cdg104. PubMed DOI PMC

Marcelo K.L., Means A.R., York B. The Ca2+/Calmodulin/CaMKK2 Axis: Nature’s Metabolic CaMshaft. Trends Endocrinol. Metab. 2016;27:706–718. doi: 10.1016/j.tem.2016.06.001. PubMed DOI PMC

Racioppi L., Means A.R. Calcium/calmodulin-dependent protein kinase kinase 2: Roles in signaling and pathophysiology. J. Biol. Chem. 2012;287:31658–31665. doi: 10.1074/jbc.R112.356485. PubMed DOI PMC

Soderling T.R. The Ca-calmodulin-dependent protein kinase cascade. Trends Biochem. Sci. 1999;24:232–236. doi: 10.1016/S0968-0004(99)01383-3. PubMed DOI

Tokumitsu H., Wayman G.A., Muramatsu M., Soderling T.R. Calcium/calmodulin-dependent protein kinase kinase: Identification of regulatory domains. Biochemistry. 1997;36:12823–12827. doi: 10.1021/bi971348i. PubMed DOI

Goldberg J., Nairn A.C., Kuriyan J. Structural basis for the autoinhibition of calcium/calmodulin-dependent protein kinase I. Cell. 1996;84:875–887. doi: 10.1016/S0092-8674(00)81066-1. PubMed DOI

Wayman G.A., Kaech S., Grant W.F., Davare M., Impey S., Tokumitsu H., Nozaki N., Banker G., Soderling T.R. Regulation of axonal extension and growth cone motility by calmodulin-dependent protein kinase I. J. Neurosci. 2004;24:3786–3794. doi: 10.1523/JNEUROSCI.3294-03.2004. PubMed DOI PMC

Lin F., Marcelo K.L., Rajapakshe K., Coarfa C., Dean A., Wilganowski N., Robinson H., Sevick E., Bissig K.D., Goldie L.C., et al. The camKK2/camKIV relay is an essential regulator of hepatic cancer. Hepatology. 2015;62:505–520. doi: 10.1002/hep.27832. PubMed DOI PMC

Edelman A.M., Mitchelhill K.I., Selbert M.A., Anderson K.A., Hook S.S., Stapleton D., Goldstein E.G., Means A.R., Kemp B.E. Multiple Ca2+-calmodulin-dependent protein kinase kinases from rat brain. Purification, regulation by Ca2+-calmodulin, and partial amino acid sequence. J. Biol. Chem. 1996;271:10806–10810. doi: 10.1074/jbc.271.18.10806. PubMed DOI

Anderson K.A., Ribar T.J., Lin F., Noeldner P.K., Green M.F., Muehlbauer M.J., Witters L.A., Kemp B.E., Means A.R. Hypothalamic CaMKK2 contributes to the regulation of energy balance. Cell Metab. 2008;7:377–388. doi: 10.1016/j.cmet.2008.02.011. PubMed DOI

Wen L., Chen Z., Zhang F., Cui X., Sun W., Geary G.G., Wang Y., Johnson D.A., Zhu Y., Chien S., et al. Ca2+/calmodulin-dependent protein kinase kinase beta phosphorylation of Sirtuin 1 in endothelium is atheroprotective. Proc. Natl. Acad. Sci. USA. 2013;110:E2420–E2427. doi: 10.1073/pnas.1309354110. PubMed DOI PMC

Gao G., Widmer J., Stapleton D., Teh T., Cox T., Kemp B.E., Witters L.A. Catalytic subunits of the porcine and rat 5’-AMP-activated protein kinase are members of the SNF1 protein kinase family. Biochim. Biophys. Acta. 1995;1266:73–82. doi: 10.1016/0167-4889(94)00222-Z. PubMed DOI

Davare M.A., Saneyoshi T., Guire E.S., Nygaard S.C., Soderling T.R. Inhibition of calcium/calmodulin-dependent protein kinase kinase by protein 14-3-3. J. Biol. Chem. 2004;279:52191–52199. doi: 10.1074/jbc.M409873200. PubMed DOI

Ichimura T., Taoka M., Hozumi Y., Goto K., Tokumitsu H. 14-3-3 Proteins directly regulate Ca2+/calmodulin-dependent protein kinase kinase alpha through phosphorylation-dependent multisite binding. FEBS Lett. 2008;582:661–665. doi: 10.1016/j.febslet.2008.01.037. PubMed DOI

Matsushita M., Nairn A.C. Inhibition of the Ca2+/calmodulin-dependent protein kinase I cascade by cAMP-dependent protein kinase. J. Biol. Chem. 1999;274:10086–10093. doi: 10.1074/jbc.274.15.10086. PubMed DOI

Wayman G.A., Tokumitsu H., Soderling T.R. Inhibitory cross-talk by cAMP kinase on the calmodulin-dependent protein kinase cascade. J. Biol. Chem. 1997;272:16073–16076. doi: 10.1074/jbc.272.26.16073. PubMed DOI

Langendorf C.G., O’Brien M.T., Ngoei K.R.W., McAloon L.M., Dhagat U., Hoque A., Ling N.X.Y., Dite T.A., Galic S., Loh K., et al. CaMKK2 is inactivated by cAMP-PKA signaling and 14-3-3 adaptor proteins. J. Biol. Chem. 2020 doi: 10.1074/jbc.RA120.013756. PubMed DOI PMC

Spengler K., Zibrova D., Woods A., Langendorf C.G., Scott J.W., Carling D., Heller R. Protein kinase A negatively regulates VEGF-induced AMPK activation by phosphorylating CaMKK2 at serine 495. Biochem. J. 2020;477:3453–3469. doi: 10.1042/BCJ20200555. PubMed DOI

De Boer A.H., de Vries-van Leeuwen I.J. Fusicoccanes: Diterpenes with surprising biological functions. Trends Plant. Sci. 2012;17:360–368. doi: 10.1016/j.tplants.2012.02.007. PubMed DOI

Balla T. Phosphoinositides: Tiny lipids with giant impact on cell regulation. Physiol. Rev. 2013;93:1019–1137. doi: 10.1152/physrev.00028.2012. PubMed DOI PMC

Burke J.E. Structural Basis for Regulation of Phosphoinositide Kinases and Their Involvement in Human Disease. Mol. Cell. 2018;71:653–673. doi: 10.1016/j.molcel.2018.08.005. PubMed DOI

Di Paolo G., De Camilli P. Phosphoinositides in cell regulation and membrane dynamics. Nature. 2006;443:651–657. doi: 10.1038/nature05185. PubMed DOI

Balla A., Balla T. Phosphatidylinositol 4-kinases: Old enzymes with emerging functions. Trends Cell Biol. 2006;16:351–361. doi: 10.1016/j.tcb.2006.05.003. PubMed DOI

Boura E., Nencka R. Phosphatidylinositol 4-kinases: Function, structure, and inhibition. Exp. Cell Res. 2015;337:136–145. doi: 10.1016/j.yexcr.2015.03.028. PubMed DOI

Sasaki J., Ishikawa K., Arita M., Taniguchi K. ACBD3-mediated recruitment of PI4KB to picornavirus RNA replication sites. EMBO J. 2012;31:754–766. doi: 10.1038/emboj.2011.429. PubMed DOI PMC

De Graaf P., Zwart W.T., van Dijken R.A., Deneka M., Schulz T.K., Geijsen N., Coffer P.J., Gadella B.M., Verkleij A.J., van der Sluijs P., et al. Phosphatidylinositol 4-kinasebeta is critical for functional association of rab11 with the Golgi complex. Mol. Biol. Cell. 2004;15:2038–2047. doi: 10.1091/mbc.e03-12-0862. PubMed DOI PMC

Hausser A., Link G., Hoene M., Russo C., Selchow O., Pfizenmaier K. Phospho-specific binding of 14-3-3 proteins to phosphatidylinositol 4-kinase III beta protects from dephosphorylation and stabilizes lipid kinase activity. J. Cell Sci. 2006;119:3613–3621. doi: 10.1242/jcs.03104. PubMed DOI

Demmel L., Beck M., Klose C., Schlaitz A.L., Gloor Y., Hsu P.P., Havlis J., Shevchenko A., Krause E., Kalaidzidis Y., et al. Nucleocytoplasmic shuttling of the Golgi phosphatidylinositol 4-kinase Pik1 is regulated by 14-3-3 proteins and coordinates Golgi function with cell growth. Mol. Biol. Cell. 2008;19:1046–1061. doi: 10.1091/mbc.e07-02-0134. PubMed DOI PMC

Burke J.E., Inglis A.J., Perisic O., Masson G.R., McLaughlin S.H., Rutaganira F., Shokat K.M., Williams R.L. Structures of PI4KIIIbeta complexes show simultaneous recruitment of Rab11 and its effectors. Science. 2014;344:1035–1038. doi: 10.1126/science.1253397. PubMed DOI PMC

Eisenreichova A., Klima M., Boura E. Crystal structures of a yeast 14-3-3 protein from Lachancea thermotolerans in the unliganded form and bound to a human lipid kinase PI4KB-derived peptide reveal high evolutionary conservation. Acta Cryst. F Struct. Biol. Commun. 2016;72:799–803. doi: 10.1107/S2053230X16015053. PubMed DOI PMC

Johnson C., Crowther S., Stafford M.J., Campbell D.G., Toth R., MacKintosh C. Bioinformatic and experimental survey of 14-3-3-binding sites. Biochem. J. 2010;427:69–78. doi: 10.1042/BJ20091834. PubMed DOI PMC

Hausser A., Storz P., Martens S., Link G., Toker A., Pfizenmaier K. Protein kinase D regulates vesicular transport by phosphorylating and activating phosphatidylinositol-4 kinase IIIbeta at the Golgi complex. Nat. Cell Biol. 2005;7:880–886. doi: 10.1038/ncb1289. PubMed DOI PMC

Szivak I., Lamb N., Heilmeyer L.M. Subcellular localization and structural function of endogenous phosphorylated phosphatidylinositol 4-kinase (PI4K92) J. Biol. Chem. 2006;281:16740–16749. doi: 10.1074/jbc.M511645200. PubMed DOI

Valente C., Turacchio G., Mariggio S., Pagliuso A., Gaibisso R., Di Tullio G., Santoro M., Formiggini F., Spano S., Piccini D., et al. A 14-3-3gamma dimer-based scaffold bridges CtBP1-S/BARS to PI(4)KIIIbeta to regulate post-Golgi carrier formation. Nat. Cell Biol. 2012;14:343–354. doi: 10.1038/ncb2445. PubMed DOI

Chalupska D., Rozycki B., Humpolickova J., Faltova L., Klima M., Boura E. Phosphatidylinositol 4-kinase IIIbeta (PI4KB) forms highly flexible heterocomplexes that include ACBD3, 14-3-3, and Rab11 proteins. Sci. Rep. 2019;9:567. doi: 10.1038/s41598-018-37158-6. PubMed DOI PMC

Wortzel I., Hanoch T., Porat Z., Hausser A., Seger R. Mitotic Golgi translocation of ERK1c is mediated by a PI4KIIIbeta-14-3-3gamma shuttling complex. J. Cell Sci. 2015;128:4083–4095. doi: 10.1242/jcs.170910. PubMed DOI

Morrison D.K. The 14-3-3 proteins: Integrators of diverse signaling cues that impact cell fate and cancer development. Trends Cell Biol. 2009;19:16–23. doi: 10.1016/j.tcb.2008.10.003. PubMed DOI PMC

Marin I., van Egmond W.N., van Haastert P.J. The Roco protein family: A functional perspective. FASEB J. 2008;22:3103–3110. doi: 10.1096/fj.08-111310. PubMed DOI

Zimprich A., Biskup S., Leitner P., Lichtner P., Farrer M., Lincoln S., Kachergus J., Hulihan M., Uitti R.J., Calne D.B., et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron. 2004;44:601–607. doi: 10.1016/j.neuron.2004.11.005. PubMed DOI

Taylor M., Alessi D.R. Advances in elucidating the function of leucine-rich repeat protein kinase-2 in normal cells and Parkinson’s disease. Curr. Opin. Cell Biol. 2020;63:102–113. doi: 10.1016/j.ceb.2020.01.001. PubMed DOI PMC

Nichols R.J., Dzamko N., Morrice N.A., Campbell D.G., Deak M., Ordureau A., Macartney T., Tong Y., Shen J., Prescott A.R., et al. 14-3-3 binding to LRRK2 is disrupted by multiple Parkinson’s disease-associated mutations and regulates cytoplasmic localization. Biochem. J. 2010;430:393–404. doi: 10.1042/BJ20100483. PubMed DOI PMC

Stevers L.M., de Vries R.M., Doveston R.G., Milroy L.G., Brunsveld L., Ottmann C. Structural interface between LRRK2 and 14-3-3 protein. Biochem. J. 2017;474:1273–1287. doi: 10.1042/BCJ20161078. PubMed DOI

Manschwetus J.T., Wallbott M., Fachinger A., Obergruber C., Pautz S., Bertinetti D., Schmidt S.H., Herberg F.W. Binding of the Human 14-3-3 Isoforms to Distinct Sites in the Leucine-Rich Repeat Kinase 2. Front. Neurosci. 2020;14:302. doi: 10.3389/fnins.2020.00302. PubMed DOI PMC

Muda K., Bertinetti D., Gesellchen F., Hermann J.S., von Zweydorf F., Geerlof A., Jacob A., Ueffing M., Gloeckner C.J., Herberg F.W. Parkinson-related LRRK2 mutation R1441C/G/H impairs PKA phosphorylation of LRRK2 and disrupts its interaction with 14-3-3. Proc. Natl. Acad. Sci. USA. 2014;111:E34–E43. doi: 10.1073/pnas.1312701111. PubMed DOI PMC

Li X., Wang Q.J., Pan N., Lee S., Zhao Y., Chait B.T., Yue Z. Phosphorylation-dependent 14-3-3 binding to LRRK2 is impaired by common mutations of familial Parkinson’s disease. PLoS ONE. 2011;6:e17153. PubMed PMC

Deniston C.K., Salogiannis J., Mathea S., Snead D.M., Lahiri I., Matyszewski M., Donosa O., Watanabe R., Bohning J., Shiau A.K., et al. Structure of LRRK2 in Parkinson’s disease and model for microtubule interaction. Nature. 2020 doi: 10.1038/s41586-020-2673-2. PubMed DOI PMC

Watanabe R., Buschauer R., Bohning J., Audagnotto M., Lasker K., Lu T.W., Boassa D., Taylor S., Villa E. The In Situ Structure of Parkinson’s Disease-Linked LRRK2. Cell. 2020;182:1508–1518.e16. doi: 10.1016/j.cell.2020.08.004. PubMed DOI PMC

Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature. 1984;308:693–698. doi: 10.1038/308693a0. PubMed DOI

Rosse C., Linch M., Kermorgant S., Cameron A.J., Boeckeler K., Parker P.J. PKC and the control of localized signal dynamics. Nat. Rev. Mol. Cell Biol. 2010;11:103–112. doi: 10.1038/nrm2847. PubMed DOI

Newton A.C. Protein kinase C: Poised to signal. Am. J. Physiol. Endocrinol. Metab. 2010;298:E395–E402. doi: 10.1152/ajpendo.00477.2009. PubMed DOI PMC

Newton A.C. Protein kinase C: Structure, function, and regulation. J. Biol. Chem. 1995;270:28495–28498. doi: 10.1074/jbc.270.48.28495. PubMed DOI

Glotzer M. The molecular requirements for cytokinesis. Science. 2005;307:1735–1739. doi: 10.1126/science.1096896. PubMed DOI

Saurin A.T., Durgan J., Cameron A.J., Faisal A., Marber M.S., Parker P.J. The regulated assembly of a PKCepsilon complex controls the completion of cytokinesis. Nat. Cell Biol. 2008;10:891–901. doi: 10.1038/ncb1749. PubMed DOI

Fujiwara T., Bandi M., Nitta M., Ivanova E.V., Bronson R.T., Pellman D. Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature. 2005;437:1043–1047. doi: 10.1038/nature04217. PubMed DOI

Kostelecky B., Saurin A.T., Purkiss A., Parker P.J., McDonald N.Q. Recognition of an intra-chain tandem 14-3-3 binding site within PKCepsilon. EMBO Rep. 2009;10:983–989. doi: 10.1038/embor.2009.150. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...